摘要:目的 传统的基于子视点叠加的重聚焦算法混叠现象严重,基于光场图像重构的重聚焦方法计算量太大,性能提升困难。为此,本文借助深度神经网络设计和实现了一种基于条件生成对抗网络的新颖高效的端到端光场图像重聚焦算法。方法 首先以光场图像为输入计算视差图,并从视差图中计算出所需的弥散圆(circle of confusion,COC)图像,然后根据COC图像对光场中心子视点图像进行散焦渲染,最终生成对焦平面和景深与COC图像相对应的重聚焦图像。结果 所提算法在提出的仿真数据集和真实数据集上与相关算法进行评价比较,证明了所提算法能够生成高质量的重聚焦图像。使用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)进行定量分析的结果显示,本文算法比传统重聚焦算法平均PSNR提升了1.82 dB,平均SSIM提升了0.02,比同样使用COC图像并借助各向异性滤波的算法平均PSNR提升了7.92 dB,平均SSIM提升了0.08。结论 本文算法能够依据图像重聚焦和景深控制要求,生成输入光场图像的视差图,进而生成对应的COC图像。所提条件生成对抗神经网络模型能够依据得到的不同COC图像对输入的中心子视点进行散焦渲染,得到与之对应的重聚焦图像,与之前的算法相比,本文算法解决了混叠问题,优化了散焦效果,并显著降低了计算成本。
摘要:目的 针对目前基于生成式的步态识别方法采用特定视角的步态模板转换、识别率随视角跨度增大而不断下降的问题,本文提出融合自注意力机制的生成对抗网络的跨视角步态识别方法。方法 该方法的网络结构由生成器、视角判别器和身份保持器构成,建立可实现任意视角间步态转换的网络模型。生成网络采用编码器—解码器结构将输入的步态特征和视角指示器连接,进而实现不同视角域的转换,并通过对抗训练和像素级损失使生成的目标视角步态模板与真实的步态模板相似。在判别网络中,利用视角判别器来约束生成视角与目标视角相一致,并使用联合困难三元组损失的身份保持器以最大化保留输入模板的身份信息。同时,在生成网络和判别网络中加入自注意力机制,以捕捉特征的全局依赖关系,从而提高生成图像的质量,并引入谱规范化使网络稳定训练。结果 在CASIA-B(Chinese Academy of Sciences’ Institute of Automation gait database——dataset B)和OU-MVLP(OU-ISIR gait database-multi-view large population dataset)数据集上进行实验,当引入自注意力模块和身份保留损失训练网络时,在CASIA-B数据集上的识别率有显著提升,平均rank-1准确率比GaitGAN(gait generative adversarial network)方法高15%。所提方法在OU-MVLP大规模的跨视角步态数据库中仍具有较好的适用性,可以达到65.9%的平均识别精度。结论 本文方法提升了生成步态模板的质量,提取的视角不变特征更具判别力,识别精度较现有方法有一定提升,能较好地解决跨视角步态识别问题。
摘要:目的 绝缘子检测是输电线路智能巡维工作的重要组成部分,然而大多数情况仅能获得单一类型的绝缘子样本。将单一类型的绝缘子样本训练得到的模型直接用于其他类型的绝缘子检测,会由于训练数据与目标数据之间存在的域偏移导致其检测性能急剧下降。因此,提高模型的泛化能力以保持良好的检测性能显得尤为必要。为此,提出一种新颖的对抗一致性约束的无监督域自适应绝缘子检测算法。方法 对源域样本与目标域样本分别设计了两个不同的分类器,并将网络的预测结果与对应的绝缘子进行类别约束,使模型能够提取到不同类型绝缘子独有的特征。此外,在对抗学习过程中引入一个额外的分类器用于将源域中绝缘子特征与从目标域中预测到的目标物特征分到同一类别下,从而使模型能提取不同类型绝缘子共有的鲁棒性特征。结果 实验表明本文方法显著提高了模型的跨域检测性能。在glass→composite和composite→glass任务上的平均精度均值(mean average precision, mAP)分别达到55.1%和23.4%,优于主流的无监督域自适应目标检测方法。在公开数据集COCO(common objects in context)上的实验结果也较为优异,平均精度均值(mean average precision,mAP)达到61.5%。消融实验中,在glass→composite和composite→glass任务上,本文方法在基准性能上分别提升了11.5%和6.4%,表明了所提方法的有效性。结论 本文方法减少了不同类型绝缘子间的差异带来的域偏移,提升了模型在跨域绝缘子检测任务中的泛化能力,提高了输电线路巡维工作的绝缘子检测效率。同时,在COCO数据集上的普适性实验表明本文方法同样适用于其他不同类物体的检测并且性能优异。