摘要:目的基于点云的神经渲染方法受点云质量及特征提取的影响,易导致新视角合成图像渲染质量下降,为此提出一种融合局部空间信息的新视角合成方法。方法针对点云质量及提取特征不足的问题,首先,设计一种神经点云特征对齐模块,将点云与图像匹配区域的特征进行对齐,融合后构成神经点云,提升其特征的局部表达能力;其次,提出一种神经点云Transformer模块,用于融合局部神经点云的上下文信息,在点云质量不佳的情况下仍能提取可靠的局部空间信息,有效增强了点云神经渲染方法的合成质量。结果实验结果表明,在真实场景数据集中,对于只包含单一物品的数据集Tanks and Temples,本文方法在峰值信噪比(peak signal to noise ratio, PSNR)指标上与NeRF(neural radiance field)方法相比提升19.2%,相较于使用点云输入的方法Tetra-NeRF和Point-NeRF分别提升了6.4%和3.8%,即使在场景更为复杂的ScanNet数据集中,与NeRF方法及Point-NeRF相比分别提升了34.6%和2.1%。结论本文方法能够更好地利用点云的局部空间信息,有效改善了稀疏视角图像输入下因点云质量和提取特征导致的渲染质量下降,实验结果验证了本文方法的有效性。
摘要:目的针对目前三维人体姿态估计方法未能有效处理时间序列冗余,难以捕获人体关节上微小变化的问题,提出一种融合多关节特征的单目视觉三维人体姿态估计网络。方法在关节运动特征提取模块中,采用多分支操作提取关节在时间维度上的运动特征,并将不同特征融合形成具有高度表达力的特征表示。关节特征融合模块整合了不同关节组和中间帧的全局信息,通过矩阵内积的方式表达不同关节组在高纬度空间的相对位置及相互联系,得到中间3D姿态的初估值。关节约束模块引入中间帧的2D关节点空间位置关系作为隐式约束,与中间帧3D姿态初估值融合,减少不合理的姿态输出,提高最终3D姿态估计的准确性。结果实验结果表明,与MHFormer方法相比,本文方法在Human3.6M数据集上的平均关节位置误差(mean per joint position error,MPJPE)结果为29.0 mm,误差降低4.9%,对于复杂动作,如SittingDown和WalkDog,误差降低了7.7%和8.2%。在MPI-INF-3DHP数据集上,MPJPE指标降低36.2%,曲线下面积(area under the curve,AUC)指标提升12.9%,正确关节点百分比(percentage of correct keypoints,PCK)指标提升3%。实验结果体现出在面对复杂动作问题时,网络利用各分支提取了不同的关节时序运动特征,将不同关节组的位置信息进行融合交互,结合当前帧的关节姿态信息加以约束,取得更高的精度。在HumanEva数据集上的实验结果表明了本文方法适用不同数据集,消融实验进一步验证了各个模块的有效性。结论本文网络有效地融合了人体多关节特征,可以更好地提高单目视觉三维人体姿态估计的准确性,且具备较高的泛化性。
摘要:目的随着人工智能的发展,深度学习技术在医学图像分割中得到广泛应用。但现有方法往往采用自上而下或自下而上的方式进行特征融合,易忽略或丢失中间层特征信息。此外,现有方法对病灶区域分割边界不够精细。针对上述问题,本文提出一种聚焦全局与中间层特征的细节增强医学图像分割网络(detail-enhanced medical image segmentation network focusing on global and intermediate features,DEMS-GIF)。方法首先通过进一步关注中间层信息,并利用Transformer提取不同区域之间的长距离依赖关系的能力,设计了一种基于Transformer的桥接特征融合模块(Transformer-based bridge feature fusion module,TBBFF),以提升模型的特征提取能力。其次,通过引入反向注意力机制,并结合腐蚀和膨胀操作,提出一种反向注意下的扩缩区域增强上采样策略(expanded and scaled region enhanced upsampling strategy under reverse attention,ESRU),使得模型能够更好地捕捉边界和细节信息。DEMS-GIF模型通过结合TBBFF模块和ESRU策略,进一步提高了分割的准确性。结果在CVC-ClinicDB、DDTI(digital database thyroid image)和Kvasir-SEG 3个数据集上进行对比实验和模块消融实验,评估提出的DEMS-GIF模型,并在CVC-ClinicDB数据集上进行参数消融实验,以了解DEMS-GIF中每个模块和结构内部的有效性。实验结果表明,DEMS-GIF模型的mIoU值分别达到94.74%、84.56%和88.46%,Dice值分别达到94.82%、82.95%和87.44%。与原UNet型通道变换网络相比,mIoU值分别提升3.73%、3.4%和5.24%,Dice值分别提升4.84%、5.45%和6.82%。结论本文提出的DEMS-GIF网络模型较其他先进的分割方法的分割效果更优,表明了其在医学图像分割中的优越性。