Frontiers of transportation video structural analysis in the smart city
- Vol. 26, Issue 6, Pages: 1227-1253(2021)
Published: 16 June 2021 ,
Accepted: 11 February 2021
DOI: 10.11834/jig.210035
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 June 2021 ,
Accepted: 11 February 2021
移动端阅览
Yao Zhao, Yonghong Tian, Jianwu Dang, Shujun Fu, Hengyou Wang, Jun Wan, Gaoyun An, Zhuoran Du, Lixin Liao, Shikui Wei. Frontiers of transportation video structural analysis in the smart city. [J]. Journal of Image and Graphics 26(6):1227-1253(2021)
随着智慧城市建设的不断深入,大量的传感器设备铺置在城市公路和轨道等交通场景,为多维度全方位感知城市交通状态构建了广泛的感知网络,产生了海量的交通视频数据。海量交通视频数据是城市管理的数据宝藏,理解与分析这些数据是智慧城市建设的关键。面对高度冗余的交通视频数据,如何高效准确地挖掘和提取结构化信息,实现对重点目标(如人、车、物)的快速检测、识别与检索,是交通视频处理的核心问题——交通视频结构化分析。交通视频结构化分析包括车辆视频结构化分析、人员结构化分析及其行为分析。其中,车辆结构化作为一个复杂的多步骤任务,主要由车辆的检测、车辆的属性(车牌、车型和颜色)识别以及车辆的检索和重识别等子任务构成。人脸结构化和行人结构化是交通视频中行人结构化智能分析中的两个重要研究方向,主要分析人脸或者行人的一些表观属性。行人行为分析是指对行人在复杂交通环境下做出的动作进行识别和预测。本文从交通视频中的车辆、行人及其行为分析等方面,阐述交通视频结构化分析领域的研究热点及前沿进展,汇总比较国内外的相关成果,并对交通视频结构化分析领域的研究进行总结分析与展望。
As the construction of smart cities continues to deepen
our country gradually builds multidimensional and omnidirectional sensor systems in roads
railways
and urban rails and other ground transportation fields to build strong data support for smart transportation. Faced with all-weather traffic data collected by sensors
analyzing the data by relying solely on human resources is no longer possible. Therefore
studying the structural analysis technology of traffic video and establishing a safe
flexible
and efficient intelligent transportation system has significant social benefits and application value. Traffic video structural analysis is the core technology in smart transportation. It aims to use artificial intelligence algorithms to parse unstructured traffic video data into structured semantic information that is easy for workers and computers to understand and provide basic technical support for subsequent related tasks. The structural analysis of traffic video is a key technology for smart city construction. It can help the police in quickly locating criminal vehicles and travel routes
greatly improve the police's efficiency in solving crimes
and maintain city safety; it can also automatically identify illegal vehicles and types of violation
constrains people to abide by the traffic order
and realize a smooth urban traffic environment. With the advent of the 5G internet of things era
ultrahigh network bandwidth and transmission speed further improves the quality and efficiency of vehicle video transmission. Efficiently and accurately conducting traffic video structure analysis will be the focus of research in the next few years. Traffic video structural analysis includes vehicle video structural analysis
personnel structural analysis
and behavior analysis. Among them
as a complex
multistep task
vehicle structuring is mainly composed of three subtasks
namely
vehicle detection
vehicle attributes (license plate
type
and color) recognition
and vehicle retrieval and reidentification. Human face structuring and pedestrian structuring are two important research directions in the intelligent analysis of traffic videos. They mainly analyze some apparent attributes of human faces or pedestrians
such as age
gender
mask
backpack
clothing color
and length. Pedestrian behavior analysis refers to the identification and prediction of pedestrian actions. For example
the speed at which pedestrians currently head and in which direction
whether they are answering calls
and whether they have to cross the road. For the task of vehicle structure analysis
first
the object detection technology must be used to quickly and accurately locate the vehicle. Second
on the basis of positioning the vehicle
it fully excavates the visual characteristics of the vehicle
realizes the identification of the inherent attributes of vehicle
and generates structured tags about the vehicle. Finally
on the basis of structured tags
the retrieval technology and reidentification technology are further combined to realize the retrieval and reidentification of a specific vehicle in the massive video data. Personnel structural analysis and behavior analysis can detect and identify pedestrians in traffic videos and conduct structured data extraction and behavior analysis of detected personnel. In the analysis of personnel structure
a person is extracted as a descriptive individual. In terms of face structure
it includes accurate facial positioning
facial feature extraction
and facial feature comparison. In terms of pedestrian structure
it includes gender
age
and age of the person. Various descriptive information includes height
hair accessories
clothing
carrying items
and walking patterns. Pedestrian behavior analysis is carried out on the basis of personnel structure analysis. Behavior analysis refers to the recognition
comprehension
and prediction of pedestrian actions. In the area of big data processing and analysis of traffic video
research on vehicle structuring started earlier and related technologies have also developed rapidly
but it can still be remarkably developed. The premise of vehicle structuring is vehicle detection
which is affected by the shooting scene and the moving speed of the vehicle. Accurately locating the vehicle in the case of low light and the fast vehicle speed is still a problem to be solved. Many types of vehicles are found in the market
and the differences between models of similar brands are small. License plate recognition has become more important. In complex and changeable scenes
the generalization and accuracy of the positioning and recognition algorithm should be further improved. The extensive deployment of traffic monitoring equipment realizes all-weather monitoring of relevant road systems and further increases the difficulty of vehicle retrieval and reidentification tasks. Rapid retrieval or reidentification of target vehicles in complex and changeable scenes is crucial. It requires continuous investment and a much innovative research by scientific researchers. The need for structured pedestrian analysis has gradually emerged with further improvement of urban management. Pedestrian structuring mainly analyzes some apparent attributes of faces or pedestrians
such as age
gender
and clothing style
and provides more detailed data support for subsequent related tasks. Pedestrian structured analysis technology has also ushered in a period of rapid development with the development of deep learning. However
the structured analysis of pedestrians for specific scenarios
such as accurately identifying the age and gender of a person in an unconstrained environment
implementing the deployment of high-precision models in terminal systems with limited resources
and integrating multimodal information to further improve the accuracy of pedestrian attribute recognition
needs further research. Pedestrian behavior analysis is a more advanced task in traffic video big data processing and analysis. It is more challenging due to factors
such as shooting scenes
moving cameras
viewing angles
and lighting changes. Judging from the behavior recognition effect of the mainstream neural network architecture
the current model does not achieve the desired effect on the large-scale behavior data set Kinetic because the existing model still fails to fully learn and model the behavioral timing relationship. In the field of behavior recognition
future research can still focus on recognition models for designing long-time-dependent network architectures
adapting large-scale data sets
and achieving lightweight behavior. With the development of Internet of Things and 5G technologies
the promotion of new technologies has also played an important role in the structural analysis of traffic video. To be equipped with IoT devices has become an inevitable trend for modern cars. Vehicles can be connected to basic transportation facilities (vehicle to infrastructure
V2I) or to surrounding vehicles (vehicle-to-vehicle
V2V). The development of these technologies depends on the common progress of vehicle video structuring and internet of things technology. With the global popularity of 5G technology
rapid transmission of high-quality video data has become a reality. Extracting structured information more efficiently from traffic videos
such as vehicle information
pedestrian information
and behavior prediction
has become more urgent. Researchers should study on improving the performance of related algorithms
should design more efficient hardware systems
and build more efficient traffic video structured analysis systems through software and hardware collaborations. We discuss the related work on traffic video structural analysis in detail from three aspects
as follows: vehicle
personnel
and behavior analysis. Moreover
we summarize these research works and provide some reasonable directions for future work.
交通视频车辆结构化分析行人结构化分析行为结构化分析车辆检测车辆属性识别车辆检索人脸结构化分析
traffic videovehicle structural analysispersonnel structural analysisbehavior structural analysisvehicle detectionvehicle attribute recognitionvehicle retrievalhuman face structural analysis
Aarathi K S and Abraham A. 2017. Vehicle color recognition using deep learning for hazy images//Proceedings of 2017 IEEE International Conference on Inventive Communication and Computational Technologies. Coimbatore, India: IEEE: 335-339[DOI: 10.1109/icicct.2017.7975215http://dx.doi.org/10.1109/icicct.2017.7975215]
Abdulnabi A H, Wang G, Lu J W and Jia K. 2015. Multi-task CNN model for attribute prediction. IEEE Transactions on Multimedia, 17(11): 1949-1959[DOI: 10.1109/tmm.2015.2477680]
Ali S S M, George B and Vanajaksh L. 2013. Multiple inductive loop detectors for intelligent transportation systems applications: ramp metering, vehicle re-identification and lane change monitoring systems//2013 IEEE Symposium on Computers and Informatics. Langkawi, Malaysia: IEEE: 176-180[DOI: 10.1109/isci.2013.6612398http://dx.doi.org/10.1109/isci.2013.6612398]
Ashraf K, Wu B C, Iandola F N, Moskewicz M W and Keutzer K. 2017. Shallow networks for high-accuracy road object-detection//Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems. Porto, Portugal: SciTePress: 33-40[DOI: 10.5220/0006214900330040http://dx.doi.org/10.5220/0006214900330040]
Awang S and Azmi N M A N. 2017. Sparse-filtered convolutional neural networks with layer-skipping (SF-CNNLS) for intra-class variation of vehicle type recognition. Deep Learning for Image Processing Applications, 31: 194-217[DOI: 10.3233/978-1-61499-822-8-194]
Bashir R M S, Shahzad M and Fraz M M. 2018. DUPL-VR: deep unsupervised progressive learning for vehicle re-identification//Proceedings of the 13th International Symposium on Visual Computing. Las Vegas, USA: Springer: 286-295[DOI: 10.1007/978-3-030-03801-4_26http://dx.doi.org/10.1007/978-3-030-03801-4_26]
Bashir R M S, Shahzad M and Fraz M M. 2019. VR-PROUD: vehicle re-identification using PROgressive unsupervised deep architecture. Pattern Recognition, 90: 52-65[DOI: 10.1016/j.patcog.2019.01.008]
Bi X J and Feng X Y. 2018. Human action recognition based on improved depth learning model C-GRBM. Journal of Harbin Engineering University, 39(1): 156-162
毕晓君, 冯雪赟. 2018. 基于改进深度学习模型C-GRBM的人体行为识别. 哈尔滨工程大学学报, 39(1): 156-162[DOI: 10.11990/jheu.201612051]
Bobick A and Davis J. 1996. An appearance-based representation of action//Proceedings of the 13th International Conference on Pattern Recognition. Vienna, Austria: IEEE: 307-312[DOI: 10.1109/icpr.1996.546039http://dx.doi.org/10.1109/icpr.1996.546039]
Bobick A F and Davis J W. 2001. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3): 257-267[DOI: 10.1109/34.910878]
Brown A, Xie W D, Kalogeiton V and ZissermanA. 2020. Smooth-AP: smoothing the path towards large-scale image retrieval//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 677-694[DOI: 10.1007/978-3-030-58545-7_39http://dx.doi.org/10.1007/978-3-030-58545-7_39]
Brown L M. 2010. Example-based color vehicle retrieval for surveillance//Proceedings of the 7th IEEE International Conference on Advanced Video and Signal Based Surveillance. Boston, USA: IEEE: 91-96[DOI: 10.1109/avss.2010.59http://dx.doi.org/10.1109/avss.2010.59]
Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A and Zagoruyko S. 2020. End-to-end object detection with transformers[EB/OL].[2020-05-28].https://arxiv.org/pdf/2005.12872.pdfhttps://arxiv.org/pdf/2005.12872.pdf
Carreira J and Zisserman A. 2017. Quo vadis, action recognition? a new model and the kinetics dataset//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 4724-4733[DOI: 10.1109/cvpr.2017.502http://dx.doi.org/10.1109/cvpr.2017.502]
Chadwick S, Maddern W and Newman P. 2019. Distant vehicle detection using radar and vision//Proceedings of 2019 International Conference on Robotics and Automation. Montreal, Canada: IEEE: 8311-8317[DOI: 10.1109/icra.2019.8794312http://dx.doi.org/10.1109/icra.2019.8794312]
Charbonnier S, Pitton A C and Vassilev A. 2012. Vehicle re-identification with a single magnetic sensor//Proceedings of 2012 IEEE International Instrumentation and MeasurementTechnology Conference. Graz, Austria: IEEE: 380-385[DOI: 10.1109/i2mtc.2012.6229117http://dx.doi.org/10.1109/i2mtc.2012.6229117]
Chaudhry R, Ravichandran A, Hager G and Vidal R. 2009. Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE: 1932-1939[DOI: 10.1109/cvpr.2009.5206821http://dx.doi.org/10.1109/cvpr.2009.5206821]
Chen P, Bai X and Liu W Y. 2014. Vehicle color recognition on urban road by feature context. IEEE Transactions on Intelligent Transportation Systems, 15(5): 2340-2346[DOI: 10.1109/TITS.2014.2308897]
Chen S Y, Hsieh J W, Wu J C and Chen Y S. 2009. Vehicle retrieval using eigen color and multiple instance learning//Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Kyoto, Japan: IEEE: 657-660[DOI: 10.1109/iih-msp.2009.304http://dx.doi.org/10.1109/iih-msp.2009.304]
Chen Z B, Ying C L, Lin C Y, Liu S and Li W P. 2019. Multi-view vehicle type recognition with feedback-enhancement multi-branch CNNs. IEEE Transactions on Circuits and Systems for Video Technology, 29(9): 2590-2599[DOI: 10.1109/TCSVT.2017.2737460]
Cheong C W, Lim R W S, See J, Wong L K, Tan I K T and Aris A. 2018. Vehicle semantics extraction and retrieval for long-term carpark video surveillance//Proceedings of the 24th International Conference on Multimedia Modeling. Bangkok, Thailand: Springer: 315-326[DOI: 10.1007/978-3-319-73600-6_27http://dx.doi.org/10.1007/978-3-319-73600-6_27]
Chéron G, Laptev I and Schmid C. 2015. P-CNN: pose-based CNN features for action recognition//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 3218-3226[DOI: 10.1109/iccv.2015.368http://dx.doi.org/10.1109/iccv.2015.368]
Chu R H, Sun Y F, Li Y D, Liu Z, Zhang C and Wei Y C. 2019. Vehicle re-identification with viewpoint-aware metric learning//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 8282-8291[DOI: 10.1109/iccv.2019.00837http://dx.doi.org/10.1109/iccv.2019.00837]
Chu W Q, Liu Y, Shen C, Cai D and Hua X S. 2018. Multi-task vehicle detection with region-of-interest voting. IEEE Transactions on Image Processing, 27(1): 432-441[DOI: 10.1109/TIP.2017.2762591]
Clady X, Negri P, Milgram M and Poulenard R. 2008. Multi-class vehicle type recognition system//Proceedings of the 3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition. Paris, France: Springer: 228-239[DOI: 10.1007/978-3-540-69939-2_22http://dx.doi.org/10.1007/978-3-540-69939-2_22]
Cui C, Sang N, Gao C X and Zou L. 2017. Vehicle re-identification by fusing multiple deep neural networks//Proceedings of the 7th International Conference on Image Processing Theory, Tools and Applications. Montreal, Canada: IEEE: 1-6[DOI: 10.1109/IPTA.2017.8310090http://dx.doi.org/10.1109/IPTA.2017.8310090]
Dai J F, Li Y, He K M and Sun J. 2016. R-FCN: object detection via region-based fully convolutional networks.[EB/OL].[2020-12-19].https://arxiv.org/pdf/1605.06409.pdfhttps://arxiv.org/pdf/1605.06409.pdf
Dai X R. 2019. HybridNet: a fast vehicle detection system for autonomous driving. Signal Processing: Image Communication, 70: 79-88[DOI: 10.1016/j.image.2018.09.002]
Diba A, Pazandeh A M, Pirsiavash H and Van Gool L. 2016. DeepCAMP: deep convolutional action and attribute mid-level patterns//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 3557-3565[DOI: 10.1109/cvpr.2016.387http://dx.doi.org/10.1109/cvpr.2016.387]
Ding H, Zhou H, Zhou S K and Chellappa R. 2018. A deep cascade network for unaligned face attribute classification//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI Press: 6789-6796
Ding H, Zhou P and Chellappa R. 2020. Occlusion-adaptive deep network for robust facial expression recognition//Proceedings of 2020 IEEE International Joint Conference on Biometrics. Houston, USA. IEEE: 1-9[DOI: 10.1109/IJCB48548.2020.9304923http://dx.doi.org/10.1109/IJCB48548.2020.9304923]
Dollar P, Rabaud V, Cottrell G and Belongie S. 2005. Behavior recognition via sparse spatio-temporal features//Proceedings of 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Beijing, China: IEEE: 65-72[DOI: 10.1109/vspets.2005.1570899http://dx.doi.org/10.1109/vspets.2005.1570899]
Donahue J, Hendricks L A, Guadarrama S, Rohrbach M, Venugopalan S, Darrell T and Saenko K. 2015. Long-term recurrent convolutional networks for visual recognition and description//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 2625-2634[DOI: 10.1109/CVPR.2015.7298878http://dx.doi.org/10.1109/CVPR.2015.7298878]
Dong Q, Gong S G and Zhu X T. 2019. Imbalanced deep learning by minority class incremental rectification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(6): 1367-1381[DOI: 10.1109/tpami.2018.2832629]
Fabbri M, Calderara S and Cucchiara R. 2017. Generative adversarial models for people attribute recognition in surveillance//Proceedings of the 14th IEEE International Conference on Advanced Video and Signal based Surveillance. Lecce, Italy: IEEE: 1-6[DOI: 10.1109/avss.2017.8078521http://dx.doi.org/10.1109/avss.2017.8078521]
Feichtenhofer C, Fan H Q, Malik J and He K M. 2019. Slowfast networks for video recognition//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 6202-6211[DOI: 10.1109/iccv.2019.00630http://dx.doi.org/10.1109/iccv.2019.00630]
Ferencz A, Learned-Miller E G and Malik J. 2005. Building a classification cascade for visual identification fromone example//Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV'05) Volume 1. Beijing, China: IEEE: 286-293[DOI: 10.1109/iccv.2005.52http://dx.doi.org/10.1109/iccv.2005.52]
Fernandes G, Zacaron A M, Rodrigues J J P C and Proença M L. 2013. Digital signature to help network management using principal component analysis and K-means clustering//Proceedings of 2013 IEEE International Conference on Communications. Budapest, Hungary: IEEE: 2519-2523[DOI: 10.1109/icc.2013.6654912http://dx.doi.org/10.1109/icc.2013.6654912]
Fujiyoshi H, Lipton A J and Kanade T. 2004. Real-time human motion analysis by image skeletonization. IEICE Transactions on Information and Systems, 87-D(1): 113-120
Gao B B, Xing C, Xie C W, Wu J X and Geng X. 2017. Deep label distribution learning with label ambiguity. IEEE Transactions on Image Processing, 26(6): 2825-2838[DOI: 10.1109/tip.2017.2689998]
Gao X, Szep J, Satam P, Hariri S, Ram S and Rodríguez J J. 2020. Spatio-temporal processing for automatic vehicle detection in wide-area aerial video. IEEE Access, 8: 199562-199572[DOI: 10.1109/access.2020.3033466]
Girshick R, Donahue J, Darrell T and Malik J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 580-587[DOI: 10.1109/cvpr.2014.81http://dx.doi.org/10.1109/cvpr.2014.81]
Girshick R. 2015. Fast R-CNN//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1440-1448[DOI: 10.1109/iccv.2015.169http://dx.doi.org/10.1109/iccv.2015.169]
Gkioxari G, Girshick R and Malik J. 2015. Actions and attributes from wholes and parts//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 2470-2478[DOI: 10.1109/iccv.2015.284http://dx.doi.org/10.1109/iccv.2015.284]
Guan S J, Liao B, Du Y and Yin X Y. 2019. Vehicle type recognition based on Radon-CDT hybrid transfer learning//Proceedings of the 10th IEEE International Conference on Software Engineering and Service Science. Beijing, China: IEEE: 1-4[DOI: 10.1109/ICSESS47205.2019.9040687http://dx.doi.org/10.1109/ICSESS47205.2019.9040687]
Han H, Jain A K, Wang F, Shan S G and Chen X L. 2018. Heterogeneous face attribute estimation: a deep multi-task learning approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11): 2597-2609[DOI: 10.1109/tpami.2017.2738004]
Hand E M and Chellappa R. 2017. Attributes for improved attributes: a multi-task network utilizing implicit and explicit relationships for facial attribute classification//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press: 4068-4074
Hand E M, Castillo C D and Chellappa R. 2018. Predicting facial attributes in video using temporal coherence and motion-attention//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, USA: IEEE: 84-92[DOI: 10.1109/wacv.2018.00017http://dx.doi.org/10.1109/wacv.2018.00017]
He B, Li J, Zhao Y and Tian Y H. 2019. Part-regularized near-duplicate vehicle re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 3997-4005[DOI: 10.1109/cvpr.2019.00412http://dx.doi.org/10.1109/cvpr.2019.00412]
He K K, Fu Y W, Zhang W H, Wang C J, Jiang Y G, Huang F Y and Xue X Y. 2018. Harnessing synthesized abstraction images to improve facial attribute recognition//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI: 733-740[DOI: 10.24963/ijcai.2018/102http://dx.doi.org/10.24963/ijcai.2018/102]
He K M, Gkioxari G, Dollár P and Girshick R. 2017. Mask R-CNN//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2961-2969[DOI: 10.1109/ICCV.2017.322http://dx.doi.org/10.1109/ICCV.2017.322]
He K M, Zhang X Y, Ren S Q and Sun J. 2015. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9): 1904-1916[DOI: 10.1109/TPAMI.2015.2389824]
Hinton G E. 2007. Learning multiple layers of representation. Trends in Cognitive Sciences, 11(10): 428-434[DOI: 10.1016/j.tics.2007.09.004]
Hu C P, Bai X, Qi L, Chen P, Xue G J and Mei L. 2015. Vehicle color recognition with spatial pyramid deep learning. IEEE Transactions on Intelligent Transportation Systems, 16(5): 2925-2934[DOI: 10.1109/TITS.2015.2430892]
Hu Z Z, Wen Y G, Wang J F, Wang M, Hong R C and Yan S C. 2017. Facial age estimation with age difference. IEEE Transactions on Image Processing, 26(7): 3087-3097[DOI: 10.1109/tip.2016.2633868]
Huang C, Li Y N, Loy C C and Tang X O. 2020. Deep imbalanced learning for face recognition and attribute prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(11): 2781-2794[DOI: 10.1109/tpami.2019.2914680]
Huang C, Li Y N, Loy C C and Tang X O. 2016. Learning deep representation for imbalanced classification//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 5375-5384[DOI: 10.1109/cvpr.2016.580http://dx.doi.org/10.1109/cvpr.2016.580]
Ingole S K and Gundre S B. 2017. Characters feature based Indian vehicle license plate detection and recognition//Proceedings of 2017 International Conference on Intelligent Computing and Control. Coimbatore, India: IEEE: 1-5[DOI: 10.1109/i2c2.2017.8321953http://dx.doi.org/10.1109/i2c2.2017.8321953]
Jeng S T and Chu L Y. 2013. Vehicle reidentification with the inductive loop signature technology. Journal of the Eastern Asia Society for Transportation Studies, 10: 1896-1915[DOI: 10.11175/easts.10.1896]
Ji S W, Xu W, Yang M and Yu K. 2013. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1): 221-231[DOI: 10.1109/TPAMI.2012.59]
Jia L, Miao H X, Qi B S and Wang J P. 2019. Vehicle type recognition based on improved capsule network//Proceedings of 2019 IEEE International Conference on Consumer Electronics-Taiwan. Yilan, China: IEEE: 1-2[DOI: 10.1109/ICCE-TW46550.2019.8991734http://dx.doi.org/10.1109/ICCE-TW46550.2019.8991734]
Kalayeh M M, Gong B Q and Shah M. 2017. Improving facial attribute prediction using semantic segmentation//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 6942-6950[DOI: 10.1109/cvpr.2017.450http://dx.doi.org/10.1109/cvpr.2017.450]
KanacıA, Zhu X T and Gong S G. 2018. Vehicle re-identification in context//Proceedings of the 40th German Conference on Pattern Recognition. Stuttgart, Germany: Springer: 377-390[DOI: 10.1007/978-3-030-12939-2_26http://dx.doi.org/10.1007/978-3-030-12939-2_26]
Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R and Li F F. 2014. Large-scale video classification with convolutional neural networks//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1725-1732[DOI: 10.1109/cvpr.2014.223http://dx.doi.org/10.1109/cvpr.2014.223]
Kataoka H, Hashimoto K, Iwata K, Satoh Y, Navab N, Ilic S and Aoki Y. 2014. Extended co-occurrence HOG with dense trajectories for fine-grained activity recognition//Proceedings of the 12th Asian Conference on Computer Vision. Singapore, Singapore: Springer: 336-349[DOI: 10.1007/978-3-319-16814-2_22http://dx.doi.org/10.1007/978-3-319-16814-2_22]
Khare V, Shivakumara P, Raveendran P, Meng L K and Woon H H. 2015. A new sharpness based approach for character segmentation in license plate images//Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Kuala Lumpur, Malaysia: IEEE: 544-548[DOI: 10.1109/acpr.2015.7486562http://dx.doi.org/10.1109/acpr.2015.7486562]
Kim H, Lee Y, Yim B, Park E and Kim H. 2016. On-road object detection using deep neural network//Proceedings of 2016 IEEE International Conference on Consumer Electronics-Asia. Seoul, Korea (South): IEEE: 1-4[DOI: 10.1109/ICCE-Asia.2016.7804765http://dx.doi.org/10.1109/ICCE-Asia.2016.7804765]
Kim K J, Kim P K, Lim K T, Chung Y S, Song Y J, Lee S I and Choi D H. 2018. Vehicle color recognition via representative color region extraction and convolutional neural network//Proceedings of 2018 Tenth International Conference on Ubiquitous and Future Networks. Prague, Czech Republic: IEEE: 89-94[DOI: 10.1109/icufn.2018.8436710http://dx.doi.org/10.1109/icufn.2018.8436710]
Klaeser A, Marszalek M and Schmid C. 2008. A spatio-temporal descriptor based on 3D-gradients//Proceedings of the 19th British Machine Vision Conference. Leeds, UK: BMVA: #99[DOI: 10.5244/c.22.99http://dx.doi.org/10.5244/c.22.99]
Knopp J, Prasad M, Willems G, Timofte R and Van Gool L. 2010. Hough transform and 3D SURF for robust three dimensional classification//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece: Springer: 589-602[DOI: 10.1007/978-3-642-15567-3_43http://dx.doi.org/10.1007/978-3-642-15567-3_43]
Kwong K, Kavaler R, Rajagopal R and Varaiya P. 2009. Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors. Transportation Research Part C: Emerging Technologies, 17(6): 586-606[DOI: 10.1016/j.trc.2009.04.003]
Lei J N, Ren X F and Fox D. 2012. Fine-grained kitchen activity recognition using RGB-D//Proceedings of the ACM Conference on Ubiquitous Computing. Pittsburgh, USA: ACM: 208-211[DOI: 10.1145/2370216.2370248http://dx.doi.org/10.1145/2370216.2370248]
Li D W, Chen X T and Huang K Q. 2015. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios//Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Kuala Lumpur, Malaysia: IEEE: 111-115[DOI: 10.1109/acpr.2015.7486476http://dx.doi.org/10.1109/acpr.2015.7486476]
Li D W, Chen X T, Zhang Z and Huang K Q. 2018a. Pose guided deep model for pedestrian attribute recognition in surveillance scenarios//Proceedings of 2018 IEEE International Conference on Multimedia and Expo. San Diego, USA: IEEE: 1-6[DOI: 10.1109/icme.2018.8486604http://dx.doi.org/10.1109/icme.2018.8486604]
Li W, Zhu X T and Gong S G. 2018b. Harmonious attention network for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 2285-2294[DOI: 10.1109/CVPR.2018.00243http://dx.doi.org/10.1109/CVPR.2018.00243]
Li X Y, Yuan M X, Jiang Q Y and Li G M. 2017. VRID-1: a basic vehicle re-identification dataset for similar vehicles//Proceedings of the 20th IEEE International Conference on Intelligent Transportation Systems. Yokohama, Japan: IEEE: 1-8[DOI: 10.1109/itsc.2017.8317817http://dx.doi.org/10.1109/itsc.2017.8317817]
Li Y, Huang C and Loy C C. 2016. Human attribute recognition by deep hierarchical contexts//Proceedings of the European Conference on Computer Vision. Amsterdam, the Netherlands. Springer: 684-700.
Liang D W, Yan K, Wang Y W, Zeng W, Yuan Q S, Bao X G and Tian Y H. 2017. Deep hashing with multi-task learning for large-scale instance-level vehicle search//Proceedings of 2017 IEEE International Conference on Multimedia and Expo Workshops. Hong Kong, China: IEEE: 192-197[DOI: 10.1109/icmew.2017.8026274http://dx.doi.org/10.1109/icmew.2017.8026274]
Lin J, Gan C and Han S. 2019. TSM: temporal shift module for efficient video understanding//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 7083-7093[DOI: 10.1109/ICCV.2019.00718http://dx.doi.org/10.1109/ICCV.2019.00718]
Lin T Y, Goyal P, Girshick R, He K M and Dollár P. 2017. Focal loss for dense object detection//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2980-2988[DOI: 10.1109/iccv.2017.324http://dx.doi.org/10.1109/iccv.2017.324]
Lin Y L, Tsai M K, Hsu W H and Chen C W. 2013. Investigating 3-D model and part information for improving content-based vehicle retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 23(3): 401-413[DOI: 10.1109/tcsvt.2012.2204936]
Liu H Y, Tian Y H, Wang Y W, Pang L and Huang T J. 2016a. Deep relative distance learning:tell the difference between similar vehicles//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 2167-2175[DOI: 10.1109/cvpr.2016.238http://dx.doi.org/10.1109/cvpr.2016.238]
Liu K, Li Y D and Lin W P. 2020. A survey on vehicle re-identification. Chinese Journal of Intelligent Science and Technology, 2(1): 10-25
刘凯, 李浥东, 林伟鹏. 2020. 车辆再识别技术综述. 智能科学与技术学报, 2(1): 10-25
Liu L, Shao L, Zheng F and Li X L. 2014a. Realistic action recognition via sparsely-constructed Gaussian processes. Pattern Recognition, 47(12): 3819-3827[DOI: 10.1016/j.patcog.2014.07.006]
Liu N, Zhang F and Duan F Q. 2020a. Facial age estimation using a multi-task network combining classification and regression. IEEE Access, 8: 92441-92451[DOI: 10.1109/access.2020.2994322]
Liu P, Liu X and Yan J. 2018. Localization guided learning for pedestrian attribute recognition.[EB/OL].[2020-12-19].https://arxiv.org/pdf/1808.09102.pdfhttps://arxiv.org/pdf/1808.09102.pdf
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C F and Berg A C. 2016b. SSD: single shot MultiBox detector//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 21-37[DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Liu X C, Ma H D, Fu H Y and Zhou M. 2014b. Vehicle retrieval and trajectory inference in urban traffic surveillance scene//Proceedings of the International Conference on Distributed Smart Cameras. Venezia Mestre, Italy: ACM: 1-6[DOI: 10.1145/2659021.2659055http://dx.doi.org/10.1145/2659021.2659055]
Liu X, Zhao H and Tian M. 2017. Hydraplus-net: Attentive deep features for pedestrian analysis//Proceedings of the 16th IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 350-359[DOI: 10.1109/iccv.2017.46http://dx.doi.org/10.1109/iccv.2017.46]
Liu Y D, Wang Y T, Wang S W, Liang T T, Zhao Q J, Tang Z and Ling H B. 2020b. CBNet: a novel composite backbone network architecture for object detection//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press: 11653-11660[DOI: 10.1609/aaai.v34i07.6834http://dx.doi.org/10.1609/aaai.v34i07.6834]
Liu Y F, Li M, Qiu D, Wang W S, Xu Z X and Song C. 2019. Multi-task squeeze-and-excitation networks for pedestrian attributes recognition. Science Technology and Engineering, 19(24): 237-241
刘弋锋, 李勐, 邱迪, 王文杉, 许忠雄, 宋超. 2019. 基于多任务压缩激发网络的行人属性识别. 科学技术与工程, 19(24): 237-241[DOI: 10.3969/j.issn.1671-1815.2019.24.037]
Liu Z W, Luo P, Wang X G and Tang X O. 2015. Deep learning face attributes in the wild//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 3730-3738[DOI: 10.1109/iccv.2015.425http://dx.doi.org/10.1109/iccv.2015.425]
Lu Y X, Kumar A, Zhai S F, Cheng Y, Javidi T and Feris R. 2017. Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 5334-5343[DOI: 10.1109/cvpr.2017.126http://dx.doi.org/10.1109/cvpr.2017.126]
Ma Y X, Tan L, Dong X and Yu C C. 2019. Action recognition for intelligent monitoring. Journal of Image and Graphics, 24(2): 282-290
马钰锡, 谭励, 董旭, 于重重. 2019. 面向智能监控的行为识别. 中国图象图形学报, 24(2): 282-290[DOI: 10.11834/jig.180392]
Marín-Reyes P A, Bergamini L, Lorenzo-Navarro J, Palazzi A, Calderara S and Cucchiara R. 2018. Unsupervised vehicle re-identification using triplet networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, USA: IEEE: 166-171[DOI: 10.1109/CVPRW.2018.00030http://dx.doi.org/10.1109/CVPRW.2018.00030]
Ndoye M, Totten V, Krogmeier J V and Bullock D M. 2009. A signal processing framework for vehicle re-identification and travel time estimation//Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems. St. Louis, USA: IEEE: 1-6[DOI: 10.1109/itsc.2009.5309763http://dx.doi.org/10.1109/itsc.2009.5309763]
Ng J Y H, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R and Toderici G. 2015. Beyond short snippets: deep networks for video classification//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 4694-4702[DOI: 10.1109/cvpr.2015.7299101http://dx.doi.org/10.1109/cvpr.2015.7299101]
Ni B B, Paramathayalan V R and Moulin P. 2014. Multiple granularity analysis for fine-grained action detection//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 756-763[DOI: 10.1109/cvpr.2014.102http://dx.doi.org/10.1109/cvpr.2014.102]
Ni B B, Yang X K and Gao S H. 2016. Progressively parsing interactional objects for fine grained action detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1020-1028[DOI: 10.1109/cvpr.2016.116http://dx.doi.org/10.1109/cvpr.2016.116]
Omran S S and Jarallah J A. 2017. Iraqi car license plate recognition using OCR//Proceedings of 2017 Annual Conference on New Trends in Information and Communications Technology Applications. Baghdad, Iraq: IEEE: 298-303[DOI: 10.1109/NTICT.2017.7976127http://dx.doi.org/10.1109/NTICT.2017.7976127]
Packer B, Saenko K and Koller D. 2012. A combined pose, object, and feature model for action understanding//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE: 1378-1385[DOI: 10.1109/cvpr.2012.6247824http://dx.doi.org/10.1109/cvpr.2012.6247824]
Park S and Zhu S C. 2015. Attributed grammars for joint estimation of human attributes, part and pose//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 2372-2380[DOI: 10.1109/iccv.2015.273http://dx.doi.org/10.1109/iccv.2015.273]
Park S M and Kim K J. 2012. Color recognition with compact color features. International Journal of Communication Systems, 25(6): 749-762[DOI: 10.1002/dac.1229]
Park S M and Kim K J. 2008. PCA-SVM based vehicle color recognition. The KIPS Transactions: Part B, 15B(4): 285-292[DOI: 10.3745/kipstb.2008.15-b.4.285]
Pei W J, Dibeklioğlu H, Baltrušaitis T and Tax D M J. 2019. Attended end-to-end architecture for age estimation from facial expression videos. IEEE Transactions on Image Processing, 29: 1972-1984[DOI: 10.1109/tip.2019.2948288]
Pei W, An Z J, Zhu Y Y, Jia X, Zuo X W and Wang F S. 2014. A rapid vehicle recognition and retrieval system//Proceedings of the 2nd International Conference on Systems and Informatics. Shanghai, China: IEEE: 748-753[DOI: 10.1109/icsai.2014.7009384http://dx.doi.org/10.1109/icsai.2014.7009384]
Pei W, Jia X, Huang X G, Lu M Y, Fu Y L and Zhu Y Y. 2015. A vehicle retrieval and recognition system based on smart phones//Proceedings of the 8th International Congress on Image and Signal Processing. Shenyang, China: IEEE: 527-532[DOI: 10.1109/CISP.2015.7407936http://dx.doi.org/10.1109/CISP.2015.7407936]
Prinsloo J and Malekian R. 2016. Accurate vehicle location system using RFID, an internet of things approach. Sensors, 16(6): #825[DOI: 10.3390/s16060825]
Pustokhina I V, Pustokhin D A, Rodrigues J J P C, Gupta D, Khanna A, Shankar K, Seo C and Joshi G P. 2020. Automatic vehicle license plate recognition using optimal K-means with convolutional neural network for intelligent transportation systems. IEEE Access, 8: 92907-92917[DOI: 10.1109/access.2020.2993008]
Radchenko A, Zarovsky R and Kazymyr V. 2017. Method of segmentation and recognition of Ukrainian license plates//Proceedings of 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering. Lviv, Ukraine: IEEE: 62-65[DOI: 10.1109/ysf.2017.8126593http://dx.doi.org/10.1109/ysf.2017.8126593]
Rana N and Dahiya P K. 2017. Localization techniques in ANPR systems: a-state-of-art. International Journal of Advanced Research in Computer Science and Software Engineering, 7(5): 682-686[DOI: 10.23956/ijarcsse/sv7i5/0338]
Rapantzikos K, Avrithis Y and Kollias S. 2009. Dense saliency-based spatiotemporal feature points for action recognition//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE: 1454-1461[DOI: 10.1109/cvpr.2009.5206525http://dx.doi.org/10.1109/cvpr.2009.5206525]
Raza M A, Qi C, Asif M R and Khan M A. 2020. An adaptive approach for multi-national vehicle license plate recognition using multi-level deep features and foreground polarity detection model. Applied Sciences, 10(6): 2165[DOI: 10.3390/app10062165]
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 779-788[DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Ren S Q, He K M, Girshick R and Sun J. 2015. Faster R-CNN: towards real-time object detection with region proposal networks//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Quebec, Canada: MIT: 91-99
Rodríguez P, Cucurull G and Gonfaus J M. 2017. Age and gender recognition in the wild with deep attention. Pattern Recognition, 72: 563-571[DOI: 10.1016/j.patcog.2017.06.028]
Rohrbach M, Amin S, Andriluka M and Schiele B. 2012. A database for fine grained activity detection of cooking activities//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE: 1194-1201[DOI: 10.1109/cvpr.2012.6247801http://dx.doi.org/10.1109/cvpr.2012.6247801]
Rothe R, Timofte R and Van Gool L. 2018. Deep expectation of real and apparent age from a single image without facial landmarks. International Journal of Computer Vision, 126(2/4): 144-157[DOI: 10.1007/s11263-016-0940-3]
Ryoo M S, Piergiovanni A J, Tan M X and Angelova A. 2020. Assemblenet: searching for multi-stream neural connectivity in video architectures[EB/OL].[2020-05-27].https://arxiv.org/pdf/1905.13209.pdfhttps://arxiv.org/pdf/1905.13209.pdf
Sanchez R O, Flores C, Horowitz R, Rajagopal R and Varaiya P. 2011. Vehicle re-identification using wireless magnetic sensors: algorithm revision, modifications and performance analysis//Proceedings of 2011 IEEE International Conference on Vehicular Electronics and Safety. Beijing, China: IEEE: 226-231[DOI: 10.1109/icves.2011.5983819http://dx.doi.org/10.1109/icves.2011.5983819]
Sarafianos N, Xu X and Kakadiaris I A. 2018. Deep imbalanced attribute classification using visual attention aggregation//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: IEEE: 680-697[DOI: 10.1007/978-3-030-01252-6_42http://dx.doi.org/10.1007/978-3-030-01252-6_42]
Sarfraz M S, Saeed A, Khan M H and Riaz Z. 2009. Bayesian prior models for vehicle make and model recognition//Proceedings of the 7th International Conference on Frontiers of Information Technology. Abbottabad, Pakistan: ACM: 1-6[DOI: 10.1145/1838002.1838041http://dx.doi.org/10.1145/1838002.1838041]
Sarfraz M S, Schumann A, Wang Y and Stiefelhagen R. 2017. Deep view-sensitive pedestrian attribute inference in an end-to-end model//Proceedings of the British Machine Vision Conference. London, UK: BMVA Press: 4-7[DOI: 10.5244/c.31.134http://dx.doi.org/10.5244/c.31.134]
Savov N, Ngo M L, Karaoglu S, Dibeklioglu H and Gevers T. 2019. Pose and expression robust age estimation via 3D face reconstruction from a single image//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul, Korea (South): IEEE: 1270-1278[DOI: 10.1109/iccvw.2019.00160http://dx.doi.org/10.1109/iccvw.2019.00160]
Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Networks, 61: 85-117[DOI: 10.1016/j.neunet.2014.09.003]
Schuldt C, Laptev I and Caputo B. 2004. Recognizing human actions: a local SVM approach//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE: 32-36[DOI: 10.1109/icpr.2004.1334462http://dx.doi.org/10.1109/icpr.2004.1334462]
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R and LeCun Y. 2013. Overfeat: integrated recognition, localization and detection using convolutional networks[EB/OL].[2020-12-16].https://arxiv.org/pdf/1312.6229.pdfhttps://arxiv.org/pdf/1312.6229.pdf
Shi X, Zhao C H, Mao Y B and Chen A W. 2019. Vehicle retrieval using features of vehicle front windshields//Proceedings of the 19th COTA International Conference of Transportation Professionals. Nanjing, China: ASCE: 2295-2305[DOI: 10.1061/9780784482292.200http://dx.doi.org/10.1061/9780784482292.200]
Shu Y, Mao L B, Chen S and Yan Y. 2020. Self-supervised learning and generative adversarial network-based facial attribute recognition with small sample size training. Journal of Image and Graphics, 25(11): 2391-2403
疏颖, 毛龙彪, 陈思, 严严. 2020. 结合自监督学习和生成对抗网络的小样本人脸属性识别. 中国图象图形学报, 25(11): 2391-2403[DOI: 10.11834/jig.200334]
Shvai N, Meicler A, Hasnat A, Machover E, Maarek P, Loquet S and Nakib A. 2018. Optimal ensemble classifiers based classification for automatic vehicle type recognition//Proceedings of 2018 IEEE Congress on Evolutionary Computation. Rio de Janeiro, Brazil: IEEE: 1-8[DOI: 10.1109/cec.2018.8477979http://dx.doi.org/10.1109/cec.2018.8477979]
Singh B, Marks T K, Jones M, Tuzel O and Shao M. 2016. A multi-stream bi-directional recurrent neural network for fine-grained action detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1961-1970[DOI: 10.1109/cvpr.2016.216http://dx.doi.org/10.1109/cvpr.2016.216]
Son J W, Park S B and Kim K J. 2007. A convolution kernel method for color recognition//Proceedings of the 6th International Conference on Advanced Language Processing and Web Information Technology. Luoyang, China: IEEE: 242-247[DOI: 10.1109/alpit.2007.28http://dx.doi.org/10.1109/alpit.2007.28]
Soon F C, Khaw H Y, Chuah J H and Kanesan J. 2020. Semisupervised PCA convolutional network for vehicle type classification. IEEE Transactions on Vehicular Technology, 69(8): 8267-8277[DOI: 10.1109/tvt.2020.3000306]
Stewart R, Andriluka M and Ng A Y. 2016. End-to-end people detection in crowded scenes//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 2325-2333[DOI: 10.1109/cvpr.2016.255http://dx.doi.org/10.1109/cvpr.2016.255]
Su Y Q, Cuan B N, Zhang X J and Liu Y H. 2016. Rapid vehicle retrieval using a cascade of interest regions//Proceedings of the 17th Pacific Rim Conference on Multimedia. Xi'an, China: Springer: 126-135[DOI: 10.1007/978-3-319-48896-7_13http://dx.doi.org/10.1007/978-3-319-48896-7_13]
Sun P H, Liu H, Wang X, Yu Z H and Wu S P. 2019. Similarity-aware deep adversarial learning for facial age estimation//Proceedings of 2019 IEEE International Conference on Multimedia and Expo. Shanghai, China: IEEE: 260-265[DOI: 10.1109/icme.2019.00053http://dx.doi.org/10.1109/icme.2019.00053]
Swain M J and Ballard D H. 1991. Color indexing. International Journal of Computer Vision, 7(1): 11-32[DOI: 10.1007/bf00130487]
Tan Z C, Yang Y, Wan J, Guo G D and Li S Z. 2020. Relation-aware pedestrian attribute recognition with graph convolutional networks//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press: 12055-12062[DOI: 10.1609/aaai.v34i07.6883http://dx.doi.org/10.1609/aaai.v34i07.6883]
Tan Z, Yang Y and Wan J. 2019. Attention-based pedestrian attribute analysis. IEEE Transactions on Image Processing, 28(12): 6126-6140[DOI: 10.3390/s20030811]
Tang T Y, Deng Z P, Zhou S L, Lei L and Zou H X. 2017. Fast vehicle detection in UAV images//Proceedings of 2017 International Workshop on Remote Sensing with Intelligent Processing. Shanghai, China: IEEE: 1-5[DOI: 10.1109/RSIP.2017.7958795http://dx.doi.org/10.1109/RSIP.2017.7958795]
Tao H J and Lu X B. 2018. Smoky vehicle detection based on multi-feature fusion and ensemble neural networks. Multimedia Tools and Applications, 77(24): 32153-32177. [DOI: 10.1007/s11042-018-6248-2]
Tian Y, Chen T, Cheng G H, Yu S H, Li X, Li J Y and Yang B L. 2020. Global context assisted structure-aware vehicle retrieval. IEEE Transactions on Intelligent Transportation Systems, 2020: 1-10[DOI: 10.1109/TITS.2020.3009000]
Tran D, Wang H, Torresani L, Ray J, LeCun Y and Paluri M. 2018. A closer look at spatiotemporal convolutions for action recognition//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 6450-6459[DOI: 10.1109/cvpr.2018.00675http://dx.doi.org/10.1109/cvpr.2018.00675]
Ullah I and Lee H J. 2016. An approach of locating Korean vehicle license plate based on mathematical morphology and geometrical features//Proceedings of 2016 International Conference on Computational Science and Computational Intelligence. Las Vegas, USA: IEEE: 836-840[DOI: 10.1109/CSCI.2016.0162http://dx.doi.org/10.1109/CSCI.2016.0162]
Varol G, Laptev I and Schmid C. 2018. Long-term temporal convolutions for action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6): 1510-1517[DOI: 10.1109/tpami.2017.2712608]
Veeriah V, Zhuang N F and Qi G J. 2015. Differential recurrent neural networks for action recognition//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 4041-4049[DOI: 10.1109/iccv.2015.460http://dx.doi.org/10.1109/iccv.2015.460]
Wan J, Tan Z C, Lei Z, Guo G D and Li S Z. 2018. Auxiliary demographic information assisted age estimation with cascaded structure. IEEE Transactions on Cybernetics, 48(9): 2531-2541[DOI: 10.1109/tcyb.2017.2741998]
Wang H, Kläser A, Schmid C and Liu C L. 2011. Action recognition by dense trajectories//Proceedings of 2011 Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE: 3169-3176[DOI: 10.1109/cvpr.2011.5995407http://dx.doi.org/10.1109/cvpr.2011.5995407]
Wang J, Zhu X and Gong S. 2017c. Attribute recognition by joint recurrent learning of context and correlation//Proceedings of the 16th IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 531-540.
Wang L M, Qiao Y and Tang X O. 2015. Action recognition with trajectory-pooled deep-convolutional descriptors//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 4305-4314[DOI: 10.1109/cvpr.2015.7299059http://dx.doi.org/10.1109/cvpr.2015.7299059]
Wang L M, Xiong Y J, Wang Z, Qiao Y, Lin D H, Tang X Oand Van Gool L. 2016. Temporal segment networks: towards good practices for deep action recognition//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 20-36[DOI: 10.1007/978-3-319-46484-8_2http://dx.doi.org/10.1007/978-3-319-46484-8_2]
Wang W H and Tu J Y. 2020. Research on license plate recognition algorithms based on deep learning in complex environment. IEEE Access, 8: 91661-91675[DOI: 10.1109/ACCESS.2020.2994287]
Wang X L, Girshick R, Gupta A and He K M. 2018. Non-local neural networks//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7794-7803
Wang Z X, He K K, Fu Y W, Feng R, Jiang Y G and Xue X Y. 2017b. Multi-task deep neural network for joint face recognition and facial attribute prediction//Proceedings of 2017 International Conference on Multimedia Retrieval. Bucharest, Romania: ACM: 365-374[DOI: 10.1145/3078971.3078973http://dx.doi.org/10.1145/3078971.3078973]
Wei J, Wang Y, Liu F, Lin Q L and Wang N. 2020. Colour fast-match for precise vehicle retrieval. The Journal of Engineering, 2020(4): 132-139[DOI: 10.1049/joe.2019.0882]
Weinland D, Ronfard R and Boyer E. 2006. Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding, 104(2/3): 249-257[DOI: 10.1016/j.cviu.2006.07.013]
Woesler R. 2003. Fast extraction of traffic parameters and reidentification of vehicles from video data//Proceedings of 2003 IEEE International Conference on Intelligent Transportation Systems. Shanghai, China: IEEE: 774-778[DOI: 10.1109/itsc.2003.1252055http://dx.doi.org/10.1109/itsc.2003.1252055]
Wu J J, Liu H, Jiang J G, Qi M B, Ren B, Li X H and Wang Y S. 2020. Person attribute recognition by sequence contextual relation learning. IEEE Transactions on Circuits and Systems for Video Technology, 30(10): 3398-3412[DOI: 10.1109/tcsvt.2020.2982962]
Xie J C and Pun C M. 2020. Deep and ordinal ensemble learning for human age estimation from facial images. IEEE Transactions on Information Forensics and Security, 15: 2361-2374[DOI: 10.1109/tifs.2020.2965298]
Yang J, Fan J R, Wang Y R, Wang Y G, Gan W B, Liu L and Wu W. 2020. Hierarchical feature embedding for attribute recognition//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 13055-13064[DOI: 10.1109/cvpr42600.2020.01307http://dx.doi.org/10.1109/cvpr42600.2020.01307]
Yang X D and Tian Y L. 2014. Effective 3D action recognition using EigenJoints. Journal of Visual Communication and Image Representation, 25(1): 2-11[DOI: 10.1016/j.jvcir.2013.03.001]
Yang X, Gao B B, Xing C, Huo Z W, Wei X S, Zhou Y, Wu J X and Geng X. 2015. Deep label distribution learning for apparent age estimation//Proceedings of 2015 IEEE International Conference on Computer Vision Workshop. Santiago, Chile: IEEE: 102-108[DOI: 10.1109/iccvw.2015.53http://dx.doi.org/10.1109/iccvw.2015.53]
Yoo B, Kwak Y, Kim Y, Choi C and Kim J. 2018. Deep facial age estimation using conditional multitask learning with weak label expansion. IEEE Signal Processing Letters, 25(6): 808-812[DOI: 10.1109/lsp.2018.2822241]
Yoo S B and Han M. 2020. Temporal matching prior network for vehicle license plate detection and recognition in videos. ETRI Journal, 42(3): 411-419[DOI: 10.4218/etrij.2019-0245]
Yousif B B, Ata M M, Fawzy N and Obaya M. 2020. Toward an optimized neutrosophic K-means with genetic algorithm for automatic vehicle license plate recognition (ONKM-AVLPR). IEEE Access, 8: 49285-49312[DOI: 10.1109/access.2020.2979185]
Zapletal D and Herout A. 2016. Vehicle re-identification for automatic video traffic surveillance//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, USA: IEEE: 25-31[DOI: 10.1109/cvprw.2016.195http://dx.doi.org/10.1109/cvprw.2016.195]
Zhang C, Wang Q and Li X L. 2020a. EQ-LPR: efficient quality-aware license plate recognition//Proceedings of 2020 IEEE International Conference on Image Processing. Abu Dhabi, United Arab Emirates: IEEE: 653-657[DOI: 10.1109/ICIP40778.2020.9191206http://dx.doi.org/10.1109/ICIP40778.2020.9191206]
Zhang C, Wang Q and Li X L. 2020b. IQ-STAN: image quality guided spatio-temporal attention network for license plate recognition//Proceedings of 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing. Barcelona, Spain: IEEE: 2268-2272[DOI: 10.1109/ICASSP40776.2020.9053966http://dx.doi.org/10.1109/ICASSP40776.2020.9053966]
Zhang K, Liu N and Yuan X. 2019. Fine-grained age estimation in the wild with attention LSTM networks. IEEE Transactions on Circuits and Systems for Video Technology, 30(9): 3140-3152[DOI: 10.1109/TCSVT.2019.2936410]
Zhang N, Paluri M, Ranzato M A, Darrell T and Bourdev L. 2014. PANDA: pose aligned networks for deep attribute modeling//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1637-1644[DOI: 10.1109/cvpr.2014.212http://dx.doi.org/10.1109/cvpr.2014.212]
Zhang Z L, Xue J, Qiao H H and Zhi Y F. 2014. The vehicle retrieval methods of traffic video based on improved SURF algorithm. Journal of Northwestern Polytechnical University, 32(2): 297-302
张子龙, 薛静, 乔鸿海, 智永锋. 2014. 基于改进SURF算法的交通视频车辆检索方法研究. 西北工业大学学报, 32(2): 297-302[DOI: 10.3969/j.issn.1000-2758.2014.02.026]
Zhang Z P, Luo P, Loy C C and Tang X O. 2018. From facial expression recognition to interpersonal relation prediction. International Journal of Computer Vision, 126(5): 550-569[DOI: 10.1007/s11263-017-1055-1]
Zhao X, Sang L F, Ding G G, Guo Y C and Jin X M. 2018. Grouping attribute recognition for pedestrian with joint recurrent learning//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI: 3177-3183[DOI: 10.24963/ijcai.2018/441http://dx.doi.org/10.24963/ijcai.2018/441]
Zheng Z X, An G Y,Wu D P and Ruan Q Q. 2020. Global and local knowledge-aware attention network for action recognition. IEEE Transactions on Neural Networks and Learning Systems, 32(1): 334-347[DOI: 10.1109/tnnls.2020.2978613]
Zhou Y and Shao L. 2018. Viewpoint-aware attentive multi-view inference for vehicle re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 6489-6498[DOI: 10.1109/cvpr.2018.00679http://dx.doi.org/10.1109/cvpr.2018.00679]
Zhou Y, Ni B B, Hong R C, Wang M and Tian Q. 2015. Interaction part mining: a mid-level approach for fine-grained action recognition//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 3323-3331[DOI: 10.1109/cvpr.2015.7298953http://dx.doi.org/10.1109/cvpr.2015.7298953]
Zhu C, Jia H Z, Lu T, Tao L, Song J W, Xiang G Q, Li Y and Xie X D. 2017. Adaptive feature selection based on local descriptor distinctive degree for vehicle retrieval application//Proceedings of 2017 IEEE International Conference on Consumer Electronics. Las Vegas, USA: IEEE: 66-69[DOI: 10.1109/icce.2017.7889232http://dx.doi.org/10.1109/icce.2017.7889232]
相关作者
相关机构