多尺度变换像素级医学图像融合:研究进展、应用和挑战
Research on pixel-level image fusion based on multi-scale transformation: progress application and challenges
- 2021年26卷第9期 页码:2094-2110
纸质出版日期: 2021-09-16 ,
录用日期: 2021-03-29
DOI: 10.11834/jig.200803
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-09-16 ,
录用日期: 2021-03-29
移动端阅览
周涛, 刘珊, 董雅丽, 霍兵强, 马宗军. 多尺度变换像素级医学图像融合:研究进展、应用和挑战[J]. 中国图象图形学报, 2021,26(9):2094-2110.
Tao Zhou, Shan Liu, Yali Dong, Bingqiang Huo, Zongjun Ma. Research on pixel-level image fusion based on multi-scale transformation: progress application and challenges[J]. Journal of Image and Graphics, 2021,26(9):2094-2110.
基于多尺度变换的像素级图像融合是计算机视觉领域的研究热点,广泛应用于医学图像处理等领域。本文对多尺度变换的像素级图像融合进行综述,阐述多尺度变换图像融合的基本原理和框架。在多尺度分解方面,以时间为序梳理了塔式分解、小波变换和多尺度几何分析方法的发展历程。在融合规则方面,围绕Piella框架和Zhang框架,讨论通用的像素级图像融合框架;在低频子带融合规则方面,总结基于像素、区域、模糊理论、稀疏表示和聚焦测度的5种融合规则;在高频子带融合规则方面,综述基于像素、边缘、区域、稀疏表示和神经网络的5种融合规则。总结12种跨模态医学图像融合方式,讨论该领域面临的主要挑战,并对未来的发展方向进行展望。本文系统梳理了多尺度变换像素级图像融合过程中的多尺度分解方法和融合规则,以及多尺度变换在医学图像融合中的应用,对多尺度变换像素级医学图像融合方法的研究具有积极的指导意义。
Medical images can be classified as anatomical images and functional images. The high resolution in anatomical images can provide information about the anatomical structure and morphology of human body organs but cannot reflect the functional information of organs. There is some information about the metabolic functions of organs in functional images; however
it has low resolution and cannot display the anatomical details of organs or lesions. With the continuous development of medical imaging technology
how to use medical images comprehensively to avoid the shortcomings of different medical imaging modalities has become a complex problem. Image fusion has aimed to fuse value-added information from two images to one image in terms of the constraints of single sensor. Effective diagnose and treat diseases have been beneficial to acquire qualified fusion image of organs and tissues and lesions simultaneously via fusing positron emission tomography(PET) images and computed tomography images(CT). Research on pixel-level image fusion based on multi-scale transformation has been focused nowadays. A fusion image with rich edge information has been easy use under the circumstances of image registration. The detailed information for image fusion has been obtained via moderate image decomposition option and fusion strategical implementation. Pixel-level image fusion based on multi-scale transformation has been prior to medical image processing
video surveillance image processing
remote sensing image processing and other tasks. Pixel-level image fusion based on multi-scale transformation has been analyzed and summarized on the following five aspects: 1) mechanism of multi-scale image fusion transformation; 2) multiscale decomposition analysis; 3) a consensus pixel-level fusion framework; 4) subband fusion rules under high and low frequency; and 5) pixel-level image fusion based on multi-scale transformation application in medical image processing. First
the mechanism and framework of image fusion based on multi-scale transformation have been proposed. Next
the multi-temporal decomposition have been summarized via the pyramid decomposition evolvement
wavelet transform and multi-scale geometric analysis. Such as
the advantages of pyramid decomposition are simple implementation and fast calculation speed. The disadvantage of pyramid decomposition is that it has no directionality
sensitive to noise
has no stability during reconstruction
and there is redundancy between the layers of the pyramid. Wavelet transform does not have direction selectivity and shift invariance. The advantage of multi-scale geometric analysis is that it has multiple directions. The original image is decomposed into high-frequency subbands in different directions by nonsubsampled contourlet transform(NSCT)
which can enhance the edge details of the image from many directions. Then
two consensus pixel-level fusion frameworks has been illustrated. The Zhang framework has demonstrated four analyses including activity level measurement
coefficient grouping method
coefficient combination method and consistency verification. The Piella framework has consisted of four ways on the aspects of matching measurement
activity measurement
decision module and synthesis module. Low frequency fused sub bands and high frequency fused sub-bands have been categorized. The low frequency fused sub band has been subdivided into five categories: pixel based
region based
fuzzy theory based
sparse representation based and focus metric based. Pixel-based fusion rules include average fusion rules
coefficient maximum fusion rules
etc.
region-based fusion rules include regional variance maximum fusion rules
and local energy maximum fusion rules
etc.
fuzzy theory fusion rules include fuzzy inference system fusion rules
etc. Fusion rules based on sparse representation include new sum of modified Laplacian
and extended sum of modified Laplacian and other fusion rules. Fusion rules based on focal measures include spatial frequency fusion rules
and local spatial frequencies fusion rules
etc. The high frequency fused sub band rules have been subdivided into five categories: pixel based
edge based
region based
sparse representation based and neural network based. Edge-based fusion rules include edge strength maximum fusion rules and guided filter-based fusion rules
etc.
region-based fusion rules include average gradient fusion rules and improved average gradient fusion rules
etc.
fusion rules based on sparse representation include multi-scale convolution sparse representation fusion rules and separable dictionary learning method fusion rules
etc. Fusion rules based on neural networks include parameter adaptive dual-channel pulse-coupled neural network
and adaptive dual-channel pulse-coupled neural network fusion rules
simplified pulse-coupled neural network and other fusion rules. At last
12 pixel-level image fusion based on multi-scale transformation have been summarized for multi-modal medical image fusions. Two-mode medical image fusion and three-mode medical image fusion have been identified. The two-mode medical image fusion has been subdivided into 11 categories. The CT/magnetic resonance image(MRI)/PET has been analyzed in three-mode medical image fusion. At last
the further 4 research areas of pixel-level image fusion based on multi-scale transformation have been summarized: 1) accurate registration of image preprocessing issue; 2) fusion of ultrasonic images with other multimodal medical images issue; 3) integration of multi-algorithms for cascading decomposition; 4) multi-scale decomposition methods and fusion rules for pixel-level image fusion and the application of multi-scale transformation in medical image fusion have been summarized. This article systematically summarizes the multi-scale decomposition methods and fusion rules in the pixel-level image fusion process based on multi-scale transformation
as well as the application of multi-scale transformation in medical image fusion
and the research on the pixel-level medical image fusion method based on multi-scale transformation has a positive guiding significance.
多尺度变换像素级融合医学图像Zhang框架Piella框架
multi-scale transformationpixel-level fusionmedical imagesZhang frameworkPiella framework
Aishwarya N and Thangammal C B. 2018. Visible and infrared image fusion using DTCWT and adaptive combined clustered dictionary. Infrared Physics and Technology, 93: 300-309[DOI: 10.1016/j.infrared.2018.08.013]
Anandhi D and Valli S. 2018. An algorithm for multi-sensor image fusion using maximum a posteriori and nonsubsampled contourlet transform. Computers and Electrical Engineering, 65: 139-152[DOI: 10.1016/j.compeleceng.2017.04.002]
AymazS and Köse C. 2019. A novel image decomposition-based hybrid technique with super-resolution method for multi-focus image fusion. Information Fusion, 45: 113-127[DOI: 10.1016/j.inffus.2018.01.015]
Baghaie A, Schnell S, Bakhshinejad A, Fathi M F, D'Souza R M and Rayz V L. 2018. Curvelet transform-based volume fusion for correcting signal loss artifacts in time-of-flight magnetic resonance angiography data. Computers in Biology and Medicine, 99: 142-153[DOI: 10.1016/j.compbiomed.2018.06.008]
Baskaran K, Malathi R and Thirusakthimurugan P. 2018. Feature fusion for FDG-PET and MRI for automated extra skeletal bone sarcoma classification. Materials Today: Proceedings, 5(1): 1879-1889[DOI: 10.1016/j.matpr.2017.11.289]
Bayro-Corrochano E. 2005. Multi-resolution image analysis using the quaternion wavelet transform. Numerical Algorithms, 39(1-3): 35-55[DOI: 10.1007/s11075-004-3619-8]
Burt P J and Adelson E H. 1984. Merging images through pattern decomposition//Proceedings of SPIE 0575, Applications of Digital Image Processing VⅢ. San Diego, USA: SPIE: 173-181[DOI: 10.1117/12.966501http://dx.doi.org/10.1117/12.966501]
Burt P J. 1992. A gradient pyramid basis for pattern-selective image fusion//Processings of the Society for Information Display Conference. San Jose, USA: SID Press: 467-470
Cai H Y, Zhuo L R, Chen X D and Zhang W Q. 2019. Infrared and visible image fusion based on BEMSD and improved fuzzy set. Infrared Physics and Technology, 98: 201-211[DOI: 10.1016/j.infrared.2019.03.013]
Cai J J, Cheng Q M, Peng M J and Song Y. 2017. Fusion of infrared and visible images based on nonsubsampled contourlet transform and sparse K-SVD dictionary learning. Infrared Physics and Technology, 82: 85-95[DOI: 10.1016/j.infrared.2017.01.026]
Candes E J. 1998. Ridgelets: Theory and Applications. Stanford: Stanford University, 62-74
Candes E J and Donoho D L. 2000. Curvelets-A surprisingly effective nonadaptive representation for objects with edges[EB/OL]. [2020-11-12].https://www.researchgate.net/publication/2629468https://www.researchgate.net/publication/2629468
Chavan S S, Mahajan A, Talbar S N, Desai S, Thakur M and D'cruz A. 2017. Nonsubsampled rotated complex wavelet transform (NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis. Computers in Biology and Medicine, 81: 64-78[DOI: 10.1016/j.compbiomed.2016.12.006]
Chen J and Zeng D. 2007. Image fusion algorithm based on spline pyramid. Experiment Science and Technology, 5(1): 129-131
陈锦, 曾东. 2007. 基于Spline金字塔的图像融合方法. 实验科学与技术, 5(1): 129-131[DOI: 10.3969/j.issn.1672-4550.2007.01.045]
Chen J, Li X J, Luo L B, Mei X G and Ma J Y. 2020. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition. Information Sciences, 508: 64-78[DOI: 10.1016/j.ins.2019.08.066]
Chen Y, Deng N, Xin B J, Xing W Y and Zhang Z Y. 2019. Nonwovens structure measurement based on NSST multi-focus image fusion. Micron, 123: #102684[DOI: 10.1016/j.micron.2019.102684]
Cheng B Y, Jin L X and Li G N. 2018d. A novel fusion framework of visible light and infrared images based on singular value decomposition and adaptive DUAL-PCNN in NSST domain. Infrared Physics and Technology, 91: 153-163[DOI: 10.1016/j.infrared.2018.04.004]
Cheng B Y, Jin L X and Li G N. 2018a. Adaptive fusion framework of infrared and visual image using saliency detection and improved dual-channel PCNN in the LNSST domain. Infrared Physics and Technology, 92: 30-43[DOI: 10.1016/j.infrared.2018.04.017]
Cheng B Y, Jin L X and Li G N. 2018b. General fusion method for infrared and visual images via latent low-rank representation and local non-subsampled shearlet transform. Infrared Physics and Technology, 92: 68-77[DOI: 10.1016/j.infrared.2018.05.006]
Cheng B Y, Jin L X and Li G N. 2018c. Infrared and visual image fusion using LNSST and an adaptive dual-channel PCNN with triple-linking strength. Neurocomputing, 310: 135-147[DOI: 10.1016/j.neucom.2018.05.028]
Cui H. 2011. An image fusion algorithm based on steerable pyramid. Aeronautical Computing Technique, 41(4): 24-27
崔颢. 2011. 基于方向可控金字塔的图像融合算法. 航空计算技术, 41(4): 24-27[DOI: 10.3969/j.issn.1671-654X.2011.04.007]
da Cunha A L, Zhou J and Do M N. 2006. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Transactions on Image Processing, 15(10): 3089-3101[DOI: 10.1109/TIP.2006.877507]
Daniel E, Anitha J and Gnanaraj J. 2017. Optimum laplacian wavelet mask based medical image using hybrid cuckoo search-grey wolf optimization algorithm. Knowledge-Based Systems, 131: 58-69[DOI: 10.1016/j.knosys.2017.05.017]
Ding W S, Bi D Y, He L Y and Fan Z L. 2018. Infrared and visible image fusion method based on sparse features. Infrared Physics and Technology, 92: 372-380[DOI: 10.1016/j.infrared.2018.06.029]
Do M N and Vetterli M. 2003. Contourlets. Studies in Computational Mathematics, 10: 83-105[DOI: 10.1016/S1570-579X(03)80032-0]
Dogan H, Baykal E, Ekinci M, Ercin M E and Ersoz S. 2018. A novel extended depth of field process based on nonsubsampled shearlet transform by estimating optimal range in microscopic systems. Optics Communications, 429: 88-99[DOI: 10.1016/j.optcom.2018.08.006]
Donoho D L. 1999. Wedgelets: nearly minimax estimation of edges. The Annals of Statistics, 27(3): 859-897[DOI: 10.1214/aos/1018031261]
Easley G, Labate D and Lim W Q. 2008. Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1): 25-46[DOI: 10.1016/j.acha.2007.09.003]
Freeman W T and Adelson E H. 1991. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9): 891-906[DOI: 10.1109/34.93808]
Gharbia R, Hassanien A E, El-Baz A H, Elhoseny M and Gunasekaran M. 2018. Multi-spectral and panchromatic image fusion approach using stationary wavelet transform and swarm flower pollination optimization for remote sensing applications. Future Generation Computer Systems, 88: 501-511[DOI: 10.1016/j.future.2018.06.022]
Gilles J. 2013. Empirical wavelet transform. IEEE Transactions on Signal Processing, 61(16): 3999-4010[DOI: 10.1109/TSP.2013.2265222]
Gong R and Wang X C. 2020. Multi-focus image fusion method based on C-EWT. Computer Engineering and Applications, 56(2): 201-210
宫睿, 王小春. 2020. 基于可协调经验小波变换的多聚焦图像融合. 计算机工程与应用, 56(2): 201-210[DOI: 10.3778/j.issn.1002-8331.1810-0130]
Guo K H and Labate D. 2007. Optimally sparse multidimensional representation using shearlets. SIAM journal on mathematical analysis, 39(1): 298-318[DOI: 10.1137/060649781]
Guo L Q, Cao X and Liu L. 2020. Dual-tree biquaternion wavelet transform and its application to color image fusion. Signal Processing, 171: #107513[DOI: 10.1016/j.sigpro.2020.107513]
Haddadpour M, Daneshvar S and Seyedarabi H. 2017. PET and MRI image fusion based on combination of 2-D Hilbert transform and IHS method. Biomedical Journal, 40(4): 219-225[DOI: 10.1016/j.bj.2017.05.002]
Hu Q, Hu S H and Zhang F Z. 2020. Multi-modality medical image fusion based on separable dictionary learning and Gabor filtering. Signal Processing: Image Communication, 83: #115758[DOI: 10.1016/j.image.2019.115758]
Hu X L and Shen J. 2008. An algorithm on image fusion based on median pyramid. Microelectronics and Computer, 25(9): 165-167
胡学龙, 沈洁. 2008. 一种基于中值金字塔的图像融合算法. 微电子学与计算机, 25(9): 165-167[DOI: 10.19304/j.cnki.issn1000-7180.2008.09.051]
Huang F S. 2018. Comparision of Multiscale Transform Fusion Methods for Multiband Image. Taiyuan: North University of China
黄福升. 2018. 多波段图像多尺度变换融合方法比较. 太原: 中北大学
Jin X, Chen G, Hou J Y, Jiang Q, Zhou D M and Yao S W. 2018a. Multimodal sensor medical image fusion based on nonsubsampled shearlet transform and S-PCNNs in HSV space. Signal Processing, 153: 379-395[DOI: 10.1016/j.sigpro.2018.08.002]
Jin X, Jiang Q, Yao S W, Zhou D M, Nie R C, Lee S J and He K J. 2018b. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain. Infrared Physics and Technology, 88: 1-12[DOI: 10.1016/j.infrared.2017.10.004]
Kingsbury N G. 1998. The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters//Proceedings of the 8th IEEE Digital Signal Processing Workshop, Bryce Canyon. Piscataway, USA: IEEE: 86-89
Kou F, Li Z G, Wen C Y and Chen W H. 2018. Edge-preserving smoothing pyramid based multi-scale exposure fusion. Journal of Visual Communication and Image Representation, 53: 235-244[DOI: 10.1016/j.jvcir.2018.03.020]
Krommweh J. 2010. Tetrolet transform: a new adaptive Haar wavelet algorithm for sparse image representation. Journal of Visual Communication and Image Representation, 21(4): 364-374[DOI: 10.1016/j.jvcir.2010.02.011]
Kulkarni S C and Rege P P. 2020. Pixel level fusion techniques for SAR and optical images: a review. Information Fusion, 59: 13-29[DOI: 10.1016/j.inffus.2020.01.003]
le Pennec E and Mallat S. 2005. Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing, 14(4): 423-438[DOI: 10.1109/TIP.2005.843753]
Lee C S, Lee C K and Yoo K Y. 2000. New lifting based structure for undecimated wavelet transform. Electronics Letters, 36(22): 1894-1895[DOI: 10.1049/el:20001294]
Li B, Peng H, Wang J and Huang X N. 2020. Multi-focus image fusion based on dynamic threshold neural P systems and surfacelet transform. Knowledge-Based Systems, 196: #105794[DOI: 10.1016/j.knosys.2020.105794]
Li H, Manjunath B S and Mitra S K. 1995. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 57(3): 235-245[DOI: 10.1006/gmip.1995.1022]
Li S T, Kang X D, Fang L Y, Hu J W and Yin H T. 2017. Pixel-level image fusion: a survey of the state of the art. Information Fusion, 33: 100-112[DOI: 10.1016/j.inffus.2016.05.004]
Li X F, Song L and Zhang X L. 2019. Remote sensing image fusion based on cooperative empirical wavelet transform. Journal of Jilin University (Engineering and Technology Edition), 49(4): 1307-1319
李雄飞, 宋璐, 张小利. 2019. 基于协同经验小波变换的遥感图像融合. 吉林大学学报: 工学版, 49(4): 1307-1319[DOI: 10.13229/j.cnki.jdxbgxb20180371]
Liu B, Chen W J and Xin J N. 2019a. Multifocus image fusion based on four channel non-separable additive wavelet. Computer Science, 46(7): 268-273
刘斌, 谌文江, 辛迦楠. 2019a. 基于四通道不可分加性小波的多聚焦图像融合. 计算机科学, 46(7): 268-273[DOI: 10.11896/j.issn.1002-137X.2019.07.041]
Liu B, Dong D and Chen J L. 2017. Image fusion method based on directional contrast pyramid. Chinese Journal of Quantum Electronics, 34(4): 405-413
刘斌, 董迪, 陈俊霖. 2017. 基于方向性对比度金字塔的图像融合方法. 量子电子学报, 34(4): 405-413[DOI: 10.3969/j.issn.1007-5461.2017.04.005]
Liu B, Xin J N, Chen W J and Xiao H Y. 2019b. Construction of non-separable Laplacian pyramid and its application in multi-spectral image fusion. Journal of Computer Applications, 39(2): 564-570
刘斌, 辛迦楠, 谌文江, 肖惠勇. 2019b. 不可分拉普拉斯金字塔构造及其在多光谱图像融合中的应用. 计算机应用, 39(2): 564-570[DOI: 10.11772/j.issn.1001-9081.2018061346]
Liu G X, Zhao S G and Chen W J. 2004. A multi-resolution image fusion scheme using biorthogonal wavelet transform. Opto-Electronic Engineering, 31(4): 50-53
刘贵喜, 赵曙光, 陈文锦. 2004. 双正交小波变换多分辨率图像融合方法. 光电工程, 31(4): 50-53[DOI: 10.3969/j.issn.1003-501X.2004.04.014]
Liu L, Song M H, Peng Y X and Li J. 2019a. A novel fusion framework of infrared and visible images based on RLNSST and guided filter. Infrared Physics and Technology, 100: 99-108[DOI: 10.1016/j.infrared.2019.05.019]
Liu X B, Mei W B and Du H Q. 2018. Multi-modality medical image fusion based on image decomposition framework and nonsubsampled shearlet transform. Biomedical Signal Processing and Control, 40: 343-350[DOI: 10.1016/j.bspc.2017.10.001]
Liu Y Y, Zhou D M, Nie R C, Hou R C, Ding Z S, Guo Y B and Zhou J W. 2020. Robust spiking cortical model and total-variational decomposition for multimodal medical image fusion. Biomedical Signal Processing and Control, 61: #101996[DOI: 10.1016/j.bspc.2020.101996]
Liu Z, Song Y Q, Sheng V S, Xu C Y, Maere C, Xue K F and Yang K. 2019b. MRI and PET image fusion using the nonparametric density model and the theory of variable-weight. Computer Methods and Programs in Biomedicine, 175: 73-82[DOI: 10.1016/j.cmpb.2019.04.010]
Lu Y B. 2012. Comparision of Multiscale Transform Fusion Methods for Multiband Image. Beijing: Peking University
卢彦斌. 2012. X射线CT成像技术与多模态层析成像技术研究. 北京: 北京大学
Mallat S G. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on pattern analysis and machine intelligence, 11(7): 674-693[DOI: 10.1109/34.192463]
Meng F J, Song M, Guo B L, Shi R X and Shan D L. 2017. Image fusion based on object region detection and non-subsampled contourlet transform. Computers and Electrical Engineering, 62: 375-383[DOI: 10.1016/j.compeleceng.2016.09.019]
Meng L Y, Guo X P and Li H G. 2019. MRI/CT fusion based on latent low rank representation and gradient transfer. Biomedical Signal Processing and Control, 53: #101536[DOI: 10.1016/j.bspc.2019.04.013]
Panigrahy C, Seal A and Mahato N K. 2020. Fractal dimension based parameter adaptive dual channel PCNN for multi-focus image fusion. Optics and Lasers in Engineering, 133: #106141[DOI: 10.1016/j.optlaseng.2020.106141]
Piella G. 2003. A general framework for multiresolution image fusion: from pixels to regions. Information Fusion, 4(4): 259-280[DOI: 10.1016/S1566-2535(03)00046-0]
Polinati S and Dhuli R. 2020. Multimodal medical image fusion using empirical wavelet decomposition and local energy maxima. Optik, 205: #163947[DOI: 10.1016/j.ijleo.2019.163947]
Rajalingam B, Priya R and Bhavani R. 2019. Hybrid multimodal medical image fusion using combination of transform techniques for disease analysis. Procedia Computer Science, 152: 150-157[DOI: 10.1016/j.procs.2019.05.037]
Shen Y, Chen X P and Yang Q. 2020. Image fusion of multidirectional sum modified Laplacian and tetrolet transform. Journal of Image and Graphics, 25(4): 721-731
沈瑜, 陈小朋, 杨倩. 2020. 多方向Laplacian能量和与tetrolet变换的图像融合. 中国图象图形学报, 25(4): 721-731[DOI: 10.11834/jig.190311]
Singh S and Anand R S. 2018. Ripplet domain fusion approach for CT and MR medical image information. Biomedical Signal Processing and Control, 46: 281-292[DOI: 10.1016/j.bspc.2018.05.042]
Song M H, Liu L, Peng Y X, Jiang T and Li J. 2019. Infrared and visible images fusion based on redundant directional lifting-based wavelet and saliency detection. Infrared Physics and Technology, 101: 45-55[DOI: 10.1016/j.infrared.2019.05.017]
Song Y M H, Lan X L and Zhang Y X. 2019. Application advances of PET/MR in neurodegenerative diseases. Chinese Journal of Nuclear Medicine and Molecular Imaging, 39(7): 431-434
宋杨美惠, 兰晓莉, 张永学. 2019. PET/MR成像在神经退行性疾病中的应用进展. 中华核医学与分子影像杂志, 39(7): 431-434[DOI: 10.3760/cma.j.issn.2095-2848.2019.07.013]
Toet A, van Ruyven L J and Valeton J M. 1989. Merging thermal and visual images by a contrast pyramid. Optical Engineering, 28(7): #287789[DOI: 10.1117/12.7977034]
Toet A. 1989a. A morphological pyramidal image decomposition. Pattern Recognition Letters, 9(4): 255-261[DOI: 10.1016/0167-8655(89)90004-4]
Toet A. 1989b. Image fusion by a ratio of low-pass pyramid. Pattern Recognition Letters, 9(4): 245-253[DOI: 10.1016/0167-8655(89)90003-2]
Ullah H, Ullah B, Wu L W, Abdalla F Y O, Ren G H and Zhao Y Q. 2020. Multi-modality medical images fusion based on local-features fuzzy sets and novel sum-modified-Laplacian in non-subsampled shearlet transform domain. Biomedical Signal Processing and Control, 57: #101724[DOI: 10.1016/j.bspc.2019.101724]
Uytterhoeven G and Bultheel A. 1998. The red-black wavelet transform[EB/OL]. [2020-12-12]https://www.researchgate.net/publication/2640209https://www.researchgate.net/publication/2640209
Vishwakarma A, Bhuyan M K and Iwahori Y. 2018. An optimized non-subsampled shearlet transform-based image fusion using Hessian features and unsharp masking. Journal of Visual Communication and Image Representation, 57: 48-60[DOI: 10.1016/j.jvcir.2018.10.005]
Wang B, Zeng J C, Lin S Z and Bai G F. 2019. Multi-band images synchronous fusion based on NSST and fuzzy logical inference. Infrared Physics and Technology, 98: 94-107[DOI: 10.1016/j.infrared.2019.02.013]
Wang H C. 2019. Research on Adaptive Threshold Image Denoising Algorithm Based on NSCT Domain. Lanzhou: Lanzhou Jiaotong University
王鸿闯. 2019. 基于NSCT域的自适应阈值图像去噪算法研究. 兰州: 兰州交通大学
Wang K. 2019. Rock particle image fusion based on sparse representation and non-subsampled contourlet transform. Optik, 178: 513-523[DOI: 10.1016/j.ijleo.2018.09.121]
Wang W X and Zeng J B. 2009. Image fusion method based on redundant lifting non-separable wavelet transforms. Journal of University of Electronic Science and Technology of China, 38(1): 13-16
王卫星, 曾基兵. 2009. 冗余提升不可分离小波的图像融合方法. 电子科技大学学报, 38(1): 13-16[DOI: 10.3969/j.issn.1001-0548.2009.01.004]
Wang Z B, Cui Z J and Zhu Y. 2020. Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation. Computers in Biology and Medicine, 123: #103823[DOI: 10.1016/j.compbiomed.2020.103823]
Xu L N, Si Y J, Jiang S B, Sun Y and Ebrahimian H. 2020. Medical image fusionusing a modified shark smell optimization algorithm and hybrid wavelet-homomorphic filter. Biomedical Signal Processing and Control, 59: #101885[DOI: 10.1016/j.bspc.2020.101885]
Yan T, Hu Z G, Qian Y H, Qiao Z W and Zhang L Y. 2020. 3D shape reconstruction from multifocus image fusion using a multidirectional modified Laplacian operator. Pattern Recognition, 98: #107065[DOI: 10.1016/j.patcog.2019.107065]
Yin M, Duan P H, Liu W and Liang X Y. 2017. A novel infrared and visible image fusion algorithm based on shift-invariant dual-tree complex shearlet transform and sparse representation. Neurocomputing, 226: 182-191[DOI: 10.1016/j.neucom.2016.11.051]
Yuan Y B, Peng J, Shen Y and Chen X P. 2020. Fusion algorithm for near-infrared and color visible images based on tetrolet transform. Infrared Technology, 42(3): 223-230
苑玉彬, 彭静, 沈瑜, 陈小朋. 基于Tetrolet变换的近红外与彩色可见光图像融合算法研究. 红外技术, 42(3): 223-230
Zhang Q, Liu Y, Blum R S, Han J G and Tao D C. 2018. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review. Information Fusion, 40: 57-75[DOI: 10.1016/j.inffus.2017.05.006]
Zhang Y J and Li J B. 2019. Research progress on PET-CT in radiotherapy planning for non-small cell lung cancer. Chinese Journal of Radiation Oncology, 28(11): 876-879
张英杰, 李建彬. 2019. PET-CT应用于非小细胞肺癌放疗计划的研究进展. 中华放射肿瘤学杂志, 28(11): 876-879[DOI: 10.3760/cma.j.issn.1004-4221.2019.11.017]
Zhang Z and Blum R S. 1999. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, 87(8): 1315-1326[DOI: 10.1109/5.775414]
Zhou T, Lu H L, Wei X Y and Xia Y. 2017. Self-adaption fusion algorithm for lung cancer PET/CT based on Piella frame and DT-CWT. Journal of University of Science and Technology of China, 47(1): 10-17
周涛, 陆惠玲, 魏兴瑜, 夏勇. 2017. 基于Piella框架和DT-CWT的肺癌PET/CT自适应融合算法. 中国科学技术大学学报, 47(1): 10-17
相关作者
相关机构