Research on video content security evaluation
- Vol. 27, Issue 1, Pages: 163-175(2022)
Published: 16 January 2022 ,
Accepted: 10 November 2021
DOI: 10.11834/jig.210500
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 January 2022 ,
Accepted: 10 November 2021
移动端阅览
Chensi Wu, Maobin Cai, Yaochun Yang, Xiaoying Zhao, Kefeng Fan. Research on video content security evaluation. [J]. Journal of Image and Graphics 27(1):163-175(2022)
随着信息技术的快速发展,以视频为主的新媒体极大改变了信息传播方式。但是视频中不安全内容的传播容易带来潜在风险,可能产生不良社会影响,并造成一定损失。因此,视频内容的安全性研究具有重要的理论价值和重大应用需求,受到了研究人员的广泛关注。视频内容安全评价是描述视频内容安全性的重要方法,能够有效管理视频中不良信息的传播风险,降低影响和损失。本文从建立技术理论体系角度,围绕4个方面的内容监管,梳理了视频内容安全评价体系。围绕5个评价原则,总结了视频内容安全评价方法,阐述了基于PDCA(plan-do-check-act)原理的视频内容安全评价流程;综合考虑不良内容的特点,从5个方面提炼形成了视频内容安全评价指标,包括内容干扰度、内容恶意度、内容敏感度、内容暴露度和内容倾向度。给出视频内容安全风险计算的过程,阐述了基于层次分析的量化方法,从而得到视频内容风险程度,即视频内容安全风险值,结果考虑了决策的主客观特征;从高、中、低3个等级评价视频内容风险严重性的总体水平,更便于优化视频内容风险处理顺序。等级排序不仅提高了检测发现安全风险的效率,也为视频内容分级提供数据支撑。最后分析了视频内容评价面临的挑战机遇,详尽总结了十大待解决问题,展望了未来研究方向与发展趋势。
The emergence of media video has hugely changed and facilitated information spreading
including bad ones. It is urgent to effectively manage and control the production
fabrication
and release of video content nowadays. The inadequate information can be summarized as video content security (VCS). VCS has become an essential part of network content security. The main issues for video content security of media platforms are keyword search
video frame extraction
and manual supervision. Uneven regulatory audit and weak audit capabilities of small and medium-sized platforms are still concerned in common. To interpret the potential risks and practical implications of bad information in the video
the video content supervision system is to construct the video content security evaluation (VCSE). VCSE offers an effective way to guarantee the security of network content. The potential risks in video or video production are identified
analyzed
and evaluated on the systematic aspect in advance. Risk manipulations are implemented to guarantee the proper security management or control functions. VCSE can illustrate content security quantitatively. Video content security evaluation system (VCSES) can provide a scientific basis for clarifying audit priority and decision-making. This research summarizes a system in the context of the content supervision of pornography
violence
terrorism
politics
and bad scenes. The system includes three parts
including standards
content identification
and evaluation methods. The illustrated evaluation process is to improve the feasibility and operability of video content security management. Based on the principle of plan-do-check-act (PDCA)
the evaluation process mainly includes the pre-stage
analysis
check
and improvement stage. In the pre-stage
the insecure semantics in the video is identified
and the relevant laws and regulations
technical standards
and technical data of engineering and system are demonstrated. At the analysis stage
the detection method is opted to identify and analyze the potentially lousy information. At the verification stage
secure implementations are facilitated. In comparison with qualitative and quantitative evaluation
the implication of technical and management are offered to eliminate or weaken the chaos factors. In the improvement stage
the proposed scheme is demonstrated for the content that does not conform to the standard in the video. The management system of video risk control measures is implemented. This research summarizes and forms the video content security evaluation index and method from five aspects: content interference
content malice
content sensitivity
content exposure
and content tendency. First
the amount of key frames and problem frames are determined
and the index value is calculated. Next
the weight of the index value is set. At last
the video content security risk value is obtained. The greater the degree of video content security risk is
the higher the risk levels are. The evaluation takes the subjective and objective characteristics of decision-making into account. The video content risk severity level is evaluated from three aspects of high
medium
and low. The ranking of video content security results is more qualified
which improves the efficiency of detecting security risks and provides data support for video content classification. Finally
this research analyzes the challenges and opportunities for video content evaluation. From the perspective of usability
reliability
and efficiency
it summarizes ten aspects to be solved in detail
such as data set
accurate identification
content interference
security prediction
interconnection
content traceability
real-time monitoring
and artificial intelligence. In summary
an overall security evaluation framework
a security evaluation theory
and a technology system have been built up to realize a more accurate evaluation.
网络内容安全视频内容内容安全评价视频分析量化评价
network content securityvideo contentcontent security evaluationvideo analysisquantitative evaluation
Arabsorkhi A and Ghaffari F. 2018. Security metrics: principles and security assessment methods//the 9th International Symposium on Telecommunications (IST). Tehran, Iran: IEEE: 305-310 [DOI: 10.1109/ISTEL.2018.8661030]
Barak M and Assal M. 2018. Robotics and STEM learning: students' achievements in assignments according to the P3 task taxonomy-practice, problem solving, and projects. International Journal of Technology and Design Education, 28(1): 121-144 [DOI: 10.1007/s10798-016-9385-9]
Cheng M, Cai K J and Li M. 2021. RWF-2000: an open large scale video database for violence detection//Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan, Italy: IEEE: 4183-4190 [DOI: 10.1109/ICPR48806.2021.9412502http://dx.doi.org/10.1109/ICPR48806.2021.9412502]
Costa M, Moreira R, Cabral J, Dias J and Pinto S. 2020. Wall screen: an ultra-high definition video-card for the internet of things. IEEE MultiMedia, 27(3): 76-87 [DOI: 10.1109/MMUL.2020.3011595]
Du J X, Zhai C M, Guo Y L, Tang Y Y and Philip Chen C L. 2014. Recognizing complex events in real movies by combining audio and video features. Neurocomputing, 137: 89-95 [DOI: 10.1016/j.neucom.2013.04.053]
Fan X, Li C L and Dong X J. 2019. A real-time network security visualization system based on incremental learning (ChinaVis 2018). Journal of Visualization, 22(1): 215-229 [DOI: 10.1007/s12650-018-0525-z]
Ge L, Ji X S and Jiang T. 2015. Situation prediction of network information content security incidents using E-IGA-RBF. Journal of Xidian University (Natural Science), (4): 107-113
葛琳, 季新生, 江涛. 2015. 利用E-IGA-RBF的网络信息内容安全事件态势预测. 西安电子科技大学学报(自然科学版), (4): 107-113 [DOI: 10.3969/j.issn.1001-2400.2015.04.018]
Gollmann D, Massacci F and Yautsiukhin A. 2006. Quality of Protection. Boston, USA: Springer: 7-8 [DOI: 10.1007/978-0-387-36584-8]
Guionnet T, Raulet M and Burnichon T. 2020. Forward-looking content aware encoding for next generation UHD, HDR, WCG, and HFR. SMPTE Motion Imaging Journal, 129(7): 26-32 [DOI: 10.5594/JMI.2020.3001797]
Guo C X. 2020. Research on sports video retrieval algorithm based on semantic feature extraction. Multimedia Tools and Applications [JB/OL]. Multimedia Tools and Applications. https://link.springer.com/article/10.1007/s11042-020-10178- z?utm_medium=affiliate&utm_content=meta[DOI: 10.1007/s11042-020-10178-zhttp://dx.doi.org/10.1007/s11042-020-10178-z]
Han X L, Liu Y, Zhang Z J, Lyu X and Li Y. 2019. Review of the theory, technology and some difficult problems in network security situational awareness. Information Security and Communications Privacy, (7): 61-71
韩晓露, 刘云, 张振江, 吕欣, 李阳. 2019. 网络安全态势感知理论与技术综述及难点问题研究. 信息安全与通信保密, (7): 61-71 [DOI: 10.3969/j.issn.1009-8054.2019.07.010]
Hasan H R and Salah K. 2019. Combating DeepFake videos using blockchain and smart contracts. IEEE Access, 7: 41596-41606 [DOI: 10.1109/ACCESS.2019.2905689]
Huang Q S and Li L Y. 2017. Overview on information content security of cyberspace. Journal of Information Security Research, 3(12): 1115-1118
黄旗绅, 李留英. 2017. 网络空间信息内容安全综述. 信息安全研究, 3(12): 1115-1118 [DOI: 10.3969/j.issn.2096-1057.2017.12.011]
Khan M N, Alam A and Lee Y K. 2020. FALKON: large-scale content-based video retrieval utilizing deep-features and distributed in-memory computing//Proceedings of 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). Busan, Korea (South): IEEE: 36-43 [DOI: 10.1109/BigComp48618.2020.0-102http://dx.doi.org/10.1109/BigComp48618.2020.0-102]
Koley S. 2021. Visual attention model based dual watermarking for simultaneous image copyright protection and authentication. Multimedia Tools and Applications, 80(5): 6755-6783 [DOI: 10.1007/s11042-020-09918-y]
Liu D. 2020. Short-Video Recommendation Algorithm Based on Multi-Modal Graph Convolutional Network. Shenzhen: Shenzhen University
刘兑. 2020. 基于多模态图卷积网络的短视频推荐算法. 深圳: 深圳大学
Liu N, Liu S J, Liu Y and Zhao H. 2010. Method of network security situation awareness based on artificial immunity system. Computer Science, 37(1): 126-129, 200 [DOI: 10.3969/j.issn.1002-137X.2010.01.030]
Lu C J. 2020. Content-based Video Retrieval. Hangzhou: Zhejiang University
陆楚杰. 2020. 基于内容的视频片段检索. 杭州: 浙江大学
Majeed A, ur Rasool R, Ahmad F, Alam M and Javaid N. 2019. Near-miss situation based visual analysis of SIEM rules for real time network security monitoring. Journal of Ambient Intelligence and Humanized Computing, 10(4): 1509-1526 [DOI: 10.1007/s12652-018-0936-7]
Men X. 2019. Content Based Video Recognition and Search Algorithm Based on Deep Learning. Beijing: Beijing University of Posts and Telecommunications
门鑫. 2019. 基于深度学习的视频内容识别和搜索算法研究. 北京: 北京邮电大学
Meng M. 2013. The research and application of the risk evaluation and management of information security based on AHP method and PDCA method//Proceedings of the 6th International Conference on Information Management, Innovation Management and Industrial Engineering. Xi′an, China: IEEE: 379-383 [DOI: 10.1109/ICIII.2013.6703597http://dx.doi.org/10.1109/ICIII.2013.6703597]
Miloslavskaya N. 2018. Developing a network security intelligence center. Procedia Computer Science, 145: 359-364 [DOI: 10.1016/j.procs.2018.11.085]
Moreira D, Avila S, Perez M, Moraes D, Testoni V, Valle E, Goldenstein S and Rocha A. 2016. Pornography classification: the hidden clues in video space-time. Forensic Science International, 268: 46-61 [DOI: 10.1016/j.forsciint.2016.09.010]
Munir R, Mufti M R, Awan I, Hu Y F and Disso J P. 2015. Detection, mitigation and quantitative security risk assessment of invisible attacks at enterprise network//Proceedings of 3rd International Conference on Future Internet of Things and Cloud. Rome, Italy: IEEE: 256-263 [DOI: 10.1109/FiCloud.2015.24http://dx.doi.org/10.1109/FiCloud.2015.24]
Peng X N and Dai F. 2009. Information systems risk evaluation based on the AHP-Fuzzy algorithm//Proceedings of 2009 International Conference on Networking and Digital Society. Guiyang, China: IEEE: 178-180 [DOI: 10.1109/ICNDS.2009.124http://dx.doi.org/10.1109/ICNDS.2009.124]
Peng Y X, Zhu W W, Zhao Y, Xu C S, Huang Q M, Lu H Q, Zheng Q H, Huang T J and Gao W. 2017. Cross-media analysis and reasoning: advances and directions. Frontiers of Information Technology and Electronic Engineering, 18(1): 44-57 [DOI: 10.1631/FITEE.1601787]
Ren D, Song W, Yu J and Jiang W. 2016. A survey on special video content detection algorithms. Netinfo Security, (9): 184-191
任栋, 宋伟, 于京, 姜薇. 2016. 特殊视频内容检测算法研究综述. 信息网络安全, (9): 184-191 [DOI: 10.3969/j.issn.1671-1122.2016.09.037]
Ren K, Zheng T H, Qin Z and Liu X. 2020. Adversarial attacks and defenses in deep learning. Engineering, 6(3): 346-360 [DOI: 10.1016/j.eng.2019.12.012]
Riaz M T, Jahan M S, Arif K S and Butt W H. 2019. Risk assessment on software development using fishbone analysis//Proceedings of 2019 International Conference on Data and Software Engineering. Pontianak, Indonesia: IEEE: 1-6 [DOI: 10.1109/ICoDSE48700.2019.9092727http://dx.doi.org/10.1109/ICoDSE48700.2019.9092727]
Saaty T L and Kearns K P. 1985. The analytic hierarchy process//Analytical Planning. [s. l.]: Elsevier: 19-62 [DOI: 10.1016/B978-0-08-032599-6.50008-8http://dx.doi.org/10.1016/B978-0-08-032599-6.50008-8]
Samangouei P, Kabkab M and Chellappa R. 2018. Defense-GAN: protecting classifiers against adversarial attacks using generative models[EB/OL]. [2021-10-27].https://arxiv.org/pdf/1805.06605v2.pdfhttps://arxiv.org/pdf/1805.06605v2.pdf
Sha F and Zhou H J. 2011. The information security risk assessment based on AHP and fuzzy comprehensive evaluation//Proceedings of the 3rd IEEE International Conference on Communication Software and Networks. Xi′an, China: IEEE: 124-128 [DOI: 10.1109/ICCSN.2011.6014018http://dx.doi.org/10.1109/ICCSN.2011.6014018]
Sun B. 2017. Key Techniques of Content-based Video Analysis. Nanjing: Nanjing University of Posts and Telecommunications
孙彬. 2017. 基于内容的视频分析关键技术研究. 南京: 南京邮电大学
Sun Y. 2016. Research on the construction of network content security situation evaluation index system. Information and Communications, (2): 81-82
孙艳.2016. 网络内容安全态势评估指标体系的构建研究. 信息通信, (2): 81-82 [DOI: 10.3969/j.issn.1673-1131.2016.02.041]
Sun Y, Zhou X G and Chen T. 2011. Information forensics method for tacit keyword. Computer Engineering, 37(19): 266-269
孙艳, 周学广, 陈涛. 2011. 意会关键词信息取证方法. 计算机工程, 37(19): 266-269 [DOI: 10.3969/j.issn.1000-3428.2011.19.088]
Wang H T, Zhu S C, Li Y, Song L H and Zhang G M. 2015. Survivability evaluation index systems and evaluation models for Wireless Sensor Networks//Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery. Zhangjiajie, China: IEEE: 2203-2207 [DOI: 10.1109/FSKD.2015.7382294http://dx.doi.org/10.1109/FSKD.2015.7382294]
Wang H Z, Guo W X, Zhao R F, Zhou B and Hu C. 2020. A real-time online security situation prediction algorithm for power network based on Adaboost and SVM//Proceedings of the 2nd International Conference on Security with Intelligent Computing and Big-Data Services. Guilin, China: Springer: 526-534 [DOI: 10.1007/978-3-030-16946-6_42http://dx.doi.org/10.1007/978-3-030-16946-6_42]
Wen S S. 1998. On the principle of standardization. World Standardization and Quality Management, (6): 37-38
文松山. 1998. 漫谈标准化原理——"以规矩, 成方圆". 世界标准化与质量管理, (6): 37-38
Wu C S, Xie W Q, Ji Y X, Yang S, Jia Z Y, Zhao S and Zhang Y Q. 2019. Survey on network system security metrics. Journal on Communications, 40(6): 14-31
吴晨思, 谢卫强, 姬逸潇, 杨粟, 贾紫艺, 赵松, 张玉清. 2019. 网络系统安全度量综述. 通信学报, 40(6): 14-31 [DOI: 10.11959/j.issn.1000-436x.2019148]
Wu P, Liu J, Shi Y J, Sun Y J, Shao F T, Wu Z Y and Yang Z W. 2020. Not only look, but also listen: learning multimodal violence detection under weak supervision//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 322-339 [DOI: 10.1007/978-3-030-58577-8_20http://dx.doi.org/10.1007/978-3-030-58577-8_20]
Xu J Z and Che R X. 2018. A video audit method and system. China, CN107959863B
徐均哲, 车荣学. 2018. 一种视频审核方法及系统. 中国, CN107959863A
Xu Q F, Guo J and Xiao B. 2012. The study of content security for mobile internet. Wireless Personal Communications, 66(3): 523-539 [DOI: 10.1007/s11277-012-0738-8]
Yu H Y, Yang X C and Wang L. 2020. Network security situation prediction based on combining associated entropy and deep recurrent neural network. Transactions on Emerging Telecommunications Technologies [JB/OL].https://onlinelibrary.wiley.com/doi/epdf/10.1002/ett.4164https://onlinelibrary.wiley.com/doi/epdf/10.1002/ett.4164[DOI: 10.1002/ett.4164http://dx.doi.org/10.1002/ett.4164].
Yu J. 2020. Study on Content Analysis Algorithms in Special Video. Beijing: Beijing Jiaotong University
于京. 2020. 特殊视频内容分析算法研究. 北京: 北京交通大学
Yuan Y, Lu Z, Yang Z, Jian M, Wu L F, Li Z Y and Liu X. 2021. Key frame extraction based on global motion statistics for team-sport videos [JB/OL]. Multimedia Systems.https://link.springer.com/article/10.1007/s00530-021-00777-7https://link.springer.com/article/10.1007/s00530-021-00777-7[DOI: 10.1007/s00530-021-00777-7http://dx.doi.org/10.1007/s00530-021-00777-7].
Yuan Z Yand Chen J S. 2021. The connotation and characteristics of internet new media//Proceedings of 2021 International Conference on Cyber Security Intelligence and Analytics. Shenyang, China: Springer: 184-188 [DOI: 10.1007/978-3-030-70042-3_26http://dx.doi.org/10.1007/978-3-030-70042-3_26]
Zhang J L, Zeng B, Shen Y, Zhang M L and Chen Z Y. 2020. Security audit technology of ultra high definition video content. Communications Technology, 53(8): 2049-2053
张家亮, 曾兵, 沈宜, 张明亮, 陈正宇. 2020. 超高清视频内容安全审核技术研究. 通信技术, 53(8): 2049-2053
Zhang L J, Cui T S, Jing P G and Su Y T. 2021. Deep multimodal feature fusion for micro-video classification. Journal of Beijing University of Aeronautics and Astronautics, 47(3): 478-485
张丽娟, 崔天舒, 井佩光, 苏育挺. 2021. 基于深度多模态特征融合的短视频分类. 北京航空航天大学学报, 47(3): 478-485 [DOI: 10.13700/j.bh.1001-5965.2020.0457]
Zhang Q. 2017. An exploration on the practice of the Lowell's value-sharing mechanism of the industrial heritage. Urban Planning International, 32(5): 121-128
张琪. 2017. 美国洛厄尔工业遗产价值共享机制的实践探索. 国际城市规划, 32(5): 121-128 [DOI: 10.22217/upi.2014.345]
Zheng N N, Liu Z Y, Ren P J, Ma Y Q, Chen S T, Yu S Y, Xue J R, Chen B D and Wang F Y. 2017. Hybrid-augmented intelligence: collaboration and cognition. Frontiers of Information Technology and Electronic Engineering, 18(2): 153-179 [DOI: 10.1631/FITEE.1700053]
Zhou K Y, Qiao Y and Xiang T. 2018. Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1): 7582-7589
Zhou L H, Zhang J J and Chang K S. 2020. Research and design of intelligent detection platform for short video bad content. Computer Era, (5): 38-40
周利红, 张军军, 常孔帅. 2020. 短视频不良内容智能检测平台研究与设计. 计算机时代, (5): 38-40 [DOI: 10.16644/j.cnki.cn33-1094/tp.2020.05.011]
Zhou X G, Ren Y Z, Sun Y and Zhang L Q. 2012. Information Content Security. Wuhan: Wuhan University Press
周学广, 任延珍, 孙艳, 张立强. 2012. 信息内容安全. 武汉: 武汉大学出版社
Zhuang Y T, Wu F, Chen C and Pan Y H. 2017. Challenges and opportunities: from big data to knowledge in AI 2.0. Frontiers of Information Technology and Electronic Engineering, 18(1): 3-14 [DOI: 10.1631/FITEE.1601883]
相关作者
相关机构