换装行人重识别研究进展
Cloth-changing person re-identification: a summary
- 2023年28卷第5期 页码:1242-1264
纸质出版日期: 2023-05-16
DOI: 10.11834/jig.220702
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2023-05-16 ,
移动端阅览
张鹏, 张晓林, 包永堂, 贲晛烨, 单彩峰. 2023. 换装行人重识别研究进展. 中国图象图形学报, 28(05):1242-1264
Zhang Peng, Zhang Xiaolin, Bao Yongtang, Ben Xianye, Shan Caifeng. 2023. Cloth-changing person re-identification: a summary. Journal of Image and Graphics, 28(05):1242-1264
行人重识别旨在建立目标行人在多个无交叉覆盖监控区域间的身份联系,在智慧城市、司法侦查和监控安全等领域具有重要应用价值。传统行人重识别方法针对短时间跨度场景,依赖行人外观特征的稳定不变性,旨在克服光照差异、视角变化和物体遮挡等挑战。与之不同,换装行人重识别针对长时间跨度场景,除受限于上述挑战还面临换装带来的外观变化问题,是近几年的一个研究难点和热点。围绕换装行人重识别,本文从数据集和解决方法两个方面综述国内外研究进展,探讨面临的挑战和难点。首先,梳理并比较了当前针对换装行人重识别的数据集,从采集方式、行人及样本数量等方面分析其挑战性和面临的局限性。然后,在简单回顾换装行人重识别发展历史的基础上,将其归纳为基于非视觉传感器的方法和基于视觉相机的方法两类。针对基于非视觉传感器的方法,介绍了深度传感器、射频信号等在换装行人重识别中的应用。针对基于视觉相机的方法,详细阐述了基于显式特征设计与提取的方法、基于特征解耦的方法和基于隐式数据驱动自适应学习的方法。在此基础上,探讨了当前换装行人重识别面临的问题并展望未来的发展趋势,旨在为相关研究提供参考。
Person re-identification (Re-ID) aims to build identity correspondence of the target pedestrian among multiple non-overlap monitoring areas, which has significant application value in the fields such as smart city, criminal investigation and forensics, and surveillance security. Conventional Re-ID methods are often focused on short-term scenarios, which aim to tackle some challenges in related to illumination difference, view-angle change and occlusion. In these methods, the target pedestrian of interest (TPoI) is assumed as unchangeable dressing status while he re-appears under the surveillance circustmances. Such methods are restricted by the homology of appearance across different cameras, such as the same color and texture of pedestrians’ clothes. In contrast, cloth-changing person Re-ID aims at long-term scenarios, which determines that the TPoI re-appears after a long-time gap likes one week or more. In addition to the above challenges in classical person Re-ID, cloth-changing person Re-ID also suffers the difficulty of appearance difference caused by clothes changing. This makes it a research difficulty in recent years. Considering cloth-changing person Re-ID, this paper discusses its challenges and difficulties, and provides an indepth review on recent progress in terms of the analysis of datasets and methods. Based on the analysis, some potential research trends and solutions are proposed. First, we summary and compare the existing cloth-changing person Re-ID datasets in relevant to 1) RGBD-based pattern analysis and computer vision(PAVIS), BIWI, and IAS-Lab, 2) radio frequency-based radio frequency re-identification dataset-campus(RRD-Campus) and RRD-Home, 3) RGB image-based Celeb-ReID, person Re-ID under moderate clothing change(PRCC), long-term cloth-changing(LTCC), and DeepChange and 4) video-based train station dataset(TSD), Motion-ReID and CVID-ReID(cloth-varing video Re-ID), which can be oriented to their difficulties and limitations on the aspects of collecting methods, number of identities and images. Additionally, some popular person Re-ID evaluation metrics are summarized in the context of cumulative match characteristics (CMC), mean average precision (mAP) and mean inverse negative penalty (mINP). Second, we summary the existing cloth-changing person Re-ID methods and segment them into two major categories in terms of data collection: 1) non-visual sensor-based and 2) visual camera-based methods. Non-visual sensor based methods are used to alleviate the influence of clothes from the perspective of data collection manner. In this paper, non-visual sensors are configured into two aspects, i.e., RGBD sensor and radio frequency (RF). The RGBD sensor is used to produce depth information, which can boost the human shape information and eliminate the effect of cloth color. However, the depth information is still influenced by clothes’ contour. The RF-based method can be used for overcoming the weakness further. The wireless devices-derived RF signal emittion can penetrate cloths and reflect the shape information of human body. Unfortunately, the non-visual sensor based methods heavily rely on expensive snesors. It is hard to be applied to the existing surveillance systems. In contrast, visual camera based methods can be used to RGB monitoring cameras directly, and its problem can be tackled through cloth-invariant feature learning and representation from RGB images/videos. These methods can be divided into three categories: 1) explicit feature learning and extraction (EFLE), 2) feature decoupling (FD), and 3) implicit data adaption (IDA). The EFLE can extract cloth-invariant identity-relevant biometric features explicitly, such as face, gait, and body shape. And, these methods consist of two aspects, i.e., hand-crafted and learning-based. The hand-crafted methods can be used to design feature representation, e.g., body measurement and analysis. The learning-based methods guide deep neural network models to learn biometric features using some localization or regularization modules. The FD is used to decouple identity information and cloth-related appearance feature and produce pure identity information, e.g., CESD, DG-Net, IS-GAN, AFD-Net, etc. Differently, IDA adopts a data-driven manner, which can adapt intra-class diversity automatically using large volume of data with abundant intra-class variance, e.g., ReIDCaps, RCSANet. On the basis, the cons of current cloth-changing person Re-ID methods are analyzed, e.g., lack of large-scale and multi-view dataset, feature alignment problem, occlusion, weak feature discriminability and generalization problem. Aiming to these drawbacks, this paper further looks forward to six promising research directions as mentioned below: 1) to construct large-scale video-based datasets and explore spatio-temporal features from video clips or contexts. It is supposed that video footages include rich gait information and provide multi-view body characteristics for 3D human reconstruction; 2) to utilize 3D human reconstruction for learning view-invariant human geometric features from 3D space. The 3D body is assumed to be robust to shape deformation which highlights body structure information; 3) to weaken the effect of clothes-related attributes with the help of pedestrian attribute analysis. It is beneficial for the extraction of semantic-level cues; 4) to mine and integrate multiple features using multi-feature co-learning simultaneously, such as gaits, face and shape. These multi-modality features can yield Re-ID models to pay attention on different views of a walking human and thus help investigate more discriminative representation; 5) to overcome the limitation of limited labelled data with unsupervised learning. Notably, the integration of generative models and constrastive learning can be used to supervise the feature learning through minimizing the difference between raw image and synthesized image; and 6) multi-task learning pipeline can be as another feasible solution. It combines multiple correlated tasks, such as pedestrian attribute analysis, action analysis and body reconstruction. This resembles to the idea of recently popular universal models that regularizes the stem model to learn more generalized representations.
视频监控换装行人重识别深度学习特征学习与表示生物特征特征解耦数据驱动学习
video surveillancecloth-changing person re-identificationdeep learningfeature learning and representationbiometricfeature decouplingdata-driven learning
Ahad M A R, Tan J K, Kim H and Ishikawa S. 2012. Motion history image: its variants and applications. Machine Vision and Applications, 23(2): 255-281 [DOI: 10.1007/s00138-010-0298-4http://dx.doi.org/10.1007/s00138-010-0298-4]
Ahmed E, Jones M and Marks T K. 2015. An improved deep learning architecture for person re-identification//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 3908-3916 [DOI: 10.1109/CVPR.2015.7299016http://dx.doi.org/10.1109/CVPR.2015.7299016]
Aich A, Zheng M, Karanam S, Chen T, Roy-Chowdhury A K and Wu Z Y. 2021. Spatio-temporal representation factorization for video-based person re-identification//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 152-162 [DOI: 10.1109/ICCV48922.2021.00022http://dx.doi.org/10.1109/ICCV48922.2021.00022]
Alldieck T, Magnor M, Xu W P, Theobalt C and Pons-Moll G. 2012. Detailed human avatars from monocular video//Proceedings of 2018 International Conference on 3D Vision. Verona, Italy: IEEE: 98-109 [DOI: 10.1109/3DV.2018.00022http://dx.doi.org/10.1109/3DV.2018.00022]
Barbosa I B, Cristani M, Del Bue A, Bazzani L and Murino V. 2012. Re-identification with RGB-D sensors//Proceedings of 2012 European Conference on Computer Vision. Florence, Italy: Springer: 433-442 [DOI: 10.1007/978-3-642-33863-2_43http://dx.doi.org/10.1007/978-3-642-33863-2_43]
Beckmann P and Spizzichino A. 1987. The scattering of electromagnetic waves from rough surfaces. Dedham, USA: Artech House, Inc.
Bhatnagar B L, Sminchisescu C, Theobalt C and Pons-Moll G. 2020. Combining implicit function learning and parametric models for 3D human reconstruction//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 311-329 [DOI: 10.1007/978-3-030-58536-5_19http://dx.doi.org/10.1007/978-3-030-58536-5_19]
Bogo F, Kanazawa A, Lassner C, Gehler P, Romero J and Black M J. 2016. Keep it SMPL: automatic estimation of 3D human pose and shape from a single image//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 561-578 [DOI: 10.1007/978-3-319-46454-1_34http://dx.doi.org/10.1007/978-3-319-46454-1_34]
Chao H Q, He Y W, Zhang J P and Feng J F. 2019. Gaitset: regarding gait as a set for cross-view gait recognition. Proceedings of 2019 AAAI Conference on Artificial Intelligence, 33(1): 8126-8133 [DOI: 10.1609/aaai.v33i01.33018126http://dx.doi.org/10.1609/aaai.v33i01.33018126]
Chen J X, Jiang X Y, Wang F D, Zhang J, Zheng F, Sun X and Zheng W S. 2021. Learning 3d shape feature for texture-insensitive person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 8142-8151 [DOI: 10.1109/CVPR46437.2021.00805http://dx.doi.org/10.1109/CVPR46437.2021.00805]
Chen J X, Zheng W S, Yang Q Z, Meng J K, Hong R C and Tian Q. 2022. Deep shape-aware person re-identification for overcoming moderate clothing changes. IEEE Transactions on Multimedia, 24: 4285-4300 [DOI: 10.1109/TMM.2021.3114539http://dx.doi.org/10.1109/TMM.2021.3114539]
Cheng D, Gong Y H, Zhou S P, Wang J J and Zheng N N. 2016. Person re-identification by multi-channel parts-based CNN with improved triplet loss function//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1335-1344 [DOI: 10.1109/CVPR.2016.149http://dx.doi.org/10.1109/CVPR.2016.149]
Eom C, Lee W, Lee G and Ham B. 2022. Disentangled representations for short-term and long-term person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12): 8975-8991 [DOI: 10.1109/TPAMI.2021.3122444http://dx.doi.org/10.1109/TPAMI.2021.3122444]
Fan C, Hou S H, Wang J L, Huang Y Z and Yu S Q. 2022. Learning gait representation from massive unlabelled walking videos: a benchmark [EB/OL]. [2022-06-28]. https://arxiv.org/pdf/2206.13964.pdfhttps://arxiv.org/pdf/2206.13964.pdf
Fan L J, Li T H, Fang R Y, Hristov R, Yuan Y and Katabi D. 2020. Learning longterm representations for person re-identification using radio signals//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seatle, USA: IEEE: 10696-10706 [DOI: 10.1109/CVPR42600.2020.01071http://dx.doi.org/10.1109/CVPR42600.2020.01071]
Güler R A, Neverova N and Kokkinos I. 2018. Densepose: dense human pose estimation in the wild//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7297-7306 [DOI: 10.1109/CVPR.2018.00762http://dx.doi.org/10.1109/CVPR.2018.00762]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2014. Generative adversarial nets//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press: 2672-2680
Gou M R, Zhang X K, Rates-Borras A, Asghari-Esfeden S, Camps O and Sznaier M. 2016. Person re-identification in appearance impaired scenarios//Proceedings of 2016 British Machine Vision Conference. New York, USA: BMVA Press: #48 [DOI: 10.5244/C.30.48http://dx.doi.org/10.5244/C.30.48]
Gray D and Tao H. 2008. Viewpoint invariant pedestrian recognition with an ensemble of localized features//Proceedings of the 10th European Conference on Computer Vision. Berlin, Germany, Springer: 262-275 [DOI: 10.1007/978-3-540-88682-2_21http://dx.doi.org/10.1007/978-3-540-88682-2_21]
Gretton A, Borgwardt K M, Rasch M J, Schölkopf B and Smola A. 2012. A kernel two-sample test. The Journal of Machine Learning Research, 13(1): 723-773 [DOI: 10.5555/2188385.2188410http://dx.doi.org/10.5555/2188385.2188410]
Gu X Q, Chang H, Ma B P, Bai S T, Shan S G and Chen X L. 2022. Clothes-changing person re-identification with RGB modality only//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 1050-1059 [DOI: 10.1109/CVPR52688.2022.00113http://dx.doi.org/10.1109/CVPR52688.2022.00113]
Han J and Bhanu B. 2006. Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2): 316-322 [DOI: 10.1109/TPAMI.2006.38http://dx.doi.org/10.1109/TPAMI.2006.38]
Haque A, Alahi A and Li F F. 2016. Recurrent attention models for depth-based person identification//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 1229-1238 [DOI: 10.1109/CVPR.2016.138http://dx.doi.org/10.1109/CVPR.2016.138]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
He K M, Gkioxari G, Dollár P and Girshick R. 2017. Mask R-CNN//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2980-2988 [DOI: 10.1109/ICCV.2017.322http://dx.doi.org/10.1109/ICCV.2017.322]
Henriques J F, Caseiro R, Martins P and Batista J. 2015. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3): 583-596 [DOI: 10.1109/TPAMI.2014.2345390http://dx.doi.org/10.1109/TPAMI.2014.2345390]
Hermans A, Beyer L and Leibe B. 2017. In defense of the triplet loss for person re-identification [EB/OL]. [2022-07-06]. https://arxiv.org/pdf/1703.07737.pdfhttps://arxiv.org/pdf/1703.07737.pdf
Hochreiter S and Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735-1780 [DOI: 10.1162/neco.1997.9.8.1735http://dx.doi.org/10.1162/neco.1997.9.8.1735]
Hofmann M and Rigoll G. 2012. Improved gait recognition using gradient histogram energy image//Proceedings of the 19th IEEE International Conference on Image Processing. Orlando, USA: IEEE: 1389-1392 [DOI: 10.1109/ICIP.2012.6467128http://dx.doi.org/10.1109/ICIP.2012.6467128]
Hong P X, Wu T, Wu A C, Han X T and Zheng W S. 2021. Fine-grained shape-appearance mutual learning for cloth-changing person re-identification//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 10508-10517 [DOI: 10.1109/CVPR46437.2021.01037http://dx.doi.org/10.1109/CVPR46437.2021.01037]
Hu L Q, Kan M N, Shan S G and Chen X L. 2022. Large pose face recognition with morphing field learning. Journal of Image and Graphics, 27(7): 2171-2184
胡蓝青, 阚美娜, 山世光, 陈熙霖. 2022. 面向大姿态人脸识别的正面化形变场学习. 中国图象图形学报, 27(7): 2171-2184 [DOI: 10.11834/jig.210011http://dx.doi.org/10.11834/jig.210011]
Huang Y, Wu Q, Xu J S and Zhong Y. 2019. Celebrities-ReID: a benchmark for clothes variation in long-term person re-identification//Proceedings of 2019 International Joint Conference on Neural Networks. Budapest, Hungary: IEEE: #8851957 [DOI: 10.1109/IJCNN.2019.8851957http://dx.doi.org/10.1109/IJCNN.2019.8851957]
Huang Y, Wu Q, Xu J S, Zhong Y and Zhang Z X. 2021. Clothing status awareness for long-term person re-identification//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 11875-11884 [DOI: 10.1109/ICCV48922.2021.01168http://dx.doi.org/10.1109/ICCV48922.2021.01168]
Huang Y, Xu J S, Wu Q, Zhong Y, Zhang P and Zhang Z X. 2020. Beyond scalar neuron: adopting vector-neuron capsules for long-term person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 30(10): 3459-3471 [DOI: 10.1109/TCSVT.2019.2948093http://dx.doi.org/10.1109/TCSVT.2019.2948093]
Isola P, Zhu J Y, Zhou T H and Efros A A. 2017. Image-to-image translation with conditional adversarial networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 5967-5976 [DOI: 10.1109/CVPR.2017.632http://dx.doi.org/10.1109/CVPR.2017.632]
Jaderberg M, Simonyan K, Zisserman A and Kavukcuoglu. 2015. Spatial transformer networks//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press: 2017-2025
Ji S W, Xu W, Yang M and Yu K. 2013. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1): 221-231 [DOI: 10.1109/TPAMI.2012.59http://dx.doi.org/10.1109/TPAMI.2012.59]
Jia X M, Zhong X, Ye M, Liu W X and Huang W X. 2022. Complementary data augmentation for cloth-changing person re-identification. IEEE Transactions on Image Processing, 31: 4227-4239 [DOI: 10.1109/TIP.2022.3183469http://dx.doi.org/10.1109/TIP.2022.3183469]
Jin X, He T Y, Zheng K C, Yin Z H, Shen X, Huang Z, Feng R Y, Huang J Q, Chen Z B and Hua X S. 2022. Cloth-changing person re-identification from a single image with gait prediction and regularization//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE: 14258-14267 [DOI: 10.1109/CVPR52688.2022.01388http://dx.doi.org/10.1109/CVPR52688.2022.01388]
Kolotouros N, Pavlakos G, Black M and Daniilidis K. 2019. Learning to reconstruct 3D human pose and shape via model-fitting in the loop//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Souel, Korea (South): IEEE: 2252-2261 [DOI: 10.1109/ICCV.2019.00234http://dx.doi.org/10.1109/ICCV.2019.00234]
Lee K W, Sankaran N, Mohan D, Davila K, Fedorishin D, Setlur S and Govindaraju V. 2021. Bayesian personalized-wardrobe model (BP-WM) for long-term person re-identification//Proceedings of the 17th IEEE International Conference on Advanced Video and Signal Based Surveillance. Washington, USA: IEEE: #9663830 [DOI: 10.1109/AVSS52988.2021.9663830http://dx.doi.org/10.1109/AVSS52988.2021.9663830]
Lee L and Grimson W E L. 2002. Gait analysis for recognition and classification//Proceedings of the 5th IEEE International Conference on Automatic Face Gesture Recognition. Washington, USA: IEEE: 155-162 [DOI: 10.1109/AFGR.2002.1004148http://dx.doi.org/10.1109/AFGR.2002.1004148]
Li M K, Xu P, Zhu X T and Guo J. 2022a. Unsupervised long-term person re-identification with clothes change [EB/OL]. [2022-02-08]. https://arxiv.org/pdf/2202.03087.pdfhttps://arxiv.org/pdf/2202.03087.pdf
Li P K, Xu Y Q, Wei C Y and Yang Y. 2022b. Self-correction for human parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6): 3260-3271 [DOI: 10.1109/TPAMI.2020.3048039http://dx.doi.org/10.1109/TPAMI.2020.3048039]
Li W, Zhao R, Xiao T and Wang X G. 2014. Deepreid: deep filter pairing neural network for person re-identification//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 152-159 [DOI: 10.1109/CVPR.2014.27http://dx.doi.org/10.1109/CVPR.2014.27]
Li W, Zhu X T and Gong S G. 2018. Harmonious attention network for person re-identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 2285-2294 [DOI: 10.1109/CVPR.2018.00243http://dx.doi.org/10.1109/CVPR.2018.00243]
Li Y J, Weng X S and Kitani K M. 2021. Learning shape representations for person re-identification under clothing change//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE: 2431-2440 [DOI: 10.1109/WACV48630.2021.00248http://dx.doi.org/10.1109/WACV48630.2021.00248]
Liao S C, Hu Y, Zhu X Y and Li S Z. 2015. Person re-identification by local maximal occurrence representation and metric learning//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 2197-2206 [DOI: 10.1109/CVPR.2015.7298832http://dx.doi.org/10.1109/CVPR.2015.7298832]
Lin K, Wang L J and Liu Z C. 2021. End-to-end human pose and mesh reconstruction with transformers//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 1954-1963 [DOI: 10.1109/CVPR46437.2021.00199http://dx.doi.org/10.1109/CVPR46437.2021.00199]
Liu Z Y and Sarkar S. 2004. Simplest representation yet for gait recognition: averaged silhouette//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE: 211-214 [DOI: 10.1109/ICPR.2004.1333741http://dx.doi.org/10.1109/ICPR.2004.1333741]
Loper M, Mahmood N, Romero J, Pons-Moll G and Black M J. 2015. SMPL: a skinned multi-person linear model. ACM Transactions on Graphics, 34(6): #248 [DOI: 10.1145/2816795.2818013http://dx.doi.org/10.1145/2816795.2818013]
Luo H, Jiang W, Fan X and Zhang S P. 2019. A survey on deep learning based person re-identification. Acta Automatica Sinica, 45(11): 2032-2049
罗浩, 姜伟, 范星, 张思朋. 2019. 基于深度学习的行人重识别研究进展. 自动化学报, 45(11): 2032-2049 [DOI: 10.16383/j.aas.c180154http://dx.doi.org/10.16383/j.aas.c180154]
Ma B P, Su Y and Jurie F. 2012. BiCov: a novel image representation for person re-identification and face verification//Proceedings of 2012 British Machine Vision Conference. Surrey, UK: BMVA Press: #57 [DOI: 10.5244/C.26.57http://dx.doi.org/10.5244/C.26.57]
Mirza M and Osindero S. 2014. Conditional generative adversarial nets [EB/OL]. [2022-07-06]. https://arxiv.org/pdf/1411.1784.pdfhttps://arxiv.org/pdf/1411.1784.pdf
Mnih V, Heess N and Graves A and Kavukcuoglu. 2014. Recurrent models of visual attention//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press: 2204-2212
Munaro M, Basso A, Fossati A, Van Gool L and Menegatti E. 2014a. 3D reconstruction of freely moving persons for re-identification with a depth sensor//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE: 4512-4519 [DOI: 10.1109/ICRA.2014.6907518http://dx.doi.org/10.1109/ICRA.2014.6907518]
Munaro M, Fossati A, Basso A, Menegatti E and Van Gool L. 2014b. One-shot person re-identification with a consumer depth camera//Gong S G, Cristani M, Yan S C and Loy C C, eds. Person Re-Identification. London: Springer: 161-181 [DOI: 10.1007/978-1-4471-6296-4_8http://dx.doi.org/10.1007/978-1-4471-6296-4_8]
Qian X L, Wang W X, Zhang L, Zhu F R, Fu Y W, Xiang T, Jiang Y G and Xue X Y. 2020. Long-term cloth-changing person re-identification//Proceedings of the 15th Asian Conference on Computer Vision. Kyoto, Japan: Springer: 71-88 [DOI: 10.1007/978-3-030-69535-4_5http://dx.doi.org/10.1007/978-3-030-69535-4_5]
Redmon J and Farhadi A. 2018. YOLOv3: an incremental improvement [EB/OL]. [2022-07-06]. https://arxiv.org/pdf/1804.02767.pdfhttps://arxiv.org/pdf/1804.02767.pdf
Reed S, Sohn K, Zhang Y T and Lee H. 2014. Learning to disentangle factors of variation with manifold interaction// Proceedings of the 31st International Conference on Machine Learning. Beijing, China: JMLR.org: 1431-1439
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/tpami.2016.2577031http://dx.doi.org/10.1109/tpami.2016.2577031]
Shi W, Liu H and Liu M Y. 2022. IRANet: identity-relevance aware representation for cloth-changing person re-identification. Image and Vision Computing, 117: #104335 [DOI: 10.1016/j.imavis.2021.104335http://dx.doi.org/10.1016/j.imavis.2021.104335]
Shu X J, Li G, Wang X, Ruan W J and Tian Q. 2021. Semantic-guided pixel sampling for cloth-changing person re-identification. IEEE Signal Processing Letters, 28: 1365-1369 [DOI: 10.1109/LSP.2021.3091924http://dx.doi.org/10.1109/LSP.2021.3091924]
Shu X J, Wang X, Zang X H, Zhang S L, Chen Y Q, Li G and Tian Q. 2022. Large-scale spatio-temporal person re-identification: algorithms and benchmark. IEEE Transactions on Circuits and Systems for Video Technology, 32(7): 4390-4403 [DOI: 10.1109/TCSVT.2021.3128214http://dx.doi.org/10.1109/TCSVT.2021.3128214]
Sun Y F, Zheng L, Yang Y, Tian Q and Wang S J. 2018. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 501-518 [DOI: 10.1007/978-3-030-01225-0_30http://dx.doi.org/10.1007/978-3-030-01225-0_30]
Tan Z C, Yang Y, Wan J, Hang H Y, Guo G and Li S Z. 2019. Attention-based pedestrian attribute analysis. IEEE Transactions on Image Processing, 28(12): 6126-6140 [DOI: 10.1109/TIP.2019.2919199http://dx.doi.org/10.1109/TIP.2019.2919199]
Tang X, Du D K, He Z Q and Liu J T. 2018. PyramidBox: a context-assisted single shot face detector//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 812-828 [DOI: 10.1007/978-3-030-01240-3_49http://dx.doi.org/10.1007/978-3-030-01240-3_49]
Veres G V, Gordon L, Carter J N and Nixon M S. 2004. What image information is important in silhouette-based gait recognition?//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE: 776-782 [DOI: 10.1109/CVPR.2004.1315243http://dx.doi.org/10.1109/CVPR.2004.1315243]
Wan F B, Wu Y, Qian X L, Chen Y X and Fu Y W. 2020. When person re-identification meets changing clothes//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE: 3620-3628 [DOI: 10.1109/CVPRW50498.2020.00423http://dx.doi.org/10.1109/CVPRW50498.2020.00423]
Wang H and Schmid C. 2013. Action recognition with improved trajectories//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE: 3551-3558 [DOI: 10.1109/ICCV.2013.441http://dx.doi.org/10.1109/ICCV.2013.441]
Wang K, Ma Z, Chen S Y, Yang J N, Zhou K K and Li T. 2020. A benchmark for clothes variation in person re‐identification. International Journal of Intelligent Systems, 35(12): 1881-1898 [DOI: 10.1002/int.22276http://dx.doi.org/10.1002/int.22276]
Wang K J and Hou B B. 2007. A survey of gait recognition. Journal of Image and Graphics, 12(7): 1152-1160
王科俊, 侯本博. 2007. 步态识别综述. 中国图象图形学报, 12(7): 1152-1160 [DOI: 10.11834/jig.20070702http://dx.doi.org/10.11834/jig.20070702]
Wang L, Tan T N, Ning H Z and Hu W M. 2003. Silhouette analysis-based gait recognition for human identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12): 1505-1518 [DOI: 10.1109/TPAMI.2003.1251144http://dx.doi.org/10.1109/TPAMI.2003.1251144]
Wang X and Qi G. 2022a. Contrastive learning with stronger augmentations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022: 1-12 [DOI: 10.1109/TPAMI.2022.3203630http://dx.doi.org/10.1109/TPAMI.2022.3203630]
Wang X, Zheng S F, Yang R, Zheng A H, Chen Z, Tang J and Luo B. 2022b. Pedestrian attribute recognition: a survey. Pattern Recognition, 121: #108220 [DOI: 10.1016/j.patcog.2021.108220http://dx.doi.org/10.1016/j.patcog.2021.108220]
Wen Y D, Zhang K P, Li Z F and Qiao Y. 2016. A discriminative feature learning approach for deep face recognition//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 499-515 [DOI: 10.1007/978-3-319-46478-7_31http://dx.doi.org/10.1007/978-3-319-46478-7_31]
Xie S N and Tu Z W. 2015. Holistically-nested edge detection//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1395-1403 [DOI: 10.1109/ICCV.2015.164http://dx.doi.org/10.1109/ICCV.2015.164]
Xu P and Zhu X T. 2022. Deepchange: a large long-term person re-identification benchmark with clothes change [EB/OL]. [2022-05-02]. https://arxiv.org/pdf/2105.14685.pdfhttps://arxiv.org/pdf/2105.14685.pdf
Xu W L, Liu H, Shi W, Miao Z L, Lu Z S and Chen F H. 2021. Adversarial feature disentanglement for long-term person re-identification//Proceedings of the 13th International Joint Conference on Artificial Intelligence. Montreal, Canada: ijcai.org: 1201-1207 [DOI: 10.24963/ijcai.2021/166http://dx.doi.org/10.24963/ijcai.2021/166]
Xue J, Meng Z B, Katipally K, Wang H B and Van Zon K. 2018. Clothing change aware person identification//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, USA: IEEE: 2193-2201 [DOI: 10.1109/CVPRW.2018.00285http://dx.doi.org/10.1109/CVPRW.2018.00285]
Yang Q Z, Wu A C and Zheng W S. 2021. Person re-identification by contour sketch under moderate clothing change. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(6): 2029-2046 [DOI: 10.1109/TPAMI.2019.2960509http://dx.doi.org/10.1109/TPAMI.2019.2960509]
Yao Z, Gong X, Chen R, Lu Q and Luo B. 2021. Research progress, challenge and prospect of local features for person re-identification. Acta Automatica Sinica, 47(12): 2742-2760
姚足, 龚勋, 陈锐, 卢奇, 罗彬. 2021. 面向行人重识别的局部特征研究进展、挑战与展望. 自动化学报, 47(12): 2742-2760 [DOI: 10.16383/j.aas.c190821http://dx.doi.org/10.16383/j.aas.c190821]
Ye M, Shen J B, Lin G J, Xiang T, Shao L and Hoi S C. 2022. Deep learning for person re-identification: a survey and outlook. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6): 2872-2893 [DOI: 10.1109/TPAMI.2021.3054775http://dx.doi.org/10.1109/TPAMI.2021.3054775]
Yu S J, Li S H, Chen D P, Zhao R, Yan J J and Qiao Y. 2020. COCAS: a large-scale clothes changing person dataset for re-Identification// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3397-3406 [DOI: 10.1109/CVPR42600.2020.00346http://dx.doi.org/10.1109/CVPR42600.2020.00346]
Yu Z X, Zhao Y L, Hong B, Jin Z M, Huang J Q, Cai D and Hua X S. 2021. Apparel-invariant feature learning for person re-identification. IEEE Transactions on Multimedia, 24: 4482-4492 [DOI: 10.1109/TMM.2021.3119133http://dx.doi.org/10.1109/TMM.2021.3119133]
Zajdel W, Zivkovic Z and Krose B J A. 2005. Keeping track of humans: Have I seen this person before?//Proceedings of 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE: 2081-2086 [DOI: 10.1109/ROBOT.2005.1570420http://dx.doi.org/10.1109/ROBOT.2005.1570420]
Zhang H Y and Bao W J. 2022. The cross-view gait recognition analysis based on generative adversarial networks derived of self-attention mechanism. Journal of Image and Graphics, 27(4): 1097-1109
张红颖, 包雯静. 2022. 融合自注意力机制的生成对抗网络跨视角步态识别. 中国图象图形学报, 27(4): 1097-1109[DOI: 10.11834/jig.2000482http://dx.doi.org/10.11834/jig.2000482]
Zhang K P, Zhang Z P, Li Z F and Qiao Y. 2016. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10): 1499-1503 [DOI: 10.1109/LSP.2016.2603342http://dx.doi.org/10.1109/LSP.2016.2603342]
Zhang P, Wu Q, Xu J S and Zhang J. 2018. Long-term person re-identification using true motion from videos//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, USA: IEEE: 494-502 [DOI: 10.1109/WACV.2018.00060http://dx.doi.org/10.1109/WACV.2018.00060]
Zhang P, Xu J S, Wu Q, Huang Y and Ben X. 2021. Learning spatial-temporal representations over walking tracklet for long-term person re-Identification in the wild. IEEE Transactions on Multimedia, 23: 3562-3576 [DOI: 10.1109/TMM.2020.3028461http://dx.doi.org/10.1109/TMM.2020.3028461]
Zheng L, Shen L Y, Tian L, Wang S J, Wang J D and Tian Q. 2015. Scalable person re-identification: a benchmark//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1116-1124 [DOI: 10.1109/ICCV.2015.133http://dx.doi.org/10.1109/ICCV.2015.133]
Zheng L, Zhang H H, Sun S Y, Chandraker M, Yang Y and Tian Q. 2017a. Person re-identification in the wild//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 1367-1376 [DOI: 10.1109/CVPR.2017.357http://dx.doi.org/10.1109/CVPR.2017.357]
Zheng Z D, Yang X D, Yu Z D, Zheng L, Yang Y and Kautz J. 2019. Joint discriminative and generative learning for person re-identification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 2133-2142 [DOI: 10.1109/CVPR.2019.00224http://dx.doi.org/10.1109/CVPR.2019.00224]
Zheng Z D, Zheng L and Yang Y. 2017b. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 3774-3782 [DOI: 10.1109/ICCV.2017.405http://dx.doi.org/10.1109/ICCV.2017.405]
Zheng Z D, Zheng N G and Yang Y. 2021. Parameter-efficient person re-identification in the 3D space [EB/OL]. [2022-07-06]. https://arxiv.org/pdf/2006.04569.pdfhttps://arxiv.org/pdf/2006.04569.pdf
Zhu J Y, Park T, Isola P and Efros A A. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2242-2251 [DOI: 10.1109/ICCV.2017.244http://dx.doi.org/10.1109/ICCV.2017.244]
相关作者
相关机构