计算成像前沿进展
Recent progress in computational imaging
- 2022年27卷第6期 页码:1840-1876
纸质出版日期: 2022-06-16 ,
录用日期: 2022-03-30
DOI: 10.11834/jig.220061
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-06-16 ,
录用日期: 2022-03-30
移动端阅览
顿雄, 付强, 李浩天, 孙天成, 王建, 孙启霖. 计算成像前沿进展[J]. 中国图象图形学报, 2022,27(6):1840-1876.
Xiong Dun, Qiang Fu, Haotian Li, Tiancheng Sun, Jian Wang, Qilin Sun. Recent progress in computational imaging[J]. Journal of Image and Graphics, 2022,27(6):1840-1876.
计算成像是融合光学硬件、图像传感器和算法软件于一体的新一代成像技术,突破了传统成像技术信息获取深度(高动态范围、低照度)、广度(光谱、光场、3维)的瓶颈。本文以计算成像的新设计方法、新算法和应用场景为主线,通过综合国内外文献和相关报道来梳理该领域的主要进展。从端到端光学算法联合设计、高动态范围成像、光场成像、光谱成像、无透镜成像、低照度成像、3维成像和计算摄影等研究方向,重点论述计算成像领域的发展现状、前沿动态、热点问题和趋势。端到端光学算法联合设计包括了可微的衍射光学模型、折射光学模型以及基于可微光线追踪的复杂透镜的模型。高动态范围光学成像从原理到光学调制、多次曝光、多传感器融合以及算法等层面阐述不同方法的优点与缺点以及产业应用。光场成像阐述了基于光场的3维重建技术在超分辨、深度估计和3维尺寸测量等方面国内外的研究进展和产业应用,以及光场在粒子测速及3维火焰重构领域的研究进展。光谱成像阐述了当前多通道滤光片,基于深度学习和波长响应曲线求逆问题,以及衍射光栅、多路复用和超表面等优化实现高光谱的获取。无透镜成像包括平面光学元件的设计和优化,以及图像的高质量重建算法。低照度成像包括低照度情况下基于单帧、多帧、闪光灯和新型传感器的图像噪声去除等。3维成像主要包括针对基于主动方法的深度获取的困难的最新的解决方案,这些困难包括强的环境光干扰(如太阳光)、强的非直接光干扰(如凹面的互反射、雾天的散射)等。计算摄影学是计算成像的一个分支学科,从传统摄影学发展而来,更侧重于使用数字计算的方式进行图像拍摄。在光学镜片的物理尺寸、图像质量受限的情况下,如何使用合理的计算资源,绘制出用户最满意的图像是其主要研究和应用方向。
Computational imaging breaks the limitation of traditional digital imaging to acquire the information deeper (e.g.
high dynamic range imaging and low light imaging) and broader (e.g.
spectrum
light field
and 3D imaging). Driven by industry
especially mobile phone manufacturer medical and automotive
computational imaging has become ubiquitous in our daily lives and plays a critical role in accelerating the revolution of industry. It is a new imaging technique that combines illumination
optics
image sensors
and post-processing algorithms. This review takes the latest methods
algorithms
and applications as the mainline and reports the state-of-the-art progress by jointly analyzing the articles and reports at home and aboard. This review covers the topics of end-to-end optics and algorithms design
high dynamic range imaging
light-field imaging
spectrum imaging
lensless imaging
low light imaging
3D imaging
and computational photography. It focuses on the development status
frontier dynamics
hot issues
and trends in each computational imaging topic. The camera systems have long-term been designed in separated steps: experience-driven lens design followed by costume designed post-processing. Such a general-propose approach achieved success in the past but left the question open for specific tasks and the best compromise among optics
post-processing
and costs. Recent advances aim to build the gap in an end-to-end fashion. To realize the joint optics and algorithms designing
different differentiable optics models have been realized step by step
including the differentiable diffractive optics model
the differentiable refractive optics
and the differentiable complex lens model based on differentiable ray-tracing. Beyond the goal of capturing a sharp and clear image on the sensor
it offers enormous design flexibility that can not only find a compromise between optics and post-processing
but also open up the design space for optical encoding. The end-to-end camera design offers competitive alternatives to modern optics and camera system design. High dynamic range (HDR) imaging has become a commodity imaging technique as evidenced by its applications across many domains
including mobile consumer photography
robotics
drones
surveillance
content capture for display
driver assistance systems
and autonomous driving. This review analyzes the advantages
disadvantages
and industrial applications through analyzing a series of HDR imaging techniques
including optical modulation
multi-exposure
multi-sensor fusion
and post-processing algorithms. Conventional cameras do not record most of the information about the light distribution entering from the world. Light-field imaging records the full 4D light field measuring the amount of light traveling along each ray that intersects the sensor. This review reports how the light field is applied to super-resolution
depth estimation
3D measurement
and so on and analyzes the state-of-the-art method and industrial application. It also reports the research progress and industrial application in particle image velocimetry and 3D flame imaging. Spectral imaging technique has been used widely and successfully in resource assessment
environmental monitoring
disaster warning
and other remote sensing domains. Spectral image data can be described as a three-dimensional cube. This imaging technique involves capturing the spectrum for each pixel in an image; As a result
the digital images produce detailed characterizations of the scene or object. This review explains multiple methods to acquire spectrum volume data
including the current multi-channel filter
solving the wavelength response curve inversely based on deep learning
diffraction grating
multiplexing
metasurface
and other optimizations to achieve hyper-spectrum acquisition. Lensless imaging eliminates the need for geometric isomorphism between a scene and an image while constructing compact and lightweight imaging systems. It has been applied to bright-field imaging
cytometry
holography
phase recovery
fluorescence
and the quantitative sensing of specific sample properties derived from such images. However
the low reconstructed signal-to-noise ratio makes it an unsolved challenging inverse problem. This review reports the recent progress in designing and optimizing planar optical elements and high-quality image reconstruction algorithms combined with specific applications. Imaging under a low light illumination will be affected by Poisson noise
which becomes increasingly strong as the power of the light source decreases. In the meantime
a series of visual degradation like decreased visibility
intensive noise
and biased color will occur. This review analyzes the challenges of low light imaging and conclude the corresponding solutions
including the noise removal methods of single/multi-frame
flash
and new sensors to deal with the conditions when the sensor exposure to low light. Shape acquisition of three-dimensional objects plays a vital role for various real-world applications
including automotive
machine vision
reverse engineering
industrial inspections
and medical imaging. This review reports the latest active solutions which have been widely applied
including structured light
direct time-of-flight
and indirect time-of-flight. It also notes the difficulties like ambient light (e.g.
sunlight)
indirect inference (e.g.
the mutual reflection of the concave surface
scattering of foggy) of depth acquisition based on those active methods. The use of computation methods in photography refers to digital image capture and processing techniques that use digital calculation instead of optical processes. It can not only improve the camera ability but also add more new features that were not possible at all with traditional film-based photography. Computational photography is an essential branch of computation imaging developed from traditional photography — however
computational photography emphasizes taking a photograph digitally. Limited by the physical size and image quality
computational photography focuses on reasonably arranging the computational resources and showing the high-quality image that pleasures the customer's feeling. As 90 percent of the information transmitted to our human brain is visual
the imaging system plays a vital role for most future intelligence systems. Computational imaging drastically releases human information acquisition ability in no matter depth or scope. For new techniques like metaverse
computational imaging offers a general input tool to collect multi-dimensional visual information for rebuilding the virtual world. This review covers key technological developments
applications
insights
and challenges over the recent years and examines current trends to predict future capabilities.
端到端成像高动态范围成像光场成像光谱成像无透镜成像低照度成像主动3维成像计算摄影
end-to-end camera designhigh dynamic range imaginglight-field imagingspectral imaginglensless imaginglow light imagingactive 3D imagingcomputational photography
Abdelhamed A, Lin S and Brown M S. 2018. A high-quality denoising dataset for smartphone cameras//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 1692-1700[DOI: 10.1109/CVPR.2018.00182http://dx.doi.org/10.1109/CVPR.2018.00182]
Achar S, Bartels J R, Whittaker W L R, Kutulakos K N and Narasimhan S G. 2017. Epipolar time-of-flight imaging. ACM Transactions on Graphics, 36(4): #37[DOI: 10.1145/3072959.3073686]
Adelson E H and Wang J Y A. 1992. Single lens stereo with a plenoptic camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 99-106[DOI: 10.1109/34.121783]
Aggarwal M and Ahuja N. 2001. Split aperture imaging for high dynamic range//Proceedings of 2001 IEEE International Conference on Computer Vision. Vancouver, Canada: IEEE: #10[DOI: 10.1109/ICCV.2001.937583http://dx.doi.org/10.1109/ICCV.2001.937583]
Aggarwal M and Ahuja N. 2004. Split aperture imaging for high dynamic range. International Journal of Computer Vision, 58(1): 7-17[DOI: 10.1023/B:VISI.0000016144.56397.1a]
Aittala M and Durand F. 2018. Burst image deblurring using permutation invariant convolutional neural networks//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 748-764[DOI: 10.1007/978-3-030-01237-3_45http://dx.doi.org/10.1007/978-3-030-01237-3_45]
Akyüz A O, Fleming R, Riecke B E, Reinhard E and Bülthoff H H. 2007. Do HDR displays support LDR content? A psychophysical evaluation. ACM Transactions on Graphics, 26(3): #38[DOI: 10.1145/1276377.1276425]
Alain M and Smolic A. 2017. Light field denoising by sparse 5D transform domain collaborative filtering//Proceedings of the 19th International Workshop on Multimedia Signal Processing. Luton, UK: IEEE: 1-6[DOI: 10.1109/MMSP.2017.8122232http://dx.doi.org/10.1109/MMSP.2017.8122232]
Alain M and Smolic A. 2018. Light field super-resolution via LFBM5D sparse coding//Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE: 2501-2505[DOI: 10.1109/ICIP.2018.8451162http://dx.doi.org/10.1109/ICIP.2018.8451162]
Alghamdi M, Fu Q, Thabet A and Heidrich W. 2021. Transfer deep learning for reconfigurable snapshot HDR imaging using coded masks. Computer Graphics Forum, 40(6): 90-103[DOI: 10.1111/cgf.14205]
Alperovich A, Johannsen O, Strecke M and Goldluecke B. 2018. Light field intrinsics with a deep encoder-decoder network//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 9145-9154[DOI: 10.1109/CVPR.2018.00953http://dx.doi.org/10.1109/CVPR.2018.00953]
Antipa N, Kuo G, Heckel R, Mildenhall B, Bostan E, Ng R and Waller L. 2018. DiffuserCam: lensless single-exposure 3D imaging. Optica, 5(1): 1-9[DOI: 10.1364/optica.5.000001]
Asatsuma T, Sakano Y, Iida S, Takami M, Yoshiba I, Ohba N, Mizuno H, Oka T, Yamaguchi K, Suzuki A and Suzuki K. 2019. Sub-pixel architecture of CMOS image sensor achieving over 120 db dynamic range with less motion artifact characteristics//Proceedings of 2019 International Image Sensor Workshop, [s. l.]: [s. n.]: 250-253
Asif M S, Ayremlou A, Sankaranarayanan A, Veeraraghavan A and Baraniuk R G. 2017. FlatCam: thin, lensless cameras using coded aperture and computation. Transactions on Computational Imaging, 3(3): 384-397[DOI: 10.1109/tci.2016.2593662]
Baek S H, Ikoma H, Jeon D S, Li Y Q, Heidrich W, Wetzstein G and Kim M H. 2021. Single-shot hyperspectral-depth imaging with learned diffractive optics//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 2631-2640[DOI: 10.1109/ICCV48922.2021.00265http://dx.doi.org/10.1109/ICCV48922.2021.00265]
Baek S H, Kim I, Gutierrez D and Kim M H. 2017. Compact single-shot hyperspectral imaging using a prism. ACM Transactions on Graphics, 36(6): #217[DOI: 10.1145/3130800.3130896]
Banerji S, Meem M, Majumder A, Vasquez F G, Sensale-Rodriguez B and Menon R. 2019. Imaging with flat optics: metalenses or diffractive lenses? Optica, 6(6): 805-810[DOI: 10.1364/optica.6.000805]
Banterle F, Artusi A, Debattista K and Chalmers A. 2011. Advanced High Dynamic Range Imaging: Theory and Practice. Natick: A K Peters
Banterle F, Ledda P, Debattista K and Chalmers A. 2006. Inverse tone mapping//Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia. Kuala, Indonesia: ACM: 349-356[DOI: 10.1145/1174429.1174489http://dx.doi.org/10.1145/1174429.1174489]
Bao J and Bawendi M G. 2015. A colloidal quantum dot spectrometer. Nature, 523(7558): 67-70[DOI: 10.1038/nature14576]
Barron J T. 2015. Convolutional color constancy//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 379-387[DOI: 10.1109/ICCV.2015.51http://dx.doi.org/10.1109/ICCV.2015.51]
Barron J T and Tsai Y T. 2017. Fast fourier color constancy//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 886-894[DOI: 10.1109/CVPR.2017.735http://dx.doi.org/10.1109/CVPR.2017.735]
Bartels J R, Wang J, Whittaker W and Narasimhan S G. 2019. Agile depth sensing using triangulation light curtains//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea(South): IEEE: 7899-7907[DOI: 10.1109/ICCV.2019.00799http://dx.doi.org/10.1109/ICCV.2019.00799]
Bodkin A, Sheinis A, Norton A, Daly J, Beaven S and Weinheimer J. 2009. Snapshot hyperspectral imaging: the hyperpixel array camera//Proceedings of SPIE 7334, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV. Orlando, USA: SPIE: #818929[DOI: 10.1117/12.818929http://dx.doi.org/10.1117/12.818929]
Bok Y, Jeon H G and Kweon I S. 2017. Geometric calibration of micro-lens-based light field cameras using line features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2): 287-300[DOI: 10.1109/TPAMI.2016.2541145]
Boominathan V, Adams J K, Asif M S, Avants B W, Robinson J T, Baraniuk R G, Sankaranarayanan A C and Veeraraghavan A. 2016. Lensless imaging: a computational renaissance. IEEE Signal Processing Magazine, 33(5): 23-35[DOI: 10.1109/msp.2016.2581921]
Boominathan V, Adams J K, Robinson J T and Veeraraghavan A. 2020. PhlatCam: designed phase-mask based thin lensless camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7): 1618-1629[DOI: 10.1109/tpami.2020.2987489]
Boominathan V, Robinson J T, Waller L and Veeraraghavan A. 2022. Recent advances in lensless imaging. Optica, 9(1): 1-16[DOI: 10.1364/optica.431361]
Brady D J and Gehm M E. 2006. Compressive imaging spectrometers using coded apertures//Proceedings of SPIE 6246, Visual Information Processing XV. Orlando, USA: SPIE: #667605[DOI: 10.1117/12.667605http://dx.doi.org/10.1117/12.667605]
Brainard D H and Freeman W T. 1997. Bayesian color constancy. Journal of the Optical Society of America A, 14(7): 1393-1411[DOI: 10.1364/josaa.14.001393]
Brooks T, Mildenhall B, Xue T F, Chen J W, Sharlet D and Barron J T. 2019. Unprocessing images for learned raw denoising//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 11028-11037[DOI: 10.1109/CVPR.2019.01129http://dx.doi.org/10.1109/CVPR.2019.01129]
Buchsbaum G. 1980. A spatial processor model for object colour perception. Journal of the Franklin Institute, 310(1): 1-26[DOI: 10.1016/0016-0032(80)90058-7]
Cadusch J J, Meng J J, Craig B and Crozier K B. 2019. Silicon microspectrometer chip based on nanostructured fishnet photodetectorswith tailored responsivities and machine learning. Optica, 6(9): 1171-1177[DOI: 10.1364/optica.6.001171]
Cai Z W, Chen J W, Pedrini G, Osten W, Liu X L and Peng X. 2020. Lensless light-field imaging through diffuser encoding. Light: Science and Applications, 9(1): #143[DOI: 10.1038/s41377-020-00380-x]
Cao X, Lai K, Yanushkevich S N and Smith M R. 2020. Adversarial and adaptive tone mapping operator for high dynamic range images//Proceedings of 2020 IEEE Symposium Series on Computational Intelligence (SSCI). Canberra, Australia: IEEE: 1814-1821[DOI: 10.1109/SSCI47803.2020.9308535http://dx.doi.org/10.1109/SSCI47803.2020.9308535]
Cao X, Tong X, Dai Q H and Lin S. 2011. High resolution multispectral video capture with a hybrid camera system//Proceedings of the CVPR 2011. Colorado Springs, USA: IEEE: 297-304[DOI: 10.1109/CVPR.2011.5995418http://dx.doi.org/10.1109/CVPR.2011.5995418]
Cao X, Yue T, Lin X, Lin S, Yuan X, Dai Q H, Carin L and Brady D J. 2016. Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world. IEEE Signal Processing Magazine, 33(5): 95-108[DOI: 10.1109/msp.2016.2582378]
Capasso F. 2018. The future and promise of flat optics: a personal perspective. Nanophotonics, 7(6): 953-957[DOI: 10.1515/nanoph-2018-0004]
Carlsohn M F, Kemmling A, Petersen A and Wietzke L. 2016.3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry//Proceedings of SPIE 9897, Real-Time Image and Video Processing. Brussels, Belgium: SPIE: #2220417[DOI: 10.1117/12.2220417http://dx.doi.org/10.1117/12.2220417]
Chang M, Feng H J, Xu Z H and Li Q. 2018. Exposure correction and detail enhancement for single LDR image. Acta Photonica Sinica, 47(4): #0410003
常猛, 冯华君, 徐之海, 李奇. 2018. 单张LDR图像的曝光校正与细节增强. 光子学报, 47 (4): #0410003[DOI: 10.3788/gzxb20184704.0410003]
Chang J L, Sitzmann V, Dun X, Heidrich W and Wetzstein G. 2018. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Scientific Reports, 8(1): #12324[DOI: 10.1038/s41598-018-30619-y]
Chang J L and Wetzstein G. 2019. Deep optics for monocular depth estimation and 3D object detection//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea(South): IEEE: 10192-10201[DOI: 10.1109/ICCV.2019.01029http://dx.doi.org/10.1109/ICCV.2019.01029]
Chen B and Pan B. 2018. Full-field surface 3D shape and displacement measurements using an unfocused plenoptic camera. Experimental Mechanics, 58(5): 831-845[DOI: 10.1007/s11340-018-0383-6]
Chen C, Chen Q F, Do M and Koltun V. 2019. Seeing motion in the dark//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea(South): IEEE: 3184-3193[DOI: 10.1109/ICCV.2019.00328http://dx.doi.org/10.1109/ICCV.2019.00328]
Chen C, Chen Q F, Xu J and Koltun V. 2018a. Learning to see in the dark//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 3291-3300[DOI: 10.1109/CVPR.2018.00347http://dx.doi.org/10.1109/CVPR.2018.00347]
Chen J W, Paris S and Durand F. 2007a. Real-time edge-aware image processing with the bilateral grid. ACM Transactions on Graphics, 26(3): #103[DOI: 10.1145/1276377.1276506]
Chen K, Feng H J, Xu Z H, Li Q and Chen Y T. 2015. Fast detail-preserving exposure fusion. Journal of Zhejiang University (Engineering Science), 49(6): 1048-1054
陈阔, 冯华君, 徐之海, 徐之海, 李奇, 陈跃庭. 2015. 细节保持的快速曝光融合. 浙江大学学报(工学版), 49(6): 1048-1054[DOI: 10.3785/j.issn.1008-973X.2015.06.007http://dx.doi.org/10.3785/j.issn.1008-973X.2015.06.007]
Chen T B, Lensch H P A, Fuchs C and Seidel HP. 2007b. Polarization and phase-shifting for 3D scanning of translucent objects//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE: 1-8[DOI: 10.1109/CVPR.2007.383209http://dx.doi.org/10.1109/CVPR.2007.383209]
Chen T B, Seidel H P and Lensch H P A. 2008. Modulated phase-shifting for 3D scanning//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE: 1-8[DOI: 10.1109/CVPR.2008.4587836http://dx.doi.org/10.1109/CVPR.2008.4587836]
Chen W and Wang Q. 2020. Reconstruction method of HDR image based on convolutional neural network for LDR image. Packaging Engineering, 41(5): 228-234
陈文, 王强. 2020. 基于卷积神经网络的LDR图像重建HDR图像的方法研究. 包装工程, 41(5): 228-234[DOI: 10.19554/j.cnki.1001-3563.2020.05.033]
Chen X Y, Liu Y H, Zhang Z W, Qiao Y and Dong C. 2021. HDRUNet: single image HDR reconstruction with denoising and dequantization//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 354-363[DOI: 10.1109/CVPRW53098.2021.00045http://dx.doi.org/10.1109/CVPRW53098.2021.00045]
Chen Y Y, Jiang G Y, Shao H, Jiang H and Yu M. 2018. Noise suppression algorithm in the process of high dynamic range image fusion. Opto-Electronic Engineering, 45(7): #180083
陈晔曜, 蒋刚毅, 邵华, 姜浩, 郁梅. 2018. 高动态范围图像融合过程中的噪声抑制算法. 光电工程, 45(7): #180083[DOI: 10.12086/oee.2018.180083]
Cheng D L, Prasad D K and Brown M S. 2014. Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. Journal of the Optical Society of America A, 31(5): 1049-1058[DOI: 10.1364/josaa.31.001049]
Cheng Y, Cao J, Zhang Y K and Hao Q. 2019b. Review of state-of-the-art artificial compound eye imaging systems. Bioinspiration and Biomimetics, 14(3): #031002[DOI: 10.1088/1748-3190/aaffb5]
Cheng Z, Xiong Z W, Chen C and Liu D. 2019a. Light field super-resolution: a benchmark//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: IEEE: 1804-1813[DOI: 10.1109/CVPRW.2019.00231http://dx.doi.org/10.1109/CVPRW.2019.00231]
Choi S, Cho J, Song W, Choe J, Yoo J and Sohn K. 2020. Pyramid inter-attention for high dynamic range imaging. Sensors, 20(18): #5102[DOI: https://doi.org/10.3390/s20185102]
Content R, Blake S, Dunlop C, Nandi D, Sharples R, Talbot G, Shanks T, Donoghue D, Galiatsatos N and Luke P. 2013. New microslice technology for hyperspectral imaging. Remote Sensing, 5(3): 1204-1219[DOI: 10.3390/rs5031204]
Couture V, Martin N and Roy S. 2011. Unstructured light scanning to overcome interreflections//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE: 1895-1902[DOI: 10.1109/ICCV.2011.6126458http://dx.doi.org/10.1109/ICCV.2011.6126458]
Craig B,Shrestha V R, Meng J J, Cadusch J J and Crozier K B. 2018. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces. Optics Letters, 43(18): 4481-4484[DOI: 10.1364/OL.43.004481]
Dansereau D G, Pizarro O and Williams S B. 2013. Decoding, calibration and rectification for lenselet-based plenoptic cameras//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 1027-1034[DOI: 10.1109/CVPR.2013.137http://dx.doi.org/10.1109/CVPR.2013.137]
Debevec P E and Malik J. 1997. Recovering high dynamic range radiance maps from photographs//Proceedings of the 24th annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97). USA: ACM: 369-378[DOI: https://doi.org/10.1145/258734.258884https://doi.org/10.1145/258734.258884]
Debevec P E and Malik J. 2008. Recovering high dynamic range radiance maps from photographs//Proceedings of the ACM SIGGRAPH 2008 Classes. Los Angeles, USA: ACM: #31[DOI: 10.1145/1401132.1401174http://dx.doi.org/10.1145/1401132.1401174]
DeWeert M J and Farm B P. 2015. Lensless coded-aperture imaging with separable Doubly-Toeplitz masks. Optical Engineering, 54(2): #023102[DOI: 10.1117/1.oe.54.2.023102]
Ding J F, Li H T, Ma H X, Shi S X and New T H. 2019. A novel light field imaging based 3D geometry measurement technique for turbomachinery blades. Measurement Science and Technology, 30(11): #115901[DOI: 10.1088/1361-6501/ab310b]
Ding J F, Lim H D, Sheikh S, Xu S M, Shi S X and New T H. 2018. Volumetric measurement of a supersonic jet with single-camera light-field PIV//The 19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. Lisbon, Porugal: [s. n.]
Drago F, Myszkowski K, Annen T and Chiba N. 2003. Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum, 22(3): 419-426[DOI: 10.1111/1467-8659.00689]
Du L, Sun H Y, Wang S, Gao Y X and Qi Y Y.2017. High dynamic range image fusion algorithm for moving targets. Acta Optica Sinica, 37(4): 101-109
都琳, 孙华燕, 王帅, 高宇轩, 齐莹莹. 2017. 针对动态目标的高动态范围图像融合算法研究. 光学学报, 37(4): 101-109[DOI: 10.3788/AOS201737.0410001]
Dun X, Ikoma H, Wetzstein G, Wang Z, Cheng X and Peng Y. 2020. Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging. Optica, 7(8): 913-922[DOI: https://doi.org/10.1364/OPTICA.394413]
Durand F and Dorsey J. 2000. Interactive tone mapping//Proceedings of the Eurographics Workshop on Rendering Techniques. Czech Republic: Springer: 219-230[DOI: 10.1007/978-3-7091-6303-0_20http://dx.doi.org/10.1007/978-3-7091-6303-0_20]
Durand F and Dorsey J. 2002. Fast bilateral filtering for the display of high-dynamic-range images//Proceedings of the 29th annual Conference on Computer Graphics and Interactive Techniques. San Antonio, USA: ACM: 257-266[DOI: 10.1145/566570.566574http://dx.doi.org/10.1145/566570.566574]
Dwight J G and Tkaczyk T S. 2017. Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy. Biomedical Optics Express, 8(3): 1950-1964[DOI: 10.1364/boe.8.001950]
Egiazarian K and Katkovnik V. 2015. Single image super-resolution via BM3D sparse coding//Proceedings of the 23rd European Signal Processing Conference. Nice, France: IEEE: 2849-2853[DOI: 10.1109/EUSIPCO.2015.7362905http://dx.doi.org/10.1109/EUSIPCO.2015.7362905]
Eigen D, Puhrsch C and Fergus R. 2014. Depth map prediction from a single image using a multi-scale deep network//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press: 2366-2374
Eilertsen G, Kronander J, Denes G, Mantiuk R K and Unger J. 2017. HDR image reconstruction from a single exposure using deep CNNs. ACM Transactions on Graphics, 36(6): #178[DOI: 10.1145/3130800.3130816]
Eisemann E and Durand F. 2004. Flash photography enhancement via intrinsic relighting. ACM Transactions on Graphics, 23(3): 673-678[DOI: 10.1145/1015706.1015778]
Endo Y, Kanamori Y and Mitani J. 2017. Deep reverse tone mapping. ACMTransactions on Graphics, 36(6): #177[DOI: 10.1145/3130800.3130834]
Erdozain J, Ichimaru K, Maeda T, Kawasaki H, Raskar R and Kadambi A. 2020.3d imaging for thermal cameras using structured light//Proceedings of 2020 IEEE International Conference on Image Processing. Abu Dhabi, United Arab Emirates: IEEE: 2795-2799[DOI: 10.1109/ICIP40778.2020.9191297http://dx.doi.org/10.1109/ICIP40778.2020.9191297]
Fahringer T W, Lynch K P and Thurow B S. 2015. Volumetric particle image velocimetry with a single plenoptic camera. Measurement Science and Technology, 26(11): #115201[DOI: 10.1088/0957-0233/26/11/115201]
Fahringer T W and Thurow B S. 2016. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV. Measurement Science and Technology, 27(9): #094005[DOI: 10.1088/0957-0233/27/9/094005]
Fahringer T W and Thurow B S. 2018. Plenoptic particle image velocimetry with multiple plenoptic cameras. Measurement Science and Technology, 29(7): #075202[DOI: 10.1088/1361-6501/aabe1d]
Feng W, Liu H D, Wu G M and Zhao D X. 2020. Gradient domain adaptive tone mapping algorithm based on color correction model. Laser and Optoelectronics Progress, 57(8): #081007
冯维, 刘红帝, 吴贵铭, 赵大兴. 2020. 基于颜色校正模型的梯度域自适应色调映射算法. 激光与光电子学进展, 57(8): #081007[DOI: 10.3788/LOP57.081007]
Feng W, Zhang F M, Qu X H and Zheng S W. 2016. Per-pixel coded exposure for high-speed and high-resolution imaging using a digital micromirror device camera. Sensors, 16(3): #331[DOI: 10.3390/s16030331]
Feng W, Zhang F M, Wang W J and Qu X H. 2017. Adaptive high-dynamic-range imaging method and its application based on digital micromirror device. Acta Physica Sinica, 66(23): #234201
冯维, 张福民, 王惟婧, 曲兴华. 2017. 基于数字微镜器件的自适应高动态范围成像方法及应用. 物理学报, 66(23): #234201
Feng W, Zhang F M, Wang W J, Xing W and Qu X H. 2017. Digitalmicromirror device camera with per-pixel coded exposure for high dynamic range imaging. Applied Optics, 56(13): 3831-3840[DOI: 10.1364/AO.56.003831]
Finlayson G D, Hordley S D and Tastl I. 2006. Gamut constrained illuminant estimation. International Journal of Computer Vision, 67(1): 93-109[DOI: 10.1007/s11263-006-4100-z]
Finlayson G D and Trezzi E. 2004. Shades of gray and colour constancy//Proceedings of the 12th Color and Imaging Conference Final Program and Proceedings. [s. l.]: Society for Imaging Science and Technology: 37-41
Frank S A. 2018. A biochemical logarithmic sensor with broad dynamic range. F1000Research, 7: #200[DOI: 10.12688/f1000research.14016.3]
French R, Gigan S and Muskens O L. 2017. Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats. Optics Letters, 42(9): 1820-1823[DOI: 10.1364/ol.42.001820]
Fu Q, Yan D M and Heidrich W. 2021. Compound eye inspired flat lensless imaging with spatially-coded Voronoi-Fresnel phase[EB/OL]. [2021-12-15].https://arxiv.org/pdf/2109.13703.pdfhttps://arxiv.org/pdf/2109.13703.pdf
Fu Y, Zhang T, Zheng Y Q, Zhang D B and Huang H. 2022. Joint camera spectral response selection and hyperspectral image recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1): 256-272[DOI: 10.1109/TPAMI.2020.3009999]
Gallo O, Gelfandz N, Chen W C, Tico M and Pulli K. 2009. Artifact-free high dynamic range imaging//Proceedings of 2009 IEEE International Conference on Computational Photography. San Francisco, USA: IEEE: 1-7[DOI: 10.1109/ICCPHOT.2009.5559003http://dx.doi.org/10.1109/ICCPHOT.2009.5559003]
Gao L, Kester R T, Hagen N and Tkaczyk T S. 2010. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy. Optics Express, 18(14): 14330-14344[DOI: 10.1364/oe.18.014330]
Gabor, D. 1948. A New Microscopic Principle. Nature 161, 777-778[DOI: https://doi.org/10.1038/161777a0]
Gat N, Scriven G, Garman J, Li M D and Zhang J Y. 2006. Development of four-dimensional imaging spectrometers (4D-IS)//Proceedings of SPIE 6302, Imaging Spectrometry XI. San Diego, USA: SPIE: #678082[DOI: 10.1117/12.678082http://dx.doi.org/10.1117/12.678082]
Geelen B, Jayapala M, Tack N and Lambrechts A. 2013. Low-complexity image processing for a high-throughput low-latency snapshot multispectral imager with integrated tiled filters//Proceedings of SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX. Baltimore, USA: SPIE: #2015248[DOI: 10.1117/12.2015248http://dx.doi.org/10.1117/12.2015248]
Geelen B, Tack N and Lambrechts A. 2014. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic//Proceedings of SPIE 8974, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VⅡ. San Francisco, USA: SPIE: 2037607[DOI: 10.1117/12.2037607http://dx.doi.org/10.1117/12.2037607]
Gehler P V, Rother C, Blake A, Minka T and Sharp T. 2008. Bayesian color constancy revisited//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE: 1-8[DOI: 10.1109/CVPR.2008.4587765http://dx.doi.org/10.1109/CVPR.2008.4587765]
Georgiev T, Chunev G and Lumsdaine A. 2011. Superresolution with the focused plenoptic camera//Proceedings of SPIE 7873, Computational Imaging IX. San Francisco, USA: SPIE: #78730X[DOI: 10.1117/12.872666http://dx.doi.org/10.1117/12.872666]
Gershun A. 1939. The light field. Journal of Mathematics and Physics, 18(1/4): 51-151[DOI: 10.1002/sapm193918151]
Gharbi M, Chen J W, Barron J T, Hasinoff S W and Durand F. 2017. Deep bilateral learning for real-time image enhancement. ACM Transactions on Graphics, 36(4): #118[DOI: 10.1145/3072959.3073592]
Gill P R. 2013. Odd-symmetry phase gratings produce optical nulls uniquely insensitive to wavelength and depth. Optics Letters, 38(12): 2074-2076[DOI: 10.1364/ol.38.002074]
Gluskin M G. 2020. Quad color filter array camera sensor configurations. U.S., No. 16/715, 570
Gnanasambandam A and Chan S H. 2020. HDR imaging with quanta image sensors: theoretical limits and optimal reconstruction. IEEE Transactions on Computational Imaging, 6: 1571-1585[DOI: 10.1109/tci.2020.3041093]
Godard C, Matzen K and Uyttendaele M. 2018. Deep burst denoising//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 560-577[DOI: 10.1007/978-3-030-01267-0_33http://dx.doi.org/10.1007/978-3-030-01267-0_33]
Golub M A, Averbuch A, Nathan M, Zheludev V A, Hauser J, Gurevitch S, Malinsky R and Kagan A. 2016. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser. Applied Optics, 55(3): 432-443[DOI: 10.1364/ao.55.000432]
Goshtasby A A. 2005. Fusion of multi-exposure images. Image and Vision Computing, 23(6): 611-618[DOI: 10.1.1.103.2389http://dx.doi.org/10.1.1.103.2389]
Granados M, Kim K I, Tompkin J and Theobalt C. 2013. Automatic noise modeling for ghost-free HDR reconstruction. ACM Transactions on Graphics, 32(6): #201[DOI: 10.1145/2508363.2508410]
Grossberg M D, and Nayar S K. 2003. October. High dynamic range from multiple images: Which exposures to combine//Proceedings of ICCV Workshop on Color and Photometric Methods in Computer Vision (CPMCV). Nice, France: CPMCV: #3
Gu B, Li W J, Wong J T, Zhu M Y and Wang M H. 2012. Gradient field multi-exposure images fusion for high dynamic range image visualization. Journal of Visual Communication and Image Representation, 23(4): 604-610[DOI: 10.1016/j.jvcir.2012.02.009]
Gu J W, Kobayashi T, Gupta M and Nayar S K. 2011. Multiplexed illumination for scene recovery in the presence of global illumination//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE: 691-698[DOI: 10.1109/ICCV.2011.6126305http://dx.doi.org/10.1109/ICCV.2011.6126305]
Guan X M, Qu X H, Niu B, Zhang Y J and Zhang F M. 2021. Pixel-level mapping method in high dynamic range imaging system based on DMD modulation. Optics Communications, 499: #127278[DOI: 10.1016/j.optcom.2021.127278]
Guo X J, Li Y, Ma J Y and Ling H B. 2020. Mutually guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(3): 694-707[DOI: 10.1109/tpami.2018.2883553]
Gupta A, Ingle A and Gupta M. 2019b. Asynchronous single-photon 3D imaging//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea(South): IEEE: 7908-7917[DOI: 10.1109/ICCV.2019.00800http://dx.doi.org/10.1109/ICCV.2019.00800]
Gupta A, Ingle A, Velten A and Gupta M. 2019a. Photon-flooded single-photon 3D cameras//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 6763-6772[DOI: 10.1109/CVPR.2019.00693http://dx.doi.org/10.1109/CVPR.2019.00693]
Gupta M, Agrawal A, Veeraraghavan A and Narasimhan S G. 2011. Structured light 3D scanning in the presence of global illumination//Proceedings of the CVPR 2011. Colorado Springs, USA: IEEE: 713-720[DOI: 10.1109/CVPR.2011.5995321http://dx.doi.org/10.1109/CVPR.2011.5995321]
Gupta M and Nayar S K. 2012. Micro phase shifting//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE: 813-820[DOI: 10.1109/CVPR.2012.6247753http://dx.doi.org/10.1109/CVPR.2012.6247753]
Gupta M, Nayar S K, Hullin M B and Martin J. 2015. Phasor imaging: a generalization of correlation-based time-of-flight imaging. ACM Transactions on Graphics, 34(5): #156[DOI: 10.1145/2735702]
Gupta M, Yin Q and Nayar S K. 2013. Structured light in sunlight//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE: 545-552[DOI: 10.1109/ICCV.2013.73http://dx.doi.org/10.1109/ICCV.2013.73]
Haim H, Elmalem S, Giryes R, Bronstein A M and Marom E. 2018. Depth estimation from a single image using deep learned phase coded mask. IEEE Transactions on Computational Imaging, 4(3): 298-310[DOI: 10.1109/tci.2018.2849326]
Halé A, Trouvé-Peloux P. and Volatier J B. 2021. End-to-end sensor and neural network design using differential ray tracing. Optics Express, 29(21): 34748-34761[DOI: https://doi.org/10.1364/OE.439571]
Hall E M, Fahringer T W, Guildenbecher D R and Thurow B S. 2018. Volumetric calibration of a plenoptic camera. Applied Optics, 57(4): 914-923[DOI: 10.1364/AO.57.000914]
Han J, Zhou C, Duan P Q, Tang Y H, Xu C, Xu C, Huang T J and Shi B X. 2020. Neuromorphic camera guided high dynamic range imaging//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 1727-1736[DOI: 10.1109/CVPR42600.2020.00180http://dx.doi.org/10.1109/CVPR42600.2020.00180]
Hanwell D, Alassane S E C K and Kornienko A. 2020. Spatially multiplexed exposure. U.S., 16150884
Hasinoff S W, Durand F and Freeman W T. 2010. Noise-optimal capture forhigh dynamic range photography//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE: 553-560[DOI: 10.1109/CVPR.2010.5540167http://dx.doi.org/10.1109/CVPR.2010.5540167]
Hasinoff S W, Sharlet D, Geiss R, Adams A, Barron J T, Kainz F, Chen J W and Levoy M. 2016. Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Transactions on Graphics, 35(6): #192[DOI: 10.1145/2980179.2980254]
He L, Chen G, Guo H and Jin W Q. 2020. A dynamic scene HDR fusion method based on dual-channel low-light-level CMOS camera. Infrared Technology, 42(4): 340-347
贺理, 陈果, 郭宏, 金伟其. 2020. 一种基于双通道CMOS相机的低照度动态场景HDR融合方法. 红外技术, 42(4): 340-347
He S W. 2015. Study of Pixel-Level Light Adjusting Technology Based on DMD. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
何舒文. 2015. 基于数字微镜的像素级调光技术研究. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所)
Heber S and Pock T. 2016. Convolutional networks for shape from light field//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 3746-3754[DOI: 10.1109/CVPR.2016.407http://dx.doi.org/10.1109/CVPR.2016.407]
Heber S, Yu W and Pock T. 2017. Neural EPI-volume networks for shape from light field//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2271-2279[DOI: 10.1109/ICCV.2017.247http://dx.doi.org/10.1109/ICCV.2017.247]
Heide F, Steinberger M, Tsai Y T, Rouf M, Pająk D, Reddy D, Gallo O, Liu J, Heidrich W, Egiazarian K, Kautz J and Pulli K. 2014. FlexISP: a flexible camera image processing framework ACM Transactions on Graphics, 33(6): #231[DOI: 10.1145/2661229.2661260http://dx.doi.org/10.1145/2661229.2661260]
Hou X L, Zhang J C and Zhou P P. 2021. Reconstructing a high dynamic range image with a deeply unsupervised fusion model. IEEE Photonics Journal, 13(2): #3900210[DOI: 10.1109/JPHOT.2021.3058740]
Hou X, Duan J and Qiu G. 2017. Deep feature consistent deep image transformations: Downscaling, decolorization and HDR tone mapping[EB/OL]. [2021-12-15].https://arxiv.org/pdf/1707.09482.pdfhttps://arxiv.org/pdf/1707.09482.pdf
Hu J, Gallo O, Pulli K and Sun X B. 2013. HDR deghosting: how to deal with saturation?//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 1163-1170[DOI: 10.1109/CVPR.2013.154http://dx.doi.org/10.1109/CVPR.2013.154]
Hu Y M, Wang B Y and Lin S. 2017. FC4: fully convolutional color constancy with confidence-weighted pooling//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 330-339[DOI: 10.1109/CVPR.2017.43http://dx.doi.org/10.1109/CVPR.2017.43].
Hu Y X and Wan L. 2014. Multi exposure image fusion based on dynamic range extending. Computer Engineering and Application, 50(1): 153-155, 214
胡燕翔, 万莉. 2014. 大动态范围多曝光图像融合方法. 计算机工程与应用, 50(1): 153-155, 214[DOI: 10.3778/j.issn.1002-8331.1203-0003]
Huang E, Ma Q and Liu Z W. 2017. Etalon array reconstructive spectrometry. Scientific Reports, 7(1): #40693[DOI: 10.1038/srep40693]
Huang F, Zhou D M, Nie R C and Yu C B. 2018a. A color multi-exposure image fusion approach using structural patch decomposition. IEEE Access, 6: 42877-42885[DOI: 10.1109/access.2018.2859355]
Huang Q, Kim H Y, Tsai W J, Jeong S Y, Choi J S and Kuo C C J. 2018b. Understanding and removal of false contour in HEVC compressed images. IEEE Transactions on Circuits and Systems for Video Technology, 28(2): 378-391[DOI: 10.1109/TCSVT.2016.2607258]
Hubold M, Berlich R, Gassner C, Brüning R and Brunner R. 2018. Ultra-compact micro-optical system for multispectral imaging//Proceedings of SPIE 10545, MOEMS and Miniaturized Systems XVⅡ. San Francisco, USA: SPIE: #2295343[DOI: 10.1117/12.2295343http://dx.doi.org/10.1117/12.2295343]
Huynh T T, Nguyen T D, Vo M T and Dao S V T. 2019. High dynamic range imaging using a 2×2 camera array with polarizing filters//Proceedings of the 19th International Symposium on Communications and Information Technologies. Ho Chi Minh City, Vietnam: IEEE: 183-187[DOI: 10.1109/ISCIT.2019.8905122http://dx.doi.org/10.1109/ISCIT.2019.8905122]
Ignatov A, Patel J and Timofte R. 2020. Rendering natural camera bokeh effect with deep learning//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE: 1676-1686[DOI: 10.1109/CVPRW50498.2020.00217http://dx.doi.org/10.1109/CVPRW50498.2020.00217]
Jeon D S, Baek S H, Yi S, Fu Q, Dun X, Heidrich W and Kim M H. 2019b. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Transactions on Graphics, 38(4): #117[DOI: 10.1145/3306346.3322946]
Jeon H G, Park J, Choe G, Park J, Bok Y, Tai Y W and Kweon I S. 2015. Accurate depth map estimation from a lenslet light field camera//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE: 1547-1555[DOI: 10.1109/CVPR.2015.7298762http://dx.doi.org/10.1109/CVPR.2015.7298762]
Jeon H G, Park J, Choe G, Park J, Bok Y, Tai Y W and Kweon I S. 2019a. Depth from a light field image with learning-based matching costs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2): 297-310[DOI: 10.1109/TPAMI.2018.2794979]
Jiang H Y and Zheng Y Q. 2019. Learning to see moving objects in the dark//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea(South): IEEE: 7323-7332[DOI: 10.1109/ICCV.2019.00742http://dx.doi.org/10.1109/ICCV.2019.00742]
Jiang S Y, Chen K, Xu Z H, Feng H J, Li Q and Chen Y T. 2015. Multi-exposure image fusion based on well-exposedness assessment. Journal of Zhejiang University (Engineering Science), 49(3): 470-475, 481
江燊煜,陈阔, 徐之海, 冯华君, 李奇, 陈跃庭. 2015. 基于曝光适度评价的多曝光图像融合方法. 浙江大学学报(工学版), 49(3): 470-475, 481[DOI: 10.3785/j.issn.1008-973X.2015.03.011]
Jiang Y T, Choi I, Jiang J and Gu J W. 2021. HDR video reconstruction with tri-exposure quad-bayer sensors[EB/OL]. [2021-12-15].https://arxiv.org/pdf/2103.10982.pdfhttps://arxiv.org/pdf/2103.10982.pdf
Johannsen O, Honauer K, Goldluecke B, Alperovich A, Battisti F, Bok Y, Brizzi M, Carli M, Choe G, Diebold M, Gutsche M, Jeon H G, Kweon I S, Park J, Park J, Schilling H, Sheng H, Si L P, Strecke M, Sulc A, Tai Y W, Wang Q, Wang T C, Wanner S, Xiong Z, Yu J Y, Zhang S and Zhu H. 2017. A taxonomy and evaluation of dense light field depth estimation algorithms//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA: IEEE: 1795-1812[DOI: 10.1109/CVPRW.2017.226http://dx.doi.org/10.1109/CVPRW.2017.226]
Johannsen O, Sulc A and Goldluecke B. 2016. What sparse light field coding reveals about scene structure//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 3262-3270[DOI: 10.1109/CVPR.2016.355http://dx.doi.org/10.1109/CVPR.2016.355]
Kalantari N K and Ramamoorthi R. 2017. Deep high dynamic range imaging of dynamic scenes. ACM Transactions on Graphics, 36(4): #144[DOI: 10.1145/3072959.3073609]
Kalantari N K, Shechtman E, Barnes C, Darabi S, Goldman D B and Sen P. 2013. Patch-based high dynamic range video. ACM Transactions on Graphics, 32(6): #202[DOI: 10.1145/2508363.2508402]
Kalantari N K and Ramamoorthi R. 2019. Deep HDR video from sequences with alternating exposures. Computer Graphics Forum, 38(2): 193-205[DOI: https://doi.org/10.1111/cgf.13630]
Kang S B, Uyttendaele M, Winder S and Szeliski R. 2003. High dynamic range video. ACM Transactions on Graphics (TOG), 22(3): 319-325. [DOI: https://doi.org/10.1145/882262.882270]
Kavadias S, Dierickx B, Scheffer D, Alaerts A, Uwaerts D and Bogaerts J. 2000. A logarithmic response CMOS image sensor with on-chip calibration. IEEE Journal of Solid-State Circuits, 35(8): 1146-1152[DOI: 10.1109/4.859503]
Kaya B, Can Y B and Timofte R. 2019. Towards spectral estimation from a single RGB image in the wild//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul, Korea(South): IEEE: 3546-3555[DOI: 10.1109/ICCVW.2019.00439http://dx.doi.org/10.1109/ICCVW.2019.00439]
Khan E A, Akyuz A O and Reinhard E. 2006. Ghost removal in high dynamic range images//Proceedings of 2006 International Conference on Image Processing. Atlanta, USA: IEEE: 2005-2008[DOI: 10.1109/ICIP.2006.312892http://dx.doi.org/10.1109/ICIP.2006.312892]
Khan S S, Sundar V, Boominathan V, Veeraraghavan A and Mitra K. 2022. FlatNet: towards photorealistic scene reconstruction from lensless measurements. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4): 1934-1948[DOI: 10.1109/tpami.2020.3033882]
Khan Z, Khanna M and Raman S. 2019. November. Fhdr: Hdr image reconstruction from a single ldr image using feedback network//Proceedings of 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Ottawa, Canada: IEEE: #8969167[DOI: 10.1109/GlobalSIP45357.2019.8969167http://dx.doi.org/10.1109/GlobalSIP45357.2019.8969167]
Kim K, Bae J and Kim J. 2011. Natural HDR image tone mapping based on retinex. IEEE Transactions on Consumer Electronics, 57(4): 1807-1814[DOI: 10.1109/TCE.2011.6131157]
Kinoshita Y, Shiota S and Kiya H. 2017. Fast inverse tone mapping with Reinhard's global operator//Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans, USA: IEEE: 1972-1976[DOI: 10.1109/ICASSP.2017.7952501http://dx.doi.org/10.1109/ICASSP.2017.7952501]
Kinoshita Y, Shiota S, Kiya H and Yoshida T. 2018. Multi-exposure image fusion based on exposure compensation//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, Canada: IEEE: 1388-1392[DOI: 10.1109/ICASSP.2018.8461604http://dx.doi.org/10.1109/ICASSP.2018.8461604]
Kovaleski R P and Oliveira M M. 2009. High-quality brightness enhancement functions for real-time reverse tone mapping. The Visual Computer, 25(5): 539-547[DOI: 10.1007/s00371-009-0327-310.1007/s00371-009-0327-3=0pt]
Krawczyk G, Myszkowski K and Seidel H P. 2005. Lightness perception in tone reproduction for high dynamic range images. Computer Graphics Forum, 24(3): 635-645[DOI: 10.1111/j.1467-8659.2005.00888.x]
Krishnan D and Fergus R. 2009. Dark flash photography. ACM Transactions on Graphics, 28(3): #96[DOI: 10.1145/1531326.1531402]
Kronander J, Gustavson S, Bonnet G, Ynnerman A and Unger J. 2014. A unified framework for multi-sensor HDR video reconstruction. Signal Processing: Image Communication, 29(2): 203-215[DOI: 10.1016/j.image.2013.08.018]
Landis H. 2002. Production-ready global illumination//RenderMan in Production//Proceedings of ACM SIGGRAPH 2002 Course Notes: 87-101
Larson G W, Rushmeier H and Piatko C. 1997. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics, 3(4): 291-306[DOI: 10.1109/2945.646233]
Ledda P, Santos L P and Chalmers A. 2004. A local model of eye adaptation for high dynamic range images//Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa. Stellenbosch, South Africa: ACM: 151-160[DOI: 10.1145/1029949.1029978http://dx.doi.org/10.1145/1029949.1029978]
Lee G J, Choi C, Kim D H and Song Y M. 2018a. Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses. Advanced Functional Materials, 28(24): #1705202[DOI: 10.1002/adfm.201705202]
Lee S, An G H and Kang S J. 2018b. Deep chain HDRI: reconstructing a high dynamic range image from a single low dynamic range image. IEEE Access, 6: 49913-49924[DOI: 10.1109/access.2018.2868246]
Lefkimmiatis S. 2018. Universal denoising networks: a novel CNN architecture for image denoising//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 3204-3213[DOI: 10.1109/CVPR.2018.00338http://dx.doi.org/10.1109/CVPR.2018.00338]
Levoy M and Hanrahan P. 1996. Light field rendering//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA: ACM: 31-42[DOI: 10.1145/237170.237199http://dx.doi.org/10.1145/237170.237199]
Levoy M, Ng R, Adams A, Footer M and Horowitz M. 2006. Light field microscopy. ACM Transactions on Graphics, 25(3): 924-934[DOI: 10.1145/1141911.1141976]
Levoy M, Zhang Z and McDowall I. 2009. Recording and controlling the 4D light field in a microscope using microlens arrays. Journal of Microscopy, 235(2): 144-162[DOI: 10.1111/j.1365-2818.2009.03195.x]
Li C, Wang P and Bi D Y. 2018. Realistic image rendition based on intersecting cortical model. Journal of University of Electronic Science and Technology of China, 47(2): 272-278
李成, 汪沛, 毕笃彦. 2018. 基于交叉视觉皮质模型的真实图像再现方法. 电子科技大学学报, 47(2): 272-278[DOI: 10.3969/j.issn.1001-0548.2018.02.018]
Li H B, Dong Y, Liu Y Q, Zhao X and Song Y S. 2018. Image fusion method for improving dynamic range of camera. Infrared Technology, 40(9): 887-893
李洪博, 董岩, 刘云清, 赵馨, 宋延嵩. 2018. 可提高相机动态范围的图像融合方法研究. 红外技术, 40(9): 887-893
Li X A. 2018. Research and Implementation of Multi-Exposure Image Fusion Based on Convolutional Neural Networks. Jinan: Shandong University
李雪奥. 2018. 基于卷积神经网络的多曝光图像融合方法研究与实现. 济南: 山东大学
Li X C, Yao S Y, Huang B Z and Zheng W. 2013. A novel high dynamic range exposure control for CMOS image sensor. Chinese Journal of Sensors and Actuators, 26(3): 328-332
李晓晨, 姚素英, 黄碧珍, 郑炜. 2013. 一种应用于高动态范围CMOS图像传感器的曝光控制技术. 传感技术学报, 26(3): 328-332[DOI: 10.3969/j.issn.1004-1699.2013.03.007]
Li Z G, Zheng J H and Rahardja S. 2012. Detail-enhanced exposure fusion. IEEE Transactions on Image Processing, 21(11): 4672-4676[DOI: 10.1109/TIP.2012.2207396]
Li Z, Hou Q, Wang Z, Tan F, Liu J and Zhang W. 2021. End-to-end learned single lens design using fast differentiable ray tracing. Optics Letters, 46(21): 5453-5456[DOI: https://doi.org/10.1364/OL.442870]
Liang B, Weng D D, Bao Y H, Tu Z Q and Luo L. 2020. Method for reconstructing a high dynamic range image based on a single-shot filtered low dynamic range image. Optics Express, 28(21): 31057-31075[DOI: 10.1364/oe.400820]
Liba O, Murthy K, Tsai Y T, Brooks T, Xue T F, Karnad N, He Q R, Barron J T, Sharlet D, Geiss R, Hasinoff S W and Pritch Y. 2019. Handheld mobile photography in very low light. ACM Transactions on Graphics, 38(6): #164[DOI: 10.1145/3355089.3356508]
Lim J G, Ok H W, Park B K, Kang J Y and Lee S D. 2009. Improving the spatail resolution based on 4D light field data//Proceedings of the 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE: 1173-1176[DOI: 10.1109/ICIP.2009.5413719http://dx.doi.org/10.1109/ICIP.2009.5413719]
Lin J Y, Liu Y B, Hullin M B and Dai Q H. 2014. Fourier analysis on transient imaging with a multifrequency time-of-flight camera//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 3230-3237[DOI: 10.1109/CVPR.2014.419http://dx.doi.org/10.1109/CVPR.2014.419]
Lin J Y, Liu Y B, Suo J L and Dai Q H. 2017. Frequency-domain transient imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(5): 937-950[DOI: 10.1109/TPAMI.2016.2560814]
Lin X, Wu J M, Zheng G A and Dai Q H. 2015. Camera array based light field microscopy. Biomedical Optics Express, 6(9): 3179-3189[DOI: 10.1364/BOE.6.003179]
Lischinski D, Farbman Z, Uyttendaele M and Szeliski R. 2006. Interactive local adjustment of tonal values. ACM Transactions on Graphics, 25(3): 646-653[DOI: 10.1145/1141911.1141936]
Liu C. 2009. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Cambridge: Massachusetts Institute of Technology
Liu F Y, Shen C H, Lin G S and Reid I. 2016. Learning depth from single monocular images using deep convolutional neural fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10): 2024-2039[DOI: 10.1109/tpami.2015.2505283]
Liu L, Zarnowski J J, Karia K V, Poonnen T and Joyner M E. 2011. Sub-pixel array optical sensor. U.S., 8035711
Liu Y, Lyu B X, Huang W, Jin B H and Li C L. 2020. Anti-shake HDR imaging using RAW image data. Information, 11(4): #213[DOI: 10.3390/info11040213]
Liu Y, Wang F W, Liu W H, Ai D, Li Y and Yang F C. 2020. High dynamic range imaging algorithm based on luminance partition fuzzy fusion. Journal of Computer Applications, 40(1): 233-238
刘颖, 王凤伟, 刘卫华, 艾达, 李芸, 杨凡超. 2020. 基于亮度分区模糊融合的高动态范围成像算法. 计算机应用, 40(1): 233-238[DOI: 10.11772/j.issn.1001-9081.2019061032]
Liu Y, Wang Q and Liu W H. 2018. High dynamic range images tone mapping algorithm based on adaptive segmentation of luminance. Video Engineering, 42(1): 24-30, 44
刘颖, 王倩, 刘卫华. 2018. 基于亮度自适应分段的高动态图像色调映射算法. 电视技术, 42(1): 24-30, 44[DOI: 10.16280/j.videoe.2018.01:005]
Liu Y K, Zhang C Y, Kou T D, Li Y Y and Shen J F. 2021. End-to-end computational optics with a singlet lens for large depth-of-field imaging. Optics Express, 29(18): 28530-28548[DOI: 10.1364/OE.433067]
Liu Z Y. 2016. The Research on High Dynamic Range Image Synthesizing and Tone Mapping. Harbin: Harbin Engineering University
刘宗玥. 2016. 高动态范围图像的合成与色阶映射的研究. 哈尔滨: 哈尔滨工程大学
Lyu T, Fu D H, Chen X Y and Liu J. 2015. High dynamic range imaging technology using DMD. Chinese Journal of Optics, 8(4): 644-650
吕涛, 付东辉, 陈小云, 刘杰. 2015. 利用DMD获取高动态范围图像技术. 中国光学, 8(4): 644-650[DOI: 10.3788/CO.20150804.0644]
Lu B B, Li Y J, Zheng Y M and Wang Y K. 2017. A visual adaptive multi-scale logarithmic tone mapping algorithm. Journal of Chinese Computer Systems, 38(3): 625-629
芦碧波, 李玉静, 郑艳梅, 王玉琨. 2017. 视觉自适应多尺度对数色调映射算法. 小型微型计算机系统, 38(3): 625-629
Luan Y S, Mei D and Shi S X. 2021. Light-field multi-spectral radiation thermometry. Optics Letters, 46(1): 9-12[DOI: 10.1364/OL.408437]
Lucas B D and Kanade T. 1981. An iterative image registration technique with an application to stereo vision//Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouver, Canada: Morgan Kaufmann Publishers Inc. : 674-679
Lumsdaine A and Georgiev T. 2008. Full Resolution Lightfield Rendering. Adobe Systems, Inc
Lumsdaine A and Georgiev T. 2009. The focused plenoptic camera//Proceedings of 2009 IEEE International Conference on Computational Photography. San Francisco, USA: IEEE: 1-8[DOI: 10.1109/ICCPHOT.2009.5559008http://dx.doi.org/10.1109/ICCPHOT.2009.5559008]
Luo X, Huang J B, Szeliski R, Matzen K and Kopf J. 2020. Consistent video depth estimation. ACM Transactions on Graphics, 39(4): #71[DOI: 10.1145/3386569.3392377]
Lyu W Z, Liu W Q, Wei Z L, Kang Y S, Feng R and Yang J M. 2014. Design of high dynamic range imaging optical system based on DMD. Infrared and Laser Engineering, 43(4): 1167-1171
吕伟振, 刘伟奇, 魏忠伦, 康玉思, 冯睿, 杨建明. 2014. 基于DMD的高动态范围成像光学系统设计. 红外与激光工程, 43(4): 1167-1171[DOI: 10.3969/j.issn.1007-2276.2014.04.026]
Ma H D, Qian Z W, Mu T T and Shi S X. 2019. Fast and accurate 3D measurement based on light-field camera and deep learning. Sensors, 19(20): #4399[DOI: 10.3390/s19204399]
Ma K D, Zeng K and Wang Z. 2015. Perceptual quality assessment for multi-exposure image fusion. IEEE Transactions on Image Processing, 24(11): 3345-3356[DOI: 10.1109/tip.2015.2442920]
Ma S Z, Gupta S, Ulku A C, Bruschini C, Charbon E and Gupta M. 2020. Quanta burst photography. ACM Transactions on Graphics, 39(4): #79[DOI: 10.1145/3386569.3392470]
Mann S and Picard R W. 1995. On being "undigital" with digital cameras: extending dynamic range by combining differently exposed pictures//Proceedings of the IS and T's 48th Annual Conference. Washington, USA: Socuety for Imaging Science and Technology: 442-448
Manakov A, Restrepo J, Klehm O, Hegedus R, Eisemann E, Seidel H P and Ihrke I. 2013. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging. ACM Transactions on Graphics, 32(4): #47-1[DOI: https://doi.org/10.1145/2461912.2461937]
Marco J, Hernandez Q, Muñoz A, Dong Y, Jarabo A, Kim M H, Tong X and Gutierrez D. 2017. DeepToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging. ACM Transactions on Graphics, 36(6): #219[DOI: 10.1145/3130800.3130884]
Marnerides D, Bashford-Rogers T and Debattista K. 2020. Spectrally consistent UNet for high fidelity image transformations[EB/OL]. [2021-12-15].https://arxiv.org/pdf/2004.10696.pdfhttps://arxiv.org/pdf/2004.10696.pdf
Marnerides D, Bashford-Rogers T and Debattista K. 2021. Deep HDR hallucination for inverse tone mapping. Sensors, 21(12): #4032[DOI: 10.3390/s21124032]
Marnerides D, Bashford-Rogers T, Hatchett J and Debattista K. 2018. ExpandNet: a deep convolutional neural network for high dynamic range expansion from low dynamic range content. Computer Graphics Forum, 37(2): 37-49[DOI: 10.1111/cgf.13340]
Martel J N P, Müller L K, Carey S J, Dudek P and Wetzstein G. 2020. Neural sensors: learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7): 1642-1653[DOI: 10.1109/TPAMI.2020.2986944]
Martel J N P and Wetzstein G. 2021. Computational imaging with vision sensors embedding in-pixel processing//2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, USA: IEEE: #9720618[DOI: 10.1109/IEDM19574.2021.9720618http://dx.doi.org/10.1109/IEDM19574.2021.9720618]
Matsuda N, Cossairt O and Gupta M. 2015. MC3D: motion contrast 3D scanning//Proceedings of 2015 IEEE International Conference on Computational Photography. Houston, USA: IEEE: 1-10[DOI: 10.1109/ICCPHOT.2015.7168370http://dx.doi.org/10.1109/ICCPHOT.2015.7168370]
Mazhar M A and Riza N A. 2020.96 dB linear high dynamic range CAOS spectrometer demonstration. IEEE Photonics Technology Letters, 32(23): 1497-1500[DOI: 10.1109/LPT.2020.3038062]
McClung A, Samudrala S, Torfeh M, Mansouree M and Arbabi A. 2020. Snapshot spectral imaging with parallel metasystems. Science Advances, 6(38): #7646[DOI: 10.1126/sciadv.abc7646]
McElvain J S, Gish W C, Miller J R, Ward G J and Atkins R. 2021. Auto exposure of spatially-multiplexed-exposure high-dynamic-range image sensors. USA, 17/274, 161
McGuire M, Matusik W, Pfister H, Chen B, Hughes J F and Nayar S K. 2007. Optical splitting trees for high-precision monocular imaging. IEEE Computer Graphics and Applications, 27(2): 32-42[DOI: 10.1109/mcg.2007.45]
Meng J J, Cadusch J J and Crozier K B. 2019. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Letters, 20(1): 320-328[DOI: 10.1021/acs.nanolett.9b03862]
Mertens T, Kautz J and Van Reeth F. 2009. Exposure fusion: a simple and practical alternative to high dynamic range photography. Computer Graphics Forum, 28(1): 161-171[DOI: 10.1111/j.1467-8659.2008.01171.x]
Mertz C, Koppal S J, Sia S and Narasimhan S. 2012. A low-power structured light sensor for outdoor scene reconstruction and dominant material identification//Proceedings of 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, USA: IEEE: 15-22[DOI: 10.1109/CVPRW.2012.6239194http://dx.doi.org/10.1109/CVPRW.2012.6239194]
Metzler C A, Ikoma H, Peng Y Y and Wetzstein G. 2020. Deep optics for single-shot high-dynamic-range imaging//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 1372-1382[DOI: 10.1109/CVPR42600.2020.00145http://dx.doi.org/10.1109/CVPR42600.2020.00145]
Mildenhall B, Barron J T, Chen J W, Sharlet D, Ng R and Carroll R. 2018. Burst denoising with kernel prediction networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 2502-2510[DOI: 10.1109/CVPR.2018.00265http://dx.doi.org/10.1109/CVPR.2018.00265]
Monakhova K, Tran V, Kuo G and Waller L. 2021. Untrained networks for compressive lensless photography. Optics Express, 29(13): 20913-20929[DOI: 10.1364/oe.424075]
Monakhova K, Yanny K, Aggarwal N and Waller L. 2020. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7(10): 1298-1307[DOI: 10.1364/optica.397214]
Monakhova K, Yurtsever J, Kuo G, Antipa N, Yanny K and Waller L. 2019. Learned reconstructions for practical mask-based lensless imaging. Optics Express, 27(20): 28075-28090[DOI: 10.1364/oe.27.028075]
Montulet R, Briassouli A and Maastricht N. 2019. Deep learning for robust end-to-end tone mapping. In BMVC: (2): #4
Moreno D, Son K and Taubin G. 2015. Embedded phase shifting: robust phase shifting with embedded signals//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 2301-2309[DOI: 10.1109/CVPR.2015.7298843http://dx.doi.org/10.1109/CVPR.2015.7298843]
Moriwaki K, Yoshihashi R, Kawakami R, You S D and Naemura T. 2018. Hybrid loss for learning single-image-based HDR reconstruction[EB/OL]. [2021-12-15].https://arxiv.org/pdf/1812.07134.pdfhttps://arxiv.org/pdf/1812.07134.pdf
Mu T K, Han F, Bao D H, Zhang C M and Liang R G. 2019. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter. Optics Letters, 44(5): 1281-1284[DOI: 10.1364/ol.44.001281]
Naik N, Kadambi A, Rhemann C, Izadi S, Raskar R and Kang S B. 2015. A light transport model for mitigating multipath interference in time-of-flight sensors//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 73-81[DOI: 10.1109/CVPR.2015.7298602http://dx.doi.org/10.1109/CVPR.2015.7298602]
Narasimhan S G, Nayar S K, Sun B and Koppal S J. 2005. Structured light in scattering media//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE: 420-427[DOI: 10.1109/ICCV.2005.232http://dx.doi.org/10.1109/ICCV.2005.232]
Nayar S K, Krishnan G, Grossberg M D and Raskar R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Transactions on Graphics, 25(3): 935-944[DOI: 10.1145/1141911.1141977]
Nayar S K and Mitsunaga T. 2000. High dynamic range imaging: spatially varying pixel exposures//Proceedings of 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, USA: IEEE: 472-479[DOI: 10.1109/CVPR.2000.855857http://dx.doi.org/10.1109/CVPR.2000.855857]
Neri A, Carli M and Battisti F. 2015. A multi-resolution approach to depth field estimation in dense image arrays//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City, Canada: IEEE: 3358-3362[DOI: 10.1109/ICIP.2015.7351426http://dx.doi.org/10.1109/ICIP.2015.7351426]
Ng R, Levoy M, Brédif M, Duval G, Horowitz M and Hanrahan P. 2005. Light field photography with a hand-held plenoptic camera. Doctoral dissertation, Stanford University
Nie S J, Gu L, Zheng Y Q, Lam A, Ono N and Sato I. 2018. Deeply learned filter response functions for hyperspectral reconstruction//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 4767-4776[DOI: 10.1109/CVPR.2018.00501http://dx.doi.org/10.1109/CVPR.2018.00501]
Niu B, Qu X, Guan X and Zhang F. 2021. Fast HDR image generation method from a single snapshot image based on frequency division multiplexing technology. Optics Express, 29(17): 27562-27572[DOI: https://doi.org/10.1364/OE.434950]
Nousias S, Chadebecq F, Pichat J, Keane P, Ourselin S and Bergeles C. 2017. Corner-based geometric calibration of multi-focus plenoptic cameras//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 957-965[DOI: 10.1109/ICCV.2017.109http://dx.doi.org/10.1109/ICCV.2017.109]
O'brien S, Trumpf J, Ila V and Mahony R. 2018. Calibrating light-field cameras using plenoptic disc features//Proceedings of 2018 International Conference on 3D Vision. Verona, Italy: IEEE: 286-294[DOI: 10.1109/3DV.2018.00041http://dx.doi.org/10.1109/3DV.2018.00041]
Okawa T, Ooki S, Yamajo H, Kawada M, Tachi M, Goi K, Yamasaki T, Iwashita H, Nakamizo M, Ogasahara T, Kitano Y and Tatani K. 2019. A 1/2inch 48M all PDAF CMOS image sensor using 0.8 μmquad bayer coding 2×2OCL with 1.0lux minimum AF illuminance level//Proceedings of 2019 IEEE International Electron Devices Meeting. San Francisco, USA: IEEE: #16[DOI: 10.1109/IEDM19573.2019.8993499http://dx.doi.org/10.1109/IEDM19573.2019.8993499]
O'Toole M, Achar S, Narasimhan S G and Kutulakos K N. 2015. Homogeneous codes for energy-efficient illumination and imaging. ACM Transactions on Graphics, 34(4): #35[DOI: 10.1145/2766897]
O'Toole M, Mather J and Kutulakos K N. 2014.3D shape and indirect appearance by structured light transport//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 3246-3253[DOI: 10.1109/CVPR.2014.421http://dx.doi.org/10.1109/CVPR.2014.421]
Padilla D D, Davidson P A Jr, Carlson J J and Novick D K. 2005. Advancements in Sensing and Perception Using Structured Lighting Techniques: an LDRD Final Report. SAND2005-5935, Sandia National Laboratories
Pan J S, Gu Y, Li Y H, Sun J N, Zhang Q D and Su D T. 2017. Large dynamic range science intensified camera with single photon sensitivity and high spatiotemporal resolution. Infrared Technology, 39(9): 864-870
潘京生, 顾燕, 李燕红, 孙建宁, 张勤东, 苏德坦. 2017. 单光子灵敏和高时空分辨的大动态范围科学增强相机. 红外技术, 39(9): 864-870
Panetta K, Kezebou L, Oludare V, Agaian S and Xia Z H. 2021. TMO-Net: a parameter-free tone mapping operator using generative adversarial network, and performance benchmarking on large scale HDR dataset. IEEE Access, 9: 39500-39517[DOI: 10.1109/ACCESS.2021.3064295]
Patel V A, Shah P and Raman S. 2017. A generative adversarial network for tone mapping HDR images//Proceedings of the 6th National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics. Mandi, India: Springer: 220-231[10.1007/978-981-13-0020-2_20http://dx.doi.org/10.1007/978-981-13-0020-2_20]
Peng Y F, Sun Q L, Dun X, Wetzstein G, Heidrich W and Heide F. 2019. Learned large field-of-view imaging with thin-plate optics. ACM Transactions on Graphics, 38(6): #219[DOI: 10.1145/3355089.3356526]
Petschnigg G, Szeliski R, Agrawala M, Cohen M, Hoppe H and Toyama K. 2004. Digital photography with flash and no-flash image pairs. ACM Transactions on Graphics, 23(3): 664-672[DOI: 10.1145/1015706.1015777]
Piao Y J, Xu W, Wang S J, Tao S P. 2014. Fast multi-exposure image fusion for HDR video, 29(6): 1032-1041
朴永杰, 徐伟, 王绍举, 陶淑苹, 2014. 高动态范围视频的多曝光图像序列快速融合. 液晶与显示, 29(6): 1032-1041[DOI: 10.3788/YJYXS20142906.1032http://dx.doi.org/10.3788/YJYXS20142906.1032]
Plötz T and Roth S. 2017. Benchmarking denoising algorithms with real photographs//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2750-2759[DOI: 10.1109/CVPR.2017.294http://dx.doi.org/10.1109/CVPR.2017.294]
Qian Y L, Kämäräinen J K, Nikkanen J and Matas J. 2019. On findinggray pixels//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 8054-8062[DOI: 10.1109/CVPR.2019.00825http://dx.doi.org/10.1109/CVPR.2019.00825]
Rana A, Singh P, Valenzise G, Dufaux F, Komodakis N and Smolic A. 2019. Deep tone mapping operator for high dynamic range images. IEEE Transactions on Image Processing, 29: 1285-1298[DOI: 10.1109/tip.2019.2936649]
Rego J D, Kulkarni K and Jayasuriya S. 2021. Robust lensless image reconstruction via PSF estimation//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE: 403-412[DOI: 10.1109/WACV48630.2021.00045http://dx.doi.org/10.1109/WACV48630.2021.00045]
Reinhard E, Stark M, Shirley P and Ferwerda J. 2002. Photographic tone reproduction for digital images. ACM Transactions on Graphics, 21(3): 267-276[DOI: 10.1145/566654.566575]
Reinhard E, Heidrich W, Debevec P, Pattanaik S, Ward G and Myszkowski K. 2010. High dynamic range imaging: acquisition, display, and image-based lighting. Morgan Kaufmann
Rossi M and Frossard P. 2017. Graph-based light field super-resolution//Proceedings of the 19th International Workshop on Multimedia Signal Processing. Luton, UK: IEEE: 1-6[DOI: 10.1109/MMSP.2017.8122224http://dx.doi.org/10.1109/MMSP.2017.8122224]
Rovid A, Varkonyi-Koczy A R, Hashimoto T and Shimodaira Y. 2007. Gradient based synthesized maximum dense high dynamic range image//Proceedings of the 11th International Conference on Intelligent Engineering Systems. Budapest, Hungary: IEEE: 121-125[DOI: 10.1109/INES.2007.4283684http://dx.doi.org/10.1109/INES.2007.4283684]
Sahoo S K, Tang D L and Dang C. 2017. Single-shot multispectral imaging with a monochromatic camera. Optica, 4(10): 1209-1213[DOI: 10.1364/OPTICA.4.001209]
Santos M S, Ren T I and Kalantari N K. 2020. Single image HDR reconstruction using a CNN with masked features and perceptual loss[EB/OL]. [2022-01-15].https://arxiv.org/pdf/2005.07335.pdfhttps://arxiv.org/pdf/2005.07335.pdf
Satat G, Tancik M and Raskar R. 2018. Towards photography through realistic fog//Proceedings of 2018 IEEE International Conference on Computational Photography. Pittsburgh, USA: IEEE: 1-10[DOI: 10.1109/ICCPHOT.2018.8368463http://dx.doi.org/10.1109/ICCPHOT.2018.8368463]
Schlick C. 1995. Quantization techniques for visualization of high dynamic range pictures//Sakas G, Müller S and Shirley P, eds. Photorealistic Rendering Techniques. Berlin, Heidelberg: Springer: 7-20[DOI: 10.1007/978-3-642-87825-1_2http://dx.doi.org/10.1007/978-3-642-87825-1_2]
Schoenemann B, Pärnaste H and Clarkson E N K. 2017. Structure and function of a compound eye, more than half a billion years old. Proceedings of the National Academy of Sciences of the United States of America, 114(51): 13489-13494[DOI: 10.1073/pnas.1716824114]
Sen P, Kalantari N K, Yaesoubi M, Darabi S, Goldman D B and Shechtman E. 2012. Robust patch-based hdr reconstruction of dynamic scenes. ACM Transactions on Graphics, 31(6): #203[DOI: 10.1145/2366145.2366222]
Seredkin A, Shestakov M and Mikhail T. 2019. An industrial light field camera applied for 3D velocity measurements in flow past confined cylinder//Proceedings of EPJ Web of Conferences Online: EDP Sciences: #56[DOI: 10.1051/epjconf/201919600056http://dx.doi.org/10.1051/epjconf/201919600056]
Seredkin A V, Shestakov M V and Tokarev M P. 2016, October. An industrial light-field camera applied for 3D velocity measurements in a slot jet//Proceedings of AIP Conference Proceedings. Online: AIP Publishing LLC: #030025[DOI: 10.1063/1.4963967http://dx.doi.org/10.1063/1.4963967]
Seshadrinathan K and Nestares O. 2017. High dynamic range imaging using camera arrays//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE: 725-729[DOI: 10.1109/ICIP.2017.8296376http://dx.doi.org/10.1109/ICIP.2017.8296376]
Sharif S M A, Naqvi R A, Biswas M and Kim S. 2021. A two-stage deep network for high dynamic rangeimage reconstruction//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 550-559[DOI: 10.1109/CVPRW53098.2021.00067http://dx.doi.org/10.1109/CVPRW53098.2021.00067]
Shen R, Cheng I and Basu A. 2013. QoE-based multi-exposure fusion in hierarchical multivariate Gaussian CRF. IEEE Transactions on Image Processing, 22(6): 2469-2478[DOI: 10.1109/tip.2012.2236346]
Shen X Y, Hertzmann A, Jia J Y, Paris S, Price B, Shechtman E and Sachs I. 2016. Automatic portrait segmentation for image stylization. Computer Graphics Forum, 35(2): 93-102[DOI: 10.1111/cgf.12814]
Shen X Y, Tao X, Gao H Y, Zhou C and Jia J Y. 2016b. Deep automatic portrait matting//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 92-107[DOI: 10.1007/978-3-319-46448-0_6http://dx.doi.org/10.1007/978-3-319-46448-0_6]
Shi S X, Ding J F, Atkinson C, Soria J and New T H. 2018b. A detailed comparison of single-camera light-field PIV and tomographic PIV. Experiments in Fluids, 59(3): #46[DOI: 10.1007/s00348-018-2500-9]
Shi S X, Ding J F and New T H. 2016a. Dense ray tracing based reconstruction algorithm for light field PIV and comparative study with Tomo-PIV//The 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. Lisbon, Portugal: [s. n.]
Shi S X, Ding J F, New T H, Liu Y and Zhang H M. 2019. Volumetric calibration enhancements for single-camera light-field PIV. Experiments in Fluids, 60(1): #21[DOI: 10.1007/s00348-018-2670-5]
Shi S X, Ding J F, New T H and Soria J. 2017. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique. Experiments in Fluids, 58(7): #78[DOI: 10.1007/s00348-017-2365-3]
Shi S X, Wang J H, Ding J F, Zhao Z and New T H. 2016b. Parametric study on light field volumetric particle image velocimetry. Flow Measurement and Instrumentation, 49: 70-88[DOI: 10.1016/j.flowmeasinst.2016.05.006]
Shi S X, Xu S M, Zhao Z, Niu X F and Quinn M K. 2018a. 3D surface pressure measurement with single light-field camera and pressure-sensitive paint. Experiments in Fluids, 59(5): #79[DOI: 10.1007/s00348-018-2534-z]
Shi W, Loy C C and Tang X O. 2016c. Deep specialized network for illuminant estimation//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 371-387[DOI: 10.1007/978-3-319-46493-0_23http://dx.doi.org/10.1007/978-3-319-46493-0_23]
Shin C, Jeon H G, Yoon Y, Kweon I S and Kim S J. 2018c. EPINET: a fully-convolutional neural network using epipolar geometry for depth from light field images//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 4748-4757[DOI: 10.1109/CVPR.2018.00499http://dx.doi.org/10.1109/CVPR.2018.00499]
Shogenji R, Kitamura Y, Yamada K, Miyatake S and Tanida J. 2004. Multispectral imaging using compact compound optics. Optics Express, 12(8): 1643-1655[DOI: 10.1364/opex.12.001643]
Sitzmann V, Diamond S, Peng Y, Dun X, Boyd S, Heidrich W, Heide F and Wetzstein, G. 2018. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Transactions on Graphics (TOG), 37(4): 1-13[DOI: https://doi.org/10.1145/3197517.3201333]
Song H Y, Ma Y G, Han Y B, Shen W D, Zhang W Y, Li Y H, Liu X, Peng Y F and Hao X. 2021. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments. Advanced Theory and Simulations, 4(3): #2000299[DOI: 10.1002/adts.202000299]
Song M L, Tao D C, Chen C, Bu J J, Luo J B and Zhang C Q. 2012. Probabilistic exposure fusion. IEEE Transactions on Image Processing, 21(1): 341-357[DOI: 10.1109/tip.2011.2157514]
Song Z X, Wu Q, Wang X and Wang Q. 2021.3D reconstruction with circular light field by using 3D hough transformation. Journal of Northwestern Polytechnical University, 39(1): 135-140
宋征玺, 吴淇, 王雪, 王庆. 2021. 基于三维霍夫变换的环形光场三维重建. 西北工业大学学报, 39(1): 135-140[DOI: 10.3969/j.issn.1000-2758.2021.01.017]
Stiebel T and Merhof D. 2020. Deep optimal filter responses for multi-spectral imaging//Proceedings of the London Imaging Meeting 2020: Future Colour Imaging. [s. l.]: Society for Imaging Science and Technology: 134-138[DOI: 10.2352/issn.2694-118X.2020.LIM-14http://dx.doi.org/10.2352/issn.2694-118X.2020.LIM-14]
Strecke M, Alperovich A and Goldluecke B. 2017. Accurate depth and normal maps from occlusion-aware focal stack symmetry//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 2529-2537[DOI: 10.1109/CVPR.2017.271http://dx.doi.org/10.1109/CVPR.2017.271]
Suda T, Tanaka M, Monno Y and Okutomi M. 2021. Deep snapshot HDR imaging using multi-exposure color filter array//Proceedings of the 15th Asian Conference on Computer Vision. Kyoto, Japan: Springer: 353-370[DOI: 10.1007/978-3-030-69532-3_22http://dx.doi.org/10.1007/978-3-030-69532-3_22]
Sun B, Yan J C, Zhou X and Zheng Y Q. 2021a. Tuning IR-cut filter for illumination-aware spectral reconstruction from RGB//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 84-93[DOI: 10.1109/CVPR46437.2021.00015http://dx.doi.org/10.1109/CVPR46437.2021.00015]
Sun J, Xu C L, Zhang B, Hossain M, Wang S M, Qi H and Tan H P. 2016. Three-dimensional temperature field measurement of flame using a single light field camera. Optics Express, 24(2): 1118-1132[DOI: 10.1364/OE.24.001118]
Sun Q. 2021c. End-to-end Optics Design for Computational Cameras//KAUST Research Repository[DOI: https://doi.org/10.25781/KAUST-23EL6https://doi.org/10.25781/KAUST-23EL6]
Sun Q L, Dun X, Peng Y F and Heidrich W. 2018. Depth and transient imaging with compressive SPAD array cameras//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 273-282[DOI: 10.1109/CVPR.2018.00036http://dx.doi.org/10.1109/CVPR.2018.00036]
Sun Q L, Dun X, Peng Y Fand Heidrich W. 2019. Optical coding of SPAD array and its application in compressive depth and transient imaging//Proceedings of SPIE 11187, Optoelectronic Imaging and Multimedia Technology VI. [s. l.]: SPIE: #111870[DOI: 10.1117/12.2538783http://dx.doi.org/10.1117/12.2538783]
Sun Q L, Tseng E, Fu Q, Heidrich W and Heide F. 2020a. Learning rank-1 diffractive optics for single-shot high dynamic range imaging//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 1383-1393[DOI: 10.1109/CVPR42600.2020.00146http://dx.doi.org/10.1109/CVPR42600.2020.00146]
Sun Q L, Wang C L, Fu Q, Dun X and Heidrich W. 2021b. End-to-end complex lens design with differentiate ray tracing. ACM Transactions on Graphics, 40(4): #71[DOI: 10.1145/3450626.3459674]
Sun Q L, Zhang J, Dun X, Ghanem B, Peng Y F and Heidrich W. 2020b. End-to-end learned, optically coded super-resolution SPAD camera. ACM Transactions on Graphics, 39(2): #9[DOI: 10.1145/3372261]
Sun W, Han C S, Jin X F, Lyu H Y and Liu H Y. 2018. HDR imaging method of overcoming full well limitation for push-broom remote sensing cameras. Optics and Precision Engineering, 26 (4): 944-950
孙武, 韩诚山, 晋学飞, 吕恒毅, 刘海龙. 2018. 推扫式遥感相机超满阱大动态范围成像. 光学精密工程, 26(4): 944-950[DOI: 10.3788/OPE.20182604.0944]
Tajima K, Shimano T, Nakamura Y, Sao M Y and Hoshizawa T. 2017. Lensless light-field imaging with multi-phased fresnel zone aperture//Proceedings of 2017 IEEE International Conference on Computational Photography. Stanford, USA: IEEE: 1-7[DOI: 10.1109/ICCPHOT.2017.7951485http://dx.doi.org/10.1109/ICCPHOT.2017.7951485]
Tan H L, Xiao H X, Lai S M, Liu Y and Zhang M J. 2019. Deep residual learning for burst denoising//Proceedings of the 4th International Conference on Image, Vision and Computing. Xiamen, China: IEEE: 156-161[DOI: 10.1109/ICIVC47709.2019.8981310http://dx.doi.org/10.1109/ICIVC47709.2019.8981310]
Tanida J, Kumagai T, Yamada K, Miyatake S, Ishida K, Morimoto T, Kondou N, Miyazaki D and Ichioka Y. 2001. Thin observation module by bound optics (TOMBO): concept and experimental verification. Applied Optics, 40(11): 1806-1813[DOI: 10.1364/ao.40.001806]
Tao M W, Hadap S, Malik J and Ramamoorthi R. 2013. Depth from combining defocus and correspondence using light-field cameras//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE: 673-680[DOI: 10.1109/ICCV.2013.89http://dx.doi.org/10.1109/ICCV.2013.89]
Thomason C M, Fahringer T W, Johnson K C and Thurow B S. 2014. Modeling the effect of refraction at a flat interface on plenoptic particle reconstruction//Proceedings of the 30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Atlanta, USA: AIAA: #2662[DOI: 10.2514/6.2014-2662http://dx.doi.org/10.2514/6.2014-2662]
Ting J, Wu X S, Hu K K and Zhang H. 2021. Deep snapshot HDR reconstruction based on the polarization camera//Proceedings of 2021 IEEE International Conference on Image Processing. Anchorage, USA: IEEE: #9506314[DOI: 10.1109/ICIP42928.2021.9506314http://dx.doi.org/10.1109/ICIP42928.2021.9506314]
Tocci M D, Kiser C, Tocci N and Sen P. 2011. A versatile HDR video production system. ACM Transactions on Graphics, 30(4): #41[DOI: 10.1145/2010324.1964936]
Tseng E, Mosleh A, Mannan F, St-Arnaud K, Sharma A, Peng Y F, Braun A, Nowrouzezahrai D, Lalonde J F and Heide F. 2021. Differentiable compound optics and processing pipeline optimization for end-to-end camera design. ACM Transactions on Graphics, 40(2): #18[DOI: 10.1145/3446791]
Tumblin J, Hodgins J K and Guenter B K. 1999. Two methods for display of high contrast images. ACM Transactions on Graphics, 18(1): 56-94[DOI: 10.1145/300776.300783]
Tumblin J and Turk G. 1999. LCIS: a boundary hierarchy for detail-preserving contrast reduction//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM: 83-90[DOI: 10.1145/311535.311544http://dx.doi.org/10.1145/311535.311544]
Vaish V, Wilburn B, Joshi N and Levoy M. 2004. Using plane + parallax for calibrating dense camera arrays//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR 2004). Washington, USA: IEEE: #1315006[DOI: 10.1109/CVPR.2004.1315006http://dx.doi.org/10.1109/CVPR.2004.1315006]
van de Weijer J, Gevers T and Gijsenij A. 2007. Edge-based color constancy. IEEE Transactions on Image Processing, 16(9): 2207-2214[DOI: 10.1109/TIP.2007.901808]
Varkonyi-Koczy A R, Rovid A and Hashimoto T. 2008. Gradient-based synthesized multiple exposure time color HDR image. IEEE Transactions on Instrumentation and Measurement, 57(8): 1779-1785[DOI: 10.1109/tim.2008.925715]
Vinker Y, Huberman-Spiegelglas I and Fattal R. 2021. Unpaired learning for high dynamic range image tone mapping//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 14637-14646[DOI: 10.1109/ICCV48922.2021.01439http://dx.doi.org/10.1109/ICCV48922.2021.01439]
Wadhwa N, Garg R, Jacobs D E, Feldman B E, Kanazawa N, Carroll R, Movshovitz-Attias Y, Barron J T, Pritch Y and Levoy M. 2018. Synthetic depth-of-field with a single-camera mobile phone. ACM Transactions on Graphics, 37(4): #64[DOI: 10.1145/3197517.3201329]
Wagadarikar A, John R, Willett R and Brady D. 2008. Single disperser design for coded aperture snapshot spectral imaging. Applied Optics, 47(10): 44-51[DOI: 10.1364/AO.47.000B44]
Wang F and Yan L M. 2019. Tone mapping algorithm combining luminance partitioning and guiding filtering. Chinese Journal of Liquid Crystals and Displays, 34(10): 1000-1005
王峰, 严利民. 2019. 一种亮度分区和导向滤波相结合的色调映射算法. 液晶与显示, 34(10): 1000-1005[DOI: 10.3788/YJYXS20193410.1000]
Wang H M, Qiao H, Lin J Y, Wu R H, Liu Y B and Dai Q H. 2021. Model study of transient imaging with multi-frequency time-of-flight sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10): 3523-3539[DOI: 10.1109/tpami.2020.2981574]
Wang J, Sankaranarayanan A C, Gupta M and Narasimhan S G. 2016b. Dual structured light 3D using a 1D sensor//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 383-398[DOI: 10.1007/978-3-319-46466-4_23http://dx.doi.org/10.1007/978-3-319-46466-4_23]
Wang J, Xue T F, Barron J T and Chen J W. 2019a. Stereoscopic dark flash for low-light photography//Proceedings of 2019 IEEE International Conference on Computational Photography. Tokyo, Japan: IEEE: 1-10[DOI: 10.1109/ICCPHOT.2019.8747337http://dx.doi.org/10.1109/ICCPHOT.2019.8747337]
Wang L Z, Xiong Z W, Huang H, Shi G M, Wu F and Zeng W J. 2019b. High-speed hyperspectral video acquisition by combining nyquist and compressive sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4): 857-870[DOI: 10.1109/tpami.2018.2817496]
Wang L Z, Xiong Z W, Shi G M, Wu F and Zeng W J. 2017. Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(10): 2104-2111[DOI: 10.1109/tpami.2016.2621050]
Wang T C, Efros A A and Ramamoorthi R. 2016a. Depth estimation with occlusion modeling using light-field cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11): 2170-2181[DOI: 10.1109/TPAMI.2016.2515615]
Wang Y J, Chen H Z, Liu Y Y, Sun H H, Yang Z Y and He S W. 2014. Application of DMD to high dynamic scene image detection system. Optics and Precision Engineering, 22(9): 2508-2517
王延杰, 陈怀章, 刘艳滢, 孙宏海, 杨振永, 何舒文. 2014. 数字微镜器件在高动态辐射场景成像探测系统中的应用. 光学精密工程, 22(9): 2508-2517[DOI: 10.3788/OPE.20142209.2508]
Wang Y L, Liu F, Zhang K B, Hou G Q, Sun Z N and Tan T N. 2018. LFNet: a novel bidirectional recurrent convolutional neural network for light-field image super-resolution. IEEE Transactions on Image Processing, 27(9): 4274-4286[DOI: 10.1109/TIP.2018.2834819]
Wang Z, Yi S, Chen A, Zhou M, Luk T S, James A, Nogan J, Ross, W, Joe G, Shahsafi A, Wang K X, Kats M A and Yu Z F. 2019c. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nature Communications, 10(1): #1020[DOI: 10.1038/s41467-019-08994-5]
Wanner S and Goldluecke B. 2014. Variational light field analysis for disparity estimation and super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3): 606-619[DOI: 10.1109/TPAMI.2013.147]
Wei K X, Fu Y, Yang J L and Huang H. 2020. A physics-based noise formation model for extreme low-light raw denoising//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 2755-2764[DOI: 10.1109/CVPR42600.2020.00283http://dx.doi.org/10.1109/CVPR42600.2020.00283]
Wei M, Sarhangnejad N, Xia Z F, Gusev N, Katic N, Genov R and Kutulakos K N. 2018. Coded two-bucket cameras for computer vision//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 55-73[DOI: 10.1007/978-3-030-01219-9_4http://dx.doi.org/10.1007/978-3-030-01219-9_4]
Wilburn B, Joshi N, Vaish V, Talvala E V, Antunez E, Barth A, Adams A, Horowitz M and Levoy M. 2005. High performance imaging using large camera arrays. ACM Transactions on Graphics, 24(3): 765-776[DOI: 10.1145/1073204.1073259]
Williams C, Gordon G S D, Wilkinson T D and Bohndiek S E. 2019. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays. ACS Photonics, 6(12): 3132-3141[DOI: 10.1021/acsphotonics.9b01196]
Williem W and Park I K. 2016. Robust light field depth estimation for noisy scene with occlusion//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 4396-4404[DOI: 10.1109/CVPR.2016.476http://dx.doi.org/10.1109/CVPR.2016.476]
Wronski B, Garcia-Dorado I, Ernst M, Kelly D, Krainin M, Liang C K, Levoy M and Milanfar P. 2019. Handheld multi-frame super-resolution. ACM Transactions on Graphics, 38(4): #28[DOI: 10.1145/3306346.3323024]
Wu G C, Liu Y B, Fang L, Dai Q H and Chai T Y. 2019a. Light field reconstruction using convolutional network on EPI and extended applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(7): 1681-1694[DOI: 10.1109/TPAMI.2018.2845393]
Wu G C, Masia B, Jarabo A, Zhang Y C, Wang L Y, Dai Q H, Chai T Y and Liu Y B. 2017b. Light field image processing: an overview. IEEE Journal of Selected Topics in Signal Processing, 11(7): 926-954[DOI: 10.1109/JSTSP.2017.2747126]
Wu J C, Zhang H, Zhang W H, Jin G F, Cao L C and Barbastathis G. 2020a. Single-shot lensless imaging with fresnel zone aperture and incoherent illumination. Light: Science and Applications, 9(1): #53[DOI: 10.1038/s41377-020-0289-9]
Wu J M, Lu Z, Jiang D, Guo Y D, Qiao H, Zhang Y, Zhu T Y, Cai Y Y, Zhang X, Zhanghao K, Xie H, Yan T, Zhang G X, Li X X, Jiang Z, Lin X, Fang L, Zhou B, Xi P, Fan J T, Yu L and Dai Q H. 2021. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell, 184(12): 3318-3332[DOI: 10.1016/j.cell.2021.04.029]
Wu R. 2020. Research on Multi-Exposure HDR Imaging Algorithm Based on Convolutional Neural Network. Chengdu: University of Electronic Science and Technology
吴蕊. 2020. 基于卷积神经网络的多曝光HDR成像算法研究. 成都: 电子科技大学
Wu X M, Fang J Y, Xu H S and Wang Z H. 2017a. High dynamic range image reconstruction in device-independent color space based on camera colorimetric characterization. Optik, 140: 776-785[DOI: 10.1016/j.ijleo.2017.05.016]
Wu X S, Zhang H, Hu X P, Shakeri M, Fan C and Ting J. 2020b. HDR reconstruction based on the polarization camera. IEEE Robotics and Automation Letters, 5(4): 5113-5119[DOI: 10.1109/LRA.2020.3005379]
Wu Y C, Boominathan V, Chen H J, Sankaranarayanan A and Veeraraghavan A. 2019b. PhaseCam3D—learning phase masks for passive single view depth estimation//Proceedings of 2019 IEEE International Conference on Computational Photography. Tokyo, Japan: IEEE: 1-12[DOI: 10.1109/ICCPHOT.2019.8747330http://dx.doi.org/10.1109/ICCPHOT.2019.8747330]
Xia Z H, Gharbi M, Perazzi F, Sunkavalli K and Chakrabarti A. 2021. Deep denoising of flash and no-flash pairs for photography in low-light environments//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 2063-2072[DOI: 10.1109/CVPR46437.2021.00210http://dx.doi.org/10.1109/CVPR46437.2021.00210]
Xia Z H, Perazzi F, Gharbi M, Sunkavalli K and Chakrabarti A. 2020. Basis prediction networks for effective burst denoising with large kernels//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 11841-11850[DOI: 10.1109/CVPR42600.2020.01186http://dx.doi.org/10.1109/CVPR42600.2020.01186]
Xiong J H, Wang J, Heidrich W and Nayar S. 2021. Seeing in extra darkness using a deep-red flash//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 9995-10004[DOI: 10.1109/CVPR46437.2021.00987http://dx.doi.org/10.1109/CVPR46437.2021.00987]
Xu M and Hua H. 2017. High dynamic range head mounted display based on dual-layer spatial modulation. Optics Express, 25(19): 23320-23333[DOI: https://doi.org/10.1364/OE.25.023320]
Xu Y and Aliaga D G. 2007. Robust pixel classification for 3D modeling with structured light//Proceedings of Graphics Interface 2007. Montreal, Canada: ACM: 233-240[DOI: 10.1145/1268517.1268556http://dx.doi.org/10.1145/1268517.1268556]
Xu Y and Aliaga D G. 2009. An adaptive correspondence algorithm for modeling scenes with strong interreflections. IEEE Transactions on Visualization and Computer Graphics, 15(3): 465-480[DOI: 10.1109/tvcg.2008.97]
Yamashita T and Fujita Y. 2017. HDR video capturing system with four image sensors. ITE Transactions on Media Technology and Applications, 5(4): 141-146[DOI: 10.3169/mta.5.141]
Yan Q, Shen X Y, Xu L, Zhuo S J, Zhang X P, Shen L and Jia J Y. 2013. Cross-field joint image restoration via scale map//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE: 1537-1544[DOI: 10.1109/ICCV.2013.194http://dx.doi.org/10.1109/ICCV.2013.194]
Yang Z D, Wang P, Li X H and Sun C K. 2014.3D laser scanner system using high dynamic range imaging. Optics and Lasers in Engineering, 54: 31-41[DOI: 10.1016/j.optlaseng.2013.09.003]
Yang Z Y, Albrow-Owen T, Cui H X, Alexander-Webber J, Gu F X, Wang X M,Wu T C, Zhuge M H, Williams C, Wang P, Zayats A V, Cai W W, Dai L, Hofmann S, Overend M, Tong L M, Yang Q, Sun Z P and Hasan T. 2019. Single-nanowire spectrometers. Science, 365(6457): 1017-1020[DOI: 10.1126/science.aax8814]
Ye N J. 2020. Research on HDR Imaging Method Based on Deep Learning. Chengdu: University of Electronic Science and Technology
叶年进. 2020. 基于深度学习的HDR成像方法研究. 成都: 电子科技大学
Ye N J, Huo Y Q, Liu S C and Li H L. 2021. Single exposure high dynamic range image reconstruction based on deep dual-branch network. IEEE Access, 9: 9610-9624[DOI: 10.1109/ACCESS.2021.3049480]
Yee Y H and Pattanaik S. 2003. Segmentation and adaptive assimilation for detail-preserving display of high-dynamic range images. The Visual Computer, 19(7): 457-466[DOI: 10.1007/s00371-003-0211-5]
Yoon Y, Jeon H G, Yoo D, Lee J Y and Kweon I S. 2015. Learning a deep convolutional network for light-field image super-resolution//Proceedings of 2015 IEEE International Conference on Computer Vision Workshops. Santiago, Chile: IEEE: 57-65[DOI: 10.1109/ICCVW.2015.17http://dx.doi.org/10.1109/ICCVW.2015.17]
Yu N F and Capasso F. 2014. Flat optics with designer metasurfaces. Nature Materials, 13(2): 139-150[DOI: 10.1038/nmat3839]
Zarghami M, Gasparini L, Perenzoni M and Pancheri L. 2019. High dynamic range imaging with TDC-Based CMOS SPAD arrays. Instruments, 3(3): #38[DOI: 10.3390/instruments3030038]
Zhang D H and Huo Y Q. 2018. High dynamic range image generation or dynamic scenes. Journal of Computer-Aided Design and Computer Graphics, 30(9): 1625-1636
张登辉, 霍永青. 2018. 动态场景的高动态范围图像生成. 计算机辅助设计与图形学学报, 30(9): 1625-1636[DOI: 10.3724/SP.J.1089.2018.16895]
Zhang J S and Lalonde J F. 2017. Learning high dynamic range from outdoor panoramas//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 4529-4538[DOI: 10.1109/ICCV.2017.484http://dx.doi.org/10.1109/ICCV.2017.484]
Zhang N, Wang C, Zhao Y and Wang R G. 2019a. Deep tone mapping network in HSV color space//Proceedings of 2019 IEEE Visual Communications and Image Processing. Sydney, Australia: IEEE: 1-4[DOI: 10.1109/VCIP47243.2019.8965992http://dx.doi.org/10.1109/VCIP47243.2019.8965992]
Zhang Q, Li H D, Wang X and Wang Q. 2021a. 3D scene reconstruction with an un-calibrated light field camera. International Journal of Computer Vision, 129(11): 3006-3026[DOI: 10.1007/s11263-021-01516-1]
Zhang Q, Ling J B, Wang Q and Yu J Y. 2019b. Ray-space projection model for light field camera//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 10113-10121[DOI: 10.1109/CVPR.2019.01036http://dx.doi.org/10.1109/CVPR.2019.01036]
Zhang Q and Wang Q. 2018. Common self-polar triangle of concentric conics for light field camera calibration//Proceedings of the 14th Asian Conference on Computer Vision. Perth, Australia: Springer: 18-33[DOI: 10.1007/978-3-030-20876-9_2http://dx.doi.org/10.1007/978-3-030-20876-9_2]
Zhang Q and Wang Q. 2021. Common self-polar triangle of separate circles for light field camera calibration. Journal of Northwestern Polytechnical University, 39(3): 521-528
张琦, 王庆. 2021. 基于离心圆共自配极三角形的光场相机标定. 西北工业大学学报, 39(3): 521-528[DOI: 10.3969/j.issn.1000-2758.2021.03.008]
Zhang Q, Zhang C P, Ling J B, Wang Q and Yu J Y. 2019c. A generic multi-projection-center model and calibration method for light field cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(11): 2539-2552[DOI: 10.1109/TPAMI.2018.2864617]
Zhang S, Lin Y F and Sheng H. 2019d. Residual networks for light field image super-resolution//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 11038-11047[DOI: 10.1109/CVPR.2019.01130http://dx.doi.org/10.1109/CVPR.2019.01130]
Zhang S, Sheng H, Li C, Zhang J and Xiong Z. 2016. Robust depth estimation for light field via spinning parallelogram operator. Computer Vision and Image Understanding, 145: 148-159[DOI: 10.1016/j.cviu.2015.12.007]
Zhang S F, Ding W X, Han Z X, Liu M Y and Guo Z P. 2018. A generating method of high dynamic range images using principal component analysis and gradient pyramid. Journal of Xi'an Jiaotong University, 52(4): 150-157
张淑芳, 丁文鑫, 韩泽欣, 刘孟娅, 郭志鹏. 2018. 采用主成分分析与梯度金字塔的高动态范围图像生成方法. 西安交通大学学报, 52(4): 150-157[DOI: 10.7652/xjtuxb201804022]
Zhang W Y, SongH Y, He X, Huang L Q, Zhang X Y, Zheng J Y, Shen W D, Hao X and Liu X. 2021b. Deeply learned broadband encoding stochastic hyperspectral imaging. Light: Science and Applications, 10(1): #108[DOI: 10.1038/s41377-021-00545-2]
Zhang Y, Lau D and Wipf D. 2021c. Sparse multi-path corrections in fringe projection profilometry//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE: 13339-13348[DOI: 10.1109/CVPR46437.2021.01314http://dx.doi.org/10.1109/CVPR46437.2021.01314]
Zhang Y, Lau D L and Yu Y. 2019e. Causes and corrections for bimodal multi-path scanning with structured light//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 4426-4434[DOI: 10.1109/CVPR.2019.00456http://dx.doi.org/10.1109/CVPR.2019.00456]
Zhang Y B, Lv H J, Liu Y B, Wang H Q, Wang X Z, Huang Q, Xiang X G and Dai Q H. 2017. Light-field depth estimation via epipolar plane image analysis and locally linear embedding. IEEE Transactions on Circuits and Systems for Video Technology, 27(4): 739-747[DOI: 10.1109/TCSVT.2016.2555778]
Zhao Y Y, Li H T, Mei D and Shi K. 2020. Metric calibration of unfocused plenoptic cameras for three-dimensional shape measurement. Optical Engineering, 59(7): #073104[DOI: 10.1117/1.OE.59.7.073104]
Zhao Y Y and Shi S X. 2020. Light-field image super-resolution based on multi-scale feature fusion. Opto-Electronic Engineering, 47(12): #200007
赵圆圆, 施圣贤. 2020. 融合多尺度特征的光场图像超分辨率方法. 光电工程, 47(12): #200007[DOI: 10.12086/oee.2020.200007]
Zhao Z, Buchner A J, Atkinson C, Shi S X and Soria J. 2019. Volumetric measurements of a self-similar adverse pressure gradient turbulent boundary layer using single-camera light-field particle image velocimetry. Experiments in Fluids, 60(9): #141[DOI: 10.1007/s00348-019-2788-0]
Zhao Z, Ding J F, Shi S X, Kaufmann R and Ganapathisubramani B. 2021. Volumetric flow characterisation of a rectangular orifice impinging synthetic jet with single-camera light-field PIV. Experimental Thermal and Fluid Science, 123: #110327[DOI: 10.1016/j.expthermflusci.2020.110327]
Zhao Z and Shi S X. 2021. Volumetric calibration for scheimpflug light-field PIV. Experiments in Fluids, 62(12): #251[DOI: 10.1007/s00348-021-03350-0]
Zheng Y J, Zheng L X, Yu Z F, Shi B X, Tian Y H and Huang T J. 2021. High-speed image reconstruction through short-term plasticity for spiking cameras//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: 6354-6363[DOI: 10.1109/CVPR46437.2021.00629http://dx.doi.org/10.1109/CVPR46437.2021.00629]
Zhou P, Yang Z, Cai W J, Yu Y L and Zhou G Q. 2019. Light field calibration and 3D shape measurement based on epipolar-space. Optics Express, 27(7): 10171-10184[DOI: 10.1364/OE.27.010171]
Zhou T H, Brown M, Snavely N and Lowe D G. 2017. Unsupervised learning of depth and ego-motion from video//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 6612-6619[DOI: 10.1109/CVPR.2017.700http://dx.doi.org/10.1109/CVPR.2017.700]
Zhu B K, Chen Y Y, Wang J Q, Liu S, Zhang B and Tang M. 2017a. Fast deep matting for portrait animation on mobile phone//Proceedings of the 25th ACM International Conference on Multimedia. Mountain View, USA: ACM: 297-305[DOI: 10.1145/3123266.3123286http://dx.doi.org/10.1145/3123266.3123286]
Zhu H and Wang Q. 2016. Accurate disparity estimation in light field using ground control points. Computational Visual Media, 2(2): 173-181[DOI: 10.1007/s41095-016-0052-6]
Zhu H, Wang Q and Yu J Y. 2017b. Light field imaging: models, calibrations, reconstructions, and applications. Frontiers of Information Technology and Electronic Engineering, 18(9): 1236-1249[DOI: 10.1631/FITEE.1601727]
相关文章
相关作者
相关机构