跨模态脑图谱数据融合研究进展
Survey on cross-modal fusion based on brain atlas data
- 2022年27卷第6期 页码:2036-2056
纸质出版日期: 2022-06-16 ,
录用日期: 2022-03-23
DOI: 10.11834/jig.220036
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-06-16 ,
录用日期: 2022-03-23
移动端阅览
罗娜, 宋明, 杨正宜, 蒋田仔. 跨模态脑图谱数据融合研究进展[J]. 中国图象图形学报, 2022,27(6):2036-2056.
Na Luo, Ming Song, Zhengyi Yang, Tianzi Jiang. Survey on cross-modal fusion based on brain atlas data[J]. Journal of Image and Graphics, 2022,27(6):2036-2056.
脑图谱是研究脑结构和功能及脑疾病的基础,不同类型的脑图谱从不同角度提供了脑的组织模式或连接信息。随着图像采集和生物检测技术的发展,不同模态的脑影像和生物组学数据迅速增长。相较于单模态,多模态融合数据能够同时考察不同模态数据间的多元化信息,挖掘蕴含的未知新信息。因此,开展跨模态脑图谱数据融合研究有助于更全面地理解大脑的结构和功能,并辅助加深对脑发育、老化和病变机理的理解。本文根据参与融合的模态是否具有空间信息,将近年来有代表性的跨模态脑图谱融合技术分为脑影像融合和脑数据融合两大类。脑影像融合是指对宏观脑影像(磁共振等)和组织学脑影像(胞体染色、轴突染色等)等具有空间信息的数据进行融合,构建涵盖脑结构和功能信息的跨模态多尺度脑图谱
为研究宏观特征的介观机制以及介观特征的宏观表征提供了重要途径。脑数据融合是指对缺乏脑空间信息的生物大数据,包括基因组、电生理、认知和行为等,利用脑图谱提供精细空间信息,挖掘高维、异构生物大数据蕴含的信息,明确脑图谱的生理意义,并提升其应用价值。本文将针对这两类融合类型阐述国内外有代表性的研究进展,并对比国内外研究现状的差异。此外,为促进跨模态脑图谱数据融合领域的交流和发展,总结了部分有代表性的大样本公开数据集。最后讨论了当前该领域待解决的问题以及未来的发展趋势。
The human brain is the most complex network system in the world. Different types of brain atlas provide brain tissue or connection information from different aspects. With the development of image acquisition and biological detection technology
researchers reveal that combing multi-modal brain data is able to provide more information through exploiting the rich multimodal information that exits
for example it can inform us about how brain structure shapes brain function
in which way they are impacted by psychopathology and which functional or structural aspects of physiology could drive human behavior and cognition. Through summarizing the representative multi-modal brain fusion technologies in recent years
we first divide them into two categories in this review
brain-imaging fusion and brain-data fusion. 1)Brain-imaging fusion refers to the fusion of data with fine spatial information such as brain images (magnetic resonance imaging
etc.) and histological images (cell body staining
axon staining
etc.)
through which could help construct a multi-modal multi-scale brain map covering both structure and function information. For example
the Julich-Brain Atlas
a three-dimensional atlas containing cytoarchitectonic maps of cortical areas and subcortical nuclei
is built through the fusion of magnetic resonance imaging and histological slices
allowing comparison of functional activations
networks
genetic expression patterns
anatomical structures
and other data obtained across different studies in a common stereotaxic reference space. The multiscale brain atlas brings together data from these different levels of nervous system organization to form a better understanding of between-scale relationships of brain structure
function
and behavior in health and disease. 2)Brain-data fusion refers to applying brain atlas with spatial information to fuse biological big data without spatial information (genome
electrophysiology
cognition and behavior
etc.)
through which could help make up the shortcomings from single modality and capitalize on joint information among modalities to dig out new information. For example
combing brain atlas with electroencephalogram data can simultaneously extract signals with high spatial and temporal resolution. For each fusion type discussed above
we elaborate the representative research progress at home and abroad in recent years
as well as their comparison in the current review. Then
in order to promote the development of this filed
we introduce several multi-modal datasets in the community
i.e.
UK Biobank
Human Connectome Project(HCP)
Chinese Imaging Genetics(CHIMGEN)
Adolescent Brain Cognitive Development(ABCD)
Philadelphia Neurodevelopmental Cohort(PNC)
IMAGEN
Pediatric Imaging
Neurocognition
and Genetics(PING)
Autism Brain Imaging Data Exchang(ABIDE)
Alzheimer's Disease Neuroimaging Initiative(ADNI)
ADHD-200
PRIMatE Data Exchange (PRIME-DE)
National Chimpanzee Brain Resource(NCBR)
the Allen Atlas and EBRAINS Reference Atlas. Finally
we discuss the important problems to be solved and the future direction in this field. The common challenge of this filed is how to integrate the information from different scales and modalities to build a multi-modal and cross-scale brain atlas
and how to analyze the neural mechanism of major brain diseases based on the new brain atlas
and forming a new paradigm for brain disorder diagnosis and treatment paradigm at last. To achieve this major goal
1)the acquisition of high-quality big data is the important foundation
which rely on the development of acquisition equipments. 2)The high resolution of data (i.e.
cell and neuron level)raises large storaging and quick processing demands. 3)Developing new fusion methods based on artificial intelligence is also one of the urgent issues in multi-modal fusion research.
脑图谱跨模态空间信息脑影像多组学公开数据集
brain atlascross-modalspatial informationbrain imagingmulti-omicspublic dataset
Alnæs D, Kaufmann T, van der Meer D, Córdova-Palomera A, Rokicki J, Moberget T, Bettella F, Agartz I, Barch D M, Bertolino A, Brandt C L, Cervenka S, Djurovic S, Doan N T, Eisenacher S, Fatouros-Bergman H, Flyckt L, Di Giorgio A, Haatveit B, Jönsson E G, Kirsch P, Lund M J, Meyer-Lindenberg A, Pergola G, Schwarz E, Smeland O B, Quarto T, Zink M, Andreassen O A, Westlye L T and Karolinska Schizophrenia Project Consortium. 2019. Brain heterogeneity in schizophrenia and its association with polygenic risk. JAMA Psychiatry, 76(7): 739-748 [DOI: 10.1001/jamapsychiatry.2019.0257]
Amunts K and Lippert T. 2021. Brain research challenges supercomputing. Science, 374(6571): 1054-1055 [DOI: 10.1126/science.abl8519]
Amunts K, Mohlberg H, Bludau S and Zilles K. 2020. Julich-Brain: a 3D probabilistic atlas of the human brain's cytoarchitecture. Science, 369(6506): 988-992 [DOI: 10.1126/science.abb4588]
Beaty R E, Kenett Y N, Christensen A P, Rosenberg M D, Benedek M, Chen Q L, Fink A, Qiu J, Kwapil T R, Kane M J and Silvia P J. 2018. Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 115(5): 1087-1092 [DOI: 10.1073/pnas.1713532115]
Bore J C, Li P Y, Jiang L, Ayedh W M A, Chen C L, Harmah D J, Yao D Z, Cao Z H and Xu P. 2021. A long short-term memory network for sparse spatiotemporal EEG source imaging. IEEE Transactions on Medical Imaging, 40(12): 3787-3800 [DOI: 10.1109/TMI.2021.3097758]
Brodmann K. 1909. Vergleichende Lokalisationslehre der Grosshirnrinde (in German). Leipzig: Johann Ambrosius Barth
Burt J B, Demirtaş M, Eckner W J, Navejar N M, Ji J L, Martin W J, Bernacchia A, Anticevic A and Murray J D. 2018. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nature Neuroscience, 21(9): 1251-1259 [DOI: 10.1038/s41593-018-0195-0]
Cao X C, Zhang C Q, Fu H Z, Liu S and Zhang H. 2015. Diversity-induced multi-view subspace clustering//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 586-594 [DOI: 10.1109/CVPR.2015.7298657http://dx.doi.org/10.1109/CVPR.2015.7298657]
Du L, Liu F, Liu K F, Yao X H, Risacher S L, Han J W, Guo L, Saykin A J, Shen L and Alzheimer's Disease Neuroimaging Initiative. 2020a. Identifying diagnosis-specific genotype-phenotype associations via joint multitask sparse canonical correlation analysis and classification. Bioinformatics, 36(Supplement1): 371-379 [DOI: 10.1093/bioinformatics/btaa434http://dx.doi.org/10.1093/bioinformatics/btaa434]
Du L, Liu K F, Yao X H, Risacher S L, Han J W, Saykin A J, Guo L and Shen L. 2020b. Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured SCCA approach. Medical Image Analysis, 61: #101656 [DOI: 10.1016/j.media.2020.101656]
Fan J T, Suo J L, Wu J M, Xie H, Shen Y B, Chen F, Wang G J, Cao L C, Jin G F, He Q S, Li T F, Luan G M, Kong L J, Zheng Z R and Dai Q H. 2019. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nature Photonics, 13(11): 809-816 [DOI: 10.1038/s41566-019-0474-7]
Fan L Z, Li H, Zhuo J J, Zhang Y, Wang J J, Chen L F, Yang Z Y, Chu C Y, Xie S M, Laird A R, Fox P T, Eickhoff S B, Yu C S and Jiang T Z. 2016. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cerebral Cortex, 26(8): 3508-3526 [DOI: 10.1093/cercor/bhw157]
Fornito A, Arnatkevičiūt A and Fulcher B D. 2019. Bridging the gap between connectome and transcriptome. Trends in Cognitive Sciences, 23(1): 34-50 [DOI: 10.1016/j.tics.2018.10.005]
Glasser M F, Coalson T S, Robinson E C, Hacker C D, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann C F, Jenkinson M, Smith S M and Van Essen D C. 2016. A multi-modal parcellation of human cerebral cortex. Nature, 536(7615): 171-178 [DOI: 10.1038/nature18933]
Goubran M, Leuze C, Hsueh B, Aswendt M, Ye L, Tian Q Y, Cheng M Y, Crow A, Steinberg G K, McNab J A, Deisseroth K and Zeineh M. 2019. Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nature Communications, 10(1): #5504 [DOI: 10.1038/s41467-019-13374-0]
Grasby K L, Jahanshad N, Painter J N, Colodro-Conde L, Bralten J, Hibar D P, Lind P A, Pizzagalli F, Ching C R K, McMahon M A B, Shatokhina N, Zsembik L C P, Thomopoulos S I, Zhu A H, Strike L T, Agartz I, Alhusaini S, Almeida M A A, Alnæs D, Amlien I K, Andersson M, Ard T, Armstrong N J, Ashley-Koch A, Atkins J R, Bernard M, Brouwer R M, Buimer E E L, Bülow R, Bürger C, Cannon D M, Chakravarty M, Chen Q, Cheung J W, Couvy-Duchesne B, Dale A M, Dalvie S, de Araujo T K, de Zubicaray G I, de Zwarte S M C, den Braber A, Doan N T, Dohm K, Ehrlich S, Engelbrecht H R, Erk S, Fan C C, Fedko I O, Foley S F, Ford J M, Fukunaga M, Garrett M E, Ge T, Giddaluru S, Goldman A L, Green M J, Groenewold N A, Grotegerd D, Gurholt T P, Gutman B A, Hansell N K, Harris M A, Harrison M B, Haswell C C, Hauser M, Herms S, Heslenfeld D J, Ho N F, Hoehn D, Hoffmann P, Holleran L, Hoogman M, Hottenga J J, Ikeda M, Janowitz D, Jansen I E, Jia T Y, Jockwitz C, Kanai R, Karama S, Kasperaviciute D, Kaufmann T, Kelly S, Kikuchi M, Klein M, Knapp M, Knodt A R, Krämer B, Lam M, Lancaster T M, Lee P H, Lett T A, Lewis L B, Lopes-Cendes I, Luciano M, Macciardi F, Marquand A F, Mathias S R, Melzer T R, Milaneschi Y, Mirza-Schreiber N, Moreira J C V, Mühleisen T W, Müller-Myhsok B, Najt P, Nakahara S, Nho K, Olde Loohuis L M, Orfanos D P, Pearson J F, Pitcher T L, Pütz B, Quidé Y, Ragothaman A, Rashid F M, Reay W R, Redlich R, Reinbold C S, Repple J, Richard G, Riedel B C, Risacher S L, Rocha C S, Mota N R, Salminen L, Saremi A, Saykin A J, Schlag F, Schmaal L, Schofield P R, Secolin R, Shapland C Y, Shen L, Shin J, Shumskaya E, Sønderby I E, Sprooten E, Tansey K E, Teumer A, Thalamuthu A, Tordesillas-Gutiérrez D, Turner J A, Uhlmann A, Vallerga C L, van der Meer D, van Donkelaar M M J, van Eijk L, van Erp T G M, van Haren N E M, van Rooij D, van Tol M J, Veldink J H, Verhoef E, Walton E, Wang M Y, Wang Y P, Wardlaw J M, Wen W, Westlye L T, Whelan C D, Witt S H, Wittfeld K, Wolf C, Wolfers T, Wu J Q, Yasuda C L, Zaremba D, Zhang Z, Zwiers M P, Artiges E, Assareh A A, Ayesa-Arriola R, Belger A, Brandt C L, Brown G G, Cichon S, Curran J E, Davies G E, Degenhardt F, Dennis M F, Dietsche B, Djurovic S, Doherty C P, Espiritu R, Garijo D, Gil Y, Gowland P A, Green R C, Häusler A N, Heindel W, Ho B C, Hoffmann W U, Holsboer F, Homuth G, Hosten N, Jack C R Jr, Jang M, Jansen A, Kimbrel N A, Kolskår K, Koops S, Krug A, Lim K O, Luykx J J, Mathalon D H, Mather K A, Mattay V S, Matthews S, Mayoral Van Son J, McEwen S C, Melle I, Morris D W, Mueller B A, Nauck M, Nordvik J E, Nöthen M M, O'Leary D S, Opel N, Martinot M L P, Pike G B, Preda A, Quinlan E B, Rasser P E, Ratnakar V, Reppermund S, Steen V M, Tooney P A, Torres F R, Veltman D J, Voyvodic J T, Whelan R, White T, Yamamori H, Adams H H H, Bis J C, Debette S, Decarli C, Fornage M, Gudnason V, Hofer E, Ikram M A, Launer L, Longstreth W T, Lopez O L, Mazoyer B, Mosley T H, Roshchupkin G V, Satizabal C L, Schmidt R, Seshadri S, Yang Q, Alzheimer's Disease Neuroimaging Initiative, CHARGE Consortium, EPIGEN Consortium, IMAGEN Consortium, SYS Consortium, Parkinson's Progression Markers Initiative, Alvim M K M, Ames D, Anderson T J, Andreassen O A, Arias-Vasquez A, Bastin M E, Baune B T, Beckham J C, Blangero J, Boomsma D I, Brodaty H, Brunner H G, Buckner R L, Buitelaar J K, Bustillo J R, Cahn W, Cairns M J, Calhoun V, Carr V J, Caseras X, Caspers S, Cavalleri G L, Cendes F, Corvin A, Crespo-Facorro B, Dalrymple-Alford J C, Dannlowski U, de Geus E J C, Deary I J, Delanty N, Depondt C, Desrivières S, Donohoe G, Espeseth T, Fernández G, Fisher S E, Flor H, Forstner A J, Francks C, Franke B, Glahn D C, Gollub R L, Grabe H J, Gruber O, Håberg A K, Hariri A R, Hartman C A, Hashimoto R, Heinz A, Henskens F A, Hillegers M H J, Hoekstra P J, Holmes A J, Hong L E, Hopkins W D, Hulshoff Pol H E, Jernigan T L, Jönsson E G, Kahn R S, Kennedy M A, Kircher T T J, Kochunov P, Kwok J B J, Le Hellard S, Loughland C M, Martin N G, Martinot J L, McDonald C, McMahon K L, Meyer-Lindenberg A, Michie P T, Morey R A, Mowry B, Nyberg L, Oosterlaan J, Ophoff R A, Pantelis C, Paus T, Pausova Z, Penninx B, Polderman T J C, Posthuma D, Rietschel M, Roffman J L, Rowland L M, Sachdev P S, Sämann P G, Schall U, Schumann G, Scott R J, SimK, Sisodiya S M, Smoller J W, Sommer I E, St Pourcain B, Stein D J, Toga A W, Trollor J N, Van der Wee N J A, van't Ent D, Völzke H, Walter H, Weber B, Weinberger D R, Wright M J, Zhou J, Stein J L, Thompson P M, Medland S E and Enhancing NeuroImaging Genetics through Meta-Analysis Consortium-Genetics Working Group. 2020. The genetic architecture of the human cerebral cortex. Science, 367(6484): #6690 [DOI: 10.1126/science.aay6690]
Grove J, Ripke S, Als T D, Mattheisen M, Walters R K, Won H, Pallesen J, Agerbo E, Andreassen O A, Anney R, Awashti S, Belliveau R, Bettella F, Buxbaum J D, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Christensen J H, Churchhouse C, Dellenvall K, Demontis D, De Rubeis S, Devlin B, Djurovic S, Dumont A L, Goldstein J I, Hansen C S, Hauberg M E, Hollegaard M V, Hope S, Howrigan D P, Huang H L, Hultman C M, Klei L, Maller J, Martin J, Martin A R, Moran J L, Nyegaard M, Nærland T, Palmer D S, Palotie A, Pedersen C B, Pedersen M G, Dpoterba T, Poulsen J B, Pourcain B S, Qvist P, Rehnström K, Reichenberg A, Reichert J, Robinson E B, Roeder K, Roussos P, Saemundsen E, Sandin S, Satterstrom F K, Davey Smith G, Stefansson H, Steinberg S, Stevens C R, Sullivan P F, Turley P, Walters G B, Xu X Y, Autism Spectrum Disorder Working Group of the Psychiatric Genomics Consortium, Bupgen, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, 23andMe Research Team, Stefansson K, Geschwind D H, Nordentoft M, Hougaard D M, Werge T, Mors O, Mortensen P B, Neale B M, Daly M J and Børglum A D. 2019. Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51(3): 431-444 [DOI: 10.1038/s41588-019-0344-8]
Hao X K, Bao Y J, Guo Y C, Yu M, Zhang D Q, Risacher S L, Saykin A J, Yao X H, Shen L and Alzheimer's Disease Neuroimaging Initiative. 2020. Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease. Medical Image Analysis, 60: #101625 [DOI: 10.1016/j.media.2019.101625]
Harms M P, Somerville L H, Ances B M, Andersson J, Barch D M, Bastiani M, Bookheimer S Y, Brown T B, Buckner R L, Burgess G C, Coalson T S, Chappell M A, Dapretto M, Douaud G, Fischl B, Glasser M F, Greve D N, Hodge C, Jamison K W, Jbabdi S, Kandala S, Li X F, Mair R W, Mangia S, Marcus D, Mascali D, Moeller S, Nichols T E, Robinson E C, Salat D H, Smith S M, Sotiropoulos S N, Terpstra M, Thomas K M, Tisdall M D, Ugurbil K, van der Kouwe A, Woods R P, Zöllei L, Van Essen D C and Yacoub E. 2018. Extending the human connectome project across ages: imaging protocols for the lifespan development and aging projects.NeuroImage, 183: 972-984 [DOI: 10.1016/j.neuroimage.2018.09.060]
Hawrylycz M J, Lein E S, Guillozet-Bongaarts A L, Shen E H, Ng L, Miller J A, van de Lagemaat L N, Smith K A, Ebbert A, Riley Z L, Abajian C, Beckmann C F, Bernard A, Bertagnolli D, Boe A F, Cartagena P M, Chakravarty M M, Chapin M, Chong J, Dalley R A, Daly B D, Dang C, Datta S, Dee N, Dolbeare T A, Faber V, Feng D, Fowler D R, Goldy J, Gregor B W, Haradon Z, Haynor D R, Hohmann J G, Horvath S, Howard R E, Jeromin A, Jochim J M, Kinnunen M, Lau C, Lazarz E T, Lee C, Lemon T A, Li L, Li Y, Morris J A, Overly C C, Parker P D, Parry S E, Reding M, Royall J J, Schulkin J, Sequeira P A, Slaughterbeck C R, Smith S C, Sodt A J, Sunkin S M, Swanson B E, Vawter M P, Williams D, Wohnoutka P, Zielke H R, Geschwind D H, Hof P R, Smith S M, Koch C, Grant S G N and Jones A R. 2012. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489(7416): 391-399 [DOI: 10.1038/nature11405]
Howell B R, Styner M A, Gao W, Yap P T, Wang L, Baluyot K, Yacoub E, Chen G, Potts T, Salzwedel A, Li G, Gilmore J H, Piven J, Smith J K, Shen D G, Ugurbil K, Zhu H T, Lin W L and Elison J T. 2019. The UNC/UMN baby connectome project (BCP): an overview of the study design and protocol development. NeuroImage, 185: 891-905 [DOI: 10.1016/j.neuroimage.2018.03.049]
Jiang R T, Calhoun V D, Zuo N M, Lin D D, Li J, Fan L Z, Qi S L, Sun H L, Fu Z N, Song M, Jiang T Z and Sui J. 2018. Connectome-based individualized prediction of temperament trait scores. NeuroImage, 183: 366-374 [DOI: 10.1016/j.neuroimage.2018.08.038]
Jiang L H, Wang M, Lin S, and Aaron E R. 2020. A quantitative proteome map of the human body. Cell, 183(1): 269-283
Jie B, Zhang D Q, Cheng B, Shen D G and Alzheimer's Disease Neuroimaging Initiative. 2015. Manifold regularized multitask feature learning for multimodality disease classification. Human Brain Mapping, 36(2): 489-507 [DOI: 10.1002/hbm.22642]
Johnson E C B, Dammer E B, Duong D M, Ping L Y, Zhou M T, Yin L M, Higginbotham L A, Guajardo A, White B, Troncoso J C, Thambisetty M, Montine T J, Lee E B, Trojanowski J Q, Beach T G, Reiman E M, Haroutunian V, Wang M H, Schadt E, ZhangB, Dickson D W, Ertekin-Taner N, Golde T E, Petyuk V A, De Jager P L, Bennett D A, Wingo T S, Rangaraju S, Hajjar I, Shulman J M, Lah J J, Levey A I and Seyfried N T. 2020. Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 26(5): 769-780 [DOI: 10.1038/s41591-020-0815-6]
Kucyi A, Daitch A, Raccah O, Zhao BT, Zhang C, Esterman M, Zeineh M, Halpern C H, Zhang K, Zhang J G and Parvizi J. 2020. Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations. Nature Communications, 11(1): #325 [DOI: 10.1038/s41467-019-14166-2]
Kucyi A, Schrouff J, Bickel S, Foster B L, Shine J M and Parvizi J. 2018. Intracranial electrophysiology reveals reproducible intrinsic functional connectivity within human brain networks. The Journal of Neuroscience, 38(17): 4230-4242 [DOI: 10.1523/JNEUROSCI.0217-18.2018]
Lee J J, Kim H J, Čeko M, Park B Y, Lee S A, Park H, Roy M, Kim S G, Wager T D and Woo C W. 2021. A neuroimaging biomarker for sustained experimental and clinical pain. Nature Medicine, 27(1): 174-182 [DOI: 10.1038/s41591-020-1142-7]
Li A A, Gong H, Zhang B, Wang Q D, Yan C, Wu J P, Liu Q, Zeng S Q and Luo Q M. 2010. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330(6009): 1404-1408 [DOI: 10.1126/science.1191776]
Li F L, Tao Q, Peng W J, Zhang T, Si Y J, Zhang Y S, Yi C L, Biswal B, Yao D Z and Xu P. 2020a. Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting-to task-state: evidence from a simultaneous event-related EEG-fMRI study. NeuroImage, 205: #116285 [DOI: 10.1016/j.neuroimage.2019.116285]
Li G, Han D P, Wang C, Hu W X, Calhoun V D and Wang Y P. 2020b. Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia. Computer Methods and Programs in Biomedicine, 183: #105073 [DOI: 10.1016/j.cmpb.2019.105073]
Li J, Seidlitz J, Suckling J, Fan F Y, Ji G J, Meng Y, Yang S Q, Wang K, Qiu J, Chen H F and Liao W. 2021a. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures.Nature Communications, 12(1): #1647 [DOI: 10.1038/s41467-021-21943-5]
Li S S, Luo H Q, Lou R H, Tian C P, Miao C, Xia L S, Pan C, Duan X X, Dang T, Li H, Fan C Y, Tang P, Zhang Z Z, Liu Y, Li Y X, Xu F, Zhang Y Y, Zhong G S, Hu J and Shui W Q. 2021b. Multiregional profiling of the brain transmembrane proteome uncovers novel regulators of depression. Science Advances, 7(30): #0634 [DOI: 10.1126/sciadv.abf0634]
Li Z Q, Chen J H, Yu H, He L, Xu Y F, Zhang D, Yi Q Z, Li C G, Li X W, Shen J W, Song Z J, Ji W D, Wang M, Zhou J, Chen B Y, Liu Y H, Wang J Q, Wang P, Yang P, Wang Q Z, Feng G Y, Liu B X, Sun W S, Li B J, He G, Li W D, Wan C L, Xu Q, Li W J, Wen Z J, Liu K, Huang F, Ji J, Ripke S, Yue W H, Sullivan P F, O'Donovan M C and Shi Y Y. 2017. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nature Genetics, 49(11): 1576-1583 [DOI: 10.1038/ng.3973]
Liu M X, Zhang D Q and Shen D G. 2016. Relationship induced multi-template learning for diagnosis of Alzheimer's disease and mild cognitive impairment. IEEE Transactions on Medical Imaging, 35(6): 1463-1474 [DOI: 10.1109/TMI.2016.2515021]
Luo N, Sui J, Abrol A, Chen J Y, Turner J A, Damaraju E, Fu Z N, Fan L Z, Lin D D, Zhuo C J, Xu Y, Glahn D C, Rodrigue A L, Banich M T, Pearlson G D and Calhoun V D. 2020. Structural brain architectures match intrinsic functional networks and vary across domains: a study from 15 000+ individuals. Cerebral Cortex, 30(10): 5460-5470 [DOI: 10.1093/cercor/bhaa127]
Luo N, Sui J, Chen J Y, Zhang F Q, Tian L, Lin D D, Song M, Calhoun V D, Cui Y, Vergara V M, Zheng F F, Liu J Y, Yang Z Y, Zuo N M, Fan L Z, Xu K B, Liu S F, Li J, Xu Y, Liu S, Lv L X, Chen J, Chen Y C, Guo H, Li P, Lu L, Wan P, Wang H N, Wang H L, Yan H, Yan J, Yang Y F, Zhang H X, Zhang D and Jiang T Z. 2018. A schizophrenia-related genetic-brain-cognition pathway revealed in a large Chinese population. eBioMedicine, 37: 471-482 [DOI: 10.1016/j.ebiom.2018.10.009]
Lyu Q M, Yan M C, Shen X Y, Wu J, Yu W W, Yan S Y, Yang F, Zeljic K, Shi Y Q, Zhou Z F, Lv L B, Hu X T, Menon R and Wang Z. 2021. Normative analysis of individual brain differences based on a population MRI-based atlas of cynomolgus macaques. Cerebral Cortex, 31(1): 341-355 [DOI: 10.1093/cercor/bhaa229]
Makropoulos A, Robinson E C, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell S J, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff E P, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier J D, Hutter J, Price A N, Teixeira R P A G, Murgasova M, Victor S, Kelly C, Rutherford M A, Smith S M, Edwards A D, Hajnal J V, Jenkinson M and Rueckert D. 2018. The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. NeuroImage, 173: 88-112 [DOI: 10.1016/j.neuroimage.2018.01.054]
Maynard K R, Collado-Torres L, Weber L M, Uytingco C, Barry B K, Williams S R, Catallini J L II, Tran M N, Besich Z, Tippani M, Chew J, Yin Y F, Kleinman J E, Hyde T M, Rao N, Hicks S C, Martinowich K and Jaffe A E. 2021. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature Neuroscience, 24(3): 425-436 [DOI: 10.1038/s41593-020-00787-0]
Morgan S E, Seidlitz J, Whitaker K J, Romero-Garcia R, Clifton N E, Scarpazza C, van Amelsvoort T, Marcelis M, van Os J, Donohoe G, Mothersill D, Corvin A, Pocklington A, Raznahan A, McGuire P, Vértes P E and Bullmore E T. 2019. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proceedings of the National Academy of Sciences of the United States of America, 116(19): 9604-9609 [DOI: 10.1073/pnas.1820754116]
Oh S W, Harris J A, Ng L, Winslow B, Cain N, Mihalas S, Wang Q X, Lau C, Kuan L, Henry A M, Mortrud M T, Ouellette B, Nguyen T N, Sorensen S A, Slaughterbeck C R, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa K E, Bohn P, Joines K M, Peng H C, Hawrylycz M J, Phillips J W, Hohmann J G, Wohnoutka P, Gerfen C R, Koch C, Bernard A, Dang C, Jones A R and Zeng H K. 2014. A mesoscale connectome of the mouse brain. Nature, 508(7495): 207-214 [DOI: 10.1038/nature13186]
Peng P, Zhang Y P, Ju Y F, Wang K M, Li G, Vince D C and Wang Y P. 2022. Group sparse joint non-negative matrix factorization on orthogonal subspace for multi-modal imaging genetics data analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(1): 479-490 [DOI: 10.1109/TCBB.2020.2999397]
Plitt M, Barnes K A, Wallace G L, Kenworthy L and Martin A. 2015. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism. Proceedings of the National Academy of Sciences of the United States of America, 112(48): E6699-E6706 [DOI: 10.1073/pnas.1510098112]
Qiao C, Li D, Guo Y T, Liu C, Jiang T, Dai Q H and Li D. 2021. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nature Methods, 18(2): 194-202 [DOI: 10.1038/s41592-020-01048-5]
Rosenberg M D, Finn E S, Scheinost D, Papademetris X, Shen X L, Constable R T and Chun M M. 2016. A neuromarker of sustained attention from whole-brain functional connectivity. Nature Neuroscience, 19(1): 165-171 [DOI: 10.1038/nn.4179]
Rosenthal G, Váša F, Griffa A, Hagmann P, Amico E, Goñi J, Avidan G and Sporns O. 2018. Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes. Nature Communications, 9(1): #2178 [DOI: 10.1038/s41467-018-04614-w]
Schilling K G, Gao Y R, Christian M, Janve V, Stepniewska I, Landman B A and Anderson A W. 2019. A web-based atlas combining MRI and histology of the squirrel monkey brain. Neuroinformatics, 17(1): 131-145 [DOI: 10.1007/s12021-018-9391-z]
Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510): 421-427 [DOI: 10.1038/nature13595]
Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Büchel C, Conrod P J, Dalley J W, Flor H, Gallinat J, Gallinat J, Garavan H, Heinz A, Itterman B, Lathrop M, Mallik C, Mann K, Martinot J L, Paus T, Poline J B, Robbins T W, Rietschel M, Reed L, Smolka M, Spanagel R, Speiser C, Stephens D N, Ströhle A and Struve M. 2010. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Molecular Psychiatry, 15(12): 1128-1139 [DOI: 10.1038/mp.2010.4]
Shen X, Tokoglu F, Papademetris X and Constable R T. 2013. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage, 82: 403-415
Shen X L, Finn E S, Scheinost D, Rosenberg M D, Chun M M, Papademetris X and Constable R T. 2017. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3): 506-518 [DOI: 10.1038/nprot.2016.178]
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, Edfors F, Limiszewska A, Hikmet F, Huang J R, Du Y T, Lin L, Dong Z Y, Yang L, Liu X, Jiang H, Xu X, Wang J, Yang H M, Bolund L, Mardinoglu A, Zhang C, von Feilitzen K, Lindskog C, Pontén F, Luo Y L, Hökfelt T, Uhlén M and Mulder J. 2020. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science, 367(6482): #5947 [DOI: 10.1126/science.aay5947]
Somerville L H, Bookheimer S Y, Buckner R L, Burgess G C, Curtiss S W, Dapretto M, Elam J S, Gaffrey M S, Harms M P, Hodge C, Kandala S, Kastman E K, Nichols T E, Schlaggar B L, Smith S M, Thomas K M, Yacoub E, Van Essen D C and Barch D M. 2018. The lifespan human connectome project in development: a large-scale study of brain connectivity development in 5-21 year olds. NeuroImage, 183: 456-468 [DOI: 10.1016/j.neuroimage.2018.08.050]
Song M, Yang Y, He J H, Yang Z Y, Yu S, Xie Q Y, Xia X Y, Dang Y Y, Zhang Q, Wu X H, Cui Y, Hou B, Yu R H, Xu R X and Jiang T Z. 2018. Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics. eLife, 7: #36173 [DOI: 10.7554/eLife.36173]
Stahl E A, Breen G, Forstner A J, McQuillin A, Ripke S, Trubetskoy V, Mattheisen M, Wang Y P, Coleman J R I, Gaspar H A, de Leeuw C A, Steinberg S, Pavlides J M W, Trzaskowski M, Byrne E M, Pers T H, Holmans P A, Richards A L, Abbott L, Agerbo E, Akil H, Albani D, Alliey-Rodriguez N, Als T D, Anjorin A, Antilla V, Awasthi S, Badner J A, Bøkvad-Hansen M, Barchas J D, Bass N, Bauer M, Belliveau R, Bergen S E, Pedersen C B, Bæen E, Boks M P, Boocock J, Budde M, Bunney W, Burmeister M, Bybjerg-Grauholm J, Byerley W, Casas M, Cerrato F, Cervantes P, Chambert K, Charney A W, Chen D F, Churchhouse C, Clarke T K, Coryell W, Craig D W, Cruceanu C, Curtis D, Czerski P M, Dale A M, de Jong S, Degenhardt F, Del-Favero J, DePaulo J R, Djurovic S, Dobbyn A L, Dumont A, Elvsåshagen T, Escott-Price V, Fan C C, Fischer S B, Flickinger M, Foroud T M, Forty L, Frank J, Fraser C, Freimer N B, Frisén L, Gade K, Gage D, Garnham J, Giambartolomei C, Pedersen M G, Goldstein J, Gordon S D, Gordon-Smith K, Green E K, Green M J, Greenwood T A, Grove J, Guan W H, Guzman-Parra J, Hamshere M L, Hautzinger M, Heilbronner U, Herms S, Hipolito M, Hoffmann P, Holland D, Huckins L, Jamain S, Johnson J S, Juréus A, Kandaswamy R, Karlsson R, Kennedy J L, Kittel-Schneider S, Knowles J A, Kogevinas M, Koller A C, Kupka R, Lavebratt C, Lawrence J, Lawson W B, Leber M, Lee P H, Levy S E, Li J Z, Liu C Y, Lucae S, Maaser A, MacIntyre D J, Mahon P B, Maier W, Martinsson L, McCarroll S, McGuffin P, McInnis M G, McKay J D, Medeiros H, Medland S E, Meng F, Milani L, Montgomery G W, Morris D W, Mühleisen T W, Mullins N, Nguyen H, Nievergelt C M, Adolfsson A N, Nwulia E A, O'Donovan C, Loohuis L M O, Ori A P S, Oruc L, Ösby U, Perlis R H, Perry A, Pfennig A, Potash J B, Purcell S M, Regeer E J, Reif A, Reinbold C S, Rice J P, Rivas F, Rivera M, Roussos P, Ruderfer D M, Ryu E, Sánchez-Mora C, Schatzberg A F, Scheftner W A, Schork N J, Shannon Weickert C, Shehktman T, Shilling P D, Sigurdsson E, Slaney C, Smeland O B, Sobell J L, Søholm Hansen C, Spijker A T, St Clair D, Steffens M, Strauss J S, Streit F, Strohmaier J, Szelinger S, Thompson R C, Thorgeirsson T E, Treutlein J, Vedder H, Wang WQ, Watson S J, Weickert T W, Witt S H, Xi S, Xu W, Young A H, Zandi P, Zhang P, Zöllner S, eQTLGen Consortium, BIOS Consortium, Adolfsson R, Agartz I, Alda M, Backlund L, Baune B T, Bellivier F, Berrettini W H, Biernacka J M, Blackwood D H R, Boehnke M, Børglum A D, Corvin A, Craddock N, Daly M J, Dannlowski U, Esko T, Etain B, Frye M, Fullerton J M, Gershon E S, Gill M, Goes F, Grigoroiu-Serbanescu M, Hauser J, Hougaard D M, Hultman C M, Jones I, Jones L A, Kahn R S, Kirov G, Landén M, Leboyer M, Lewis C M, Li Q S, Lissowska J, Martin N G, Mayoral F, McElroy S L, McIntosh A M, McMahon F J, Melle I, Metspalu A, Mitchell P B, Morken G, Mors O, Mortensen P B, Müller-Myhsok B, Myers R M, Neale B M, Nimgaonkar V, Nordentoft M, Nöthen M M, O'Donovan M C, Oedegaard K J, Owen M J, Paciga S A, Pato C, Pato M T, Posthuma D, Ramos-Quiroga J A, Ribasés M, Rietschel M, Rouleau G A, Schalling M, Schofield P R, Schulze T G, Serretti A, Smoller J W, Stefansson H, Stefansson K, Stordal E, Sullivan P F, Turecki G, Vaaler A E, Vieta E, Vincent J B, Werge T, Nurnberger J I, Wray N R, Di Florio A, Edenberg H J, Cichon S, Ophoff R A, Scott L J, Andreassen O A, Kelsoe J, Sklar P and Bipolar Disorder Working Group of the Psychiatric Genomics Consortium. 2019. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 51(5): 793-803 [DOI: 10.1038/s41588-019-0397-8]
Sui J, Qi S L, van Erp T G M, Bustillo J, Jiang R T, Lin D D, Turner J A, Damaraju E, Mayer A R, Cui Y, Fu Z N, Du Y H, Chen J Y, Potkin S G, Preda A, Mathalon D H, Ford J M, Voyvodic J, Mueller B A, Belger A, McEwen S C, O'Leary D S, McMahon A, Jiang T Z and Calhoun V D. 2018. Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion. Nature Communications, 9(1): #3028 [DOI: 10.1038/s41467-018-05432-w]
Tan J, Yuan S X, Ming W L and Sun X. 2018. Progress on analytical methods of imaging genomics. Current Biotechnology, 8(4): 277-283, 369
谭俊, 袁少勋, 明文龙, 孙啸. 2018. 影像基因组学分析方法研究进展. 生物技术进展, 8(4): 277-283, 369 [DOI: 10.19586/j.2095-2341.2018.0045]
Tian Y, Margulies D S, Breakspear M and Zalesky A. 2020. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nature Neuroscience, 23(11): 1421-1432 [DOI: 10.1038/s41593-020-00711-6]
van den Heuvel M P, Scholtens L H and Kahn R S. 2019. Multiscale neuroscience of psychiatric disorders. Biological Psychiatry, 86(7): 512-522 [DOI: 10.1016/j.biopsych.2019.05.015]
Van Essen D C, Smith S M, Barch D M, Behrens T E J, Yacoub E, Ugurbil K and WU-Minn HCP Consortium. 2013. The WU-Minn human connectome project: an overview. NeuroImage, 80: 62-79 [DOI: 10.1016/j.neuroimage.2013.05.041]
Vázquez-Rodríguez B, Suárez L E, Markello R D, Shafiei G, Paquola C, Hagmann P, van den Heuvel M P, Bernhardt B C, Spreng R N and Misic B. 2019. Gradients of structure-function tethering across neocortex. Proceedings of the National Academy of Sciences of the United States of America, 116(42): 21219-21227 [DOI: 10.1073/pnas.1903403116]
Wang D X, Eraslan B, Wieland T, Hallström B, Hopf T, Zolg D P, Zecha J, Asplund A, Li L H, Meng C, Frejno M, Schmidt T, Schnatbaum K, Wilhelm M, Ponten F, Uhlen M, Gagneur J, Hahne H and Kuster B. 2019. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Molecular Systems Biology, 15(2): #8503 [DOI: 10.15252/msb.20188503]
Wang H Y, Fan L Z, Song M, Liu B, Wu D Y, Jiang R T, Li J, Li A, Banaschewski T, Bokde A L W, Quinlan E B, Desrivières S, Flor H, Grigis A, Garavan H, Chaarani B, Gowland P, Heinz A, Ittermann B, Martinot J L, Martinot M L P, Artiges E, Nees F, Orfanos D P, Poustka L, Millenet S, Fröhner J H, Smolka M N, Walter H, Whelan R, Schumann G and Jiang T Z. 2021. Functional connectivity predicts individual development of inhibitory control during adolescence. Cerebral Cortex, 31(5): 2686-2700 [DOI: 10.1093/cercor/bhaa383]
Wang Q X, Ding S L, Li Y, Royall J, Feng D, Lesnar P, Graddis N, Naeemi M, Facer B, Ho A, Dolbeare T, Blanchard B, Dee N, Wakeman W, Hirokawa K E, Szafer A, Sunkin S M, Oh S W, Bernard A, Phillips J W, Hawrylycz M, Koch C, Zeng H K, Harris J A and Ng L. 2020. The Allen mouse brain common coordinate framework: a 3D reference atlas. Cell, 181(4): 936-953 [DOI: 10.1016/j.cell.2020.04.007]
Wingo T S, Liu Y, Gerasimov E S, Gockley J, Logsdon B A, Duong D M, Dammer E B, Lori A, Kim P J, Ressler K J, Beach T G, Reiman E M, Epstein M P, De Jager P L, Lah J J, Bennett D A, Seyfried N T, Levey A I and Wingo A P. 2021. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nature Neuroscience, 24(6): 810-817 [DOI: 10.1038/s41593-021-00832-6]
Wray N R, Ripke S, Mattheisen M, Trzaskowski M, Byrne E M, Abdellaoui A, Adams M J, Agerbo E, Air T M, Andlauer T M F, Bacanu S A, Bækvad-Hansen M, Beekman A F T, Bigdeli T B, Binder E B, Blackwood D R H, Bryois J, Buttenschøn H N, Bybjerg-Grauholm J, Cai N, Castelao E, Christensen J H, Clarke T K, Coleman J I R, Colodro-Conde L, Couvy-Duchesne B, Craddock N, Crawford G E, Crowley C A, Dashti H S, Davies G, Deary I J, Degenhardt F, Derks E M, Direk N, Dolan C V, Dunn E C, Eley T C, Eriksson N, Escott-Price V, Kiadeh F H F, Finucane H K, Forstner A J, Frank J, Gaspar H A, Gill M, Giusti-Rodríguez P, Goes F S, Gordon S D, Grove J, Hall L S, Hannon E, Hansen C S, Hansen T F, Herms S, Hickie I B, Hoffmann P, Homuth G, Horn C, Hottenga J J, Hougaard D M, Hu M, Hyde C L, Ising M, Jansen R, Jin F L, Jorgenson E, Knowles J A, Kohane I S, Kraft J, Kretzschmar W W, Krogh J, Kutalik Z, Lane J M, Li Y H, Li Y, Lind P A, Liu X X, Lu L N, MacIntyre D J, MacKinnon D F, Maier R M, Maier W, Marchini J, Mbarek H, McGrath P, McGuffin P, Medland S E, Mehta D, Middeldorp C M, Mihailov E, Milaneschi Y, Milani L, Mill J, Mondimore F M, Montgomery G W, Mostafavi S, Mullins N, Nauck M, Ng B, Nivard M G, Nyholt D R, O'Reilly P F, Oskarsson H, Owen M J, Painter J N, Pedersen C B, Pedersen M G, Peterson R E, Pettersson E, Peyrot W J, Pistis G, Posthuma D, Purcell S M, Quiroz J A, Qvist P, Rice J P, Riley B P, Rivera M, Saeed Mirza S, Saxena R, Schoevers R, Schulte E C, Shen L, Shi J X, Shyn S I, Sigurdsson E, Sinnamon G B C, Smit J H, Smith D J, Stefansson H, Steinberg S, Stockmeier C A, Streit F, Strohmaier J, Tansey K E, Teismann H, Teumer A, Thompson W, Thomson P A, Thorgeirsson T E, Tian C, Traylor M, Treutlein J, Trubetskoy V, Uitterlinden A G, Umbricht D, Van der Auwera S, van Hemert A M, Viktorin A, Visscher P M, Wang Y, Webb B T, Weinsheimer S M, Wellmann J, Willemsen G, Witt S H, Wu Y, Xi H S, Yang J, Zhang F T, eQTLGen, 23andMe, Arolt V, Baune B T, Berger K, Boomsma D I, Cichon S, Dannlowski U, de Geus E C J, DePaulo J R, Domenici E, Domschke K, Esko T, Grabe H J, Hamilton S P, Hayward C, Heath A C, Hinds D A, Kendler K S, Kloiber S, Lewis G, Li Q S, Lucae S, Madden P F A, Magnusson P K, Martin N G, McIntosh A M, Metspalu A, Mors O, Mortensen P B, Müller-Myhsok B, Nordentoft M, Nöthen M M, O'Donovan M C, Paciga S A, Pedersen N L, Penninx B, Perlis R H, Porteous D J, Potash J B, Preisig M, Rietschel M, Schaefer C, Schulze T G, Smoller J W, Stefansson K, Tiemeier H, Uher R, Völzke H, Weissman M M, Werge T, Winslow A R, Lewis C M, Levinson D F, Breen G, Børglum A D, Sullivan P F and Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. 2018. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50(5): 668-681 [DOI: 10.1038/s41588-018-0090-3]
Wu D Y, Fan L Z, Song M, Wang H Y, Chu C Y, Yu S and Jiang T Z. 2020. Hierarchy of connectivity-function relationship of the human cortex revealed through predicting activity across functional domains. Cerebral Cortex, 30(8): 4607-4616 [DOI: 10.1093/cercor/bhaa063]
Xia M R and He Y. 2018. Psychoradiology big data and human connectomics. Chinese Journal of Psychiatry, 51(4): 221-223
夏明睿, 贺永. 2018. 精神影像大数据与人脑连接组学. 中华精神科杂志, 51(4): 221-223 [DOI: 10.3760/cma.j.issn.1006-7884.2018.04.001]
Xu F, Shen Y, Ding L F, Yang C Y, Tan H, Wang H, Zhu Q Y, Xu R, Wu F Y, Xiao Y Y, Xu C, Li Q W, Su P, Zhang L I, Dong H W, Desimone R, Xu F Q, Hu X T, Lau P M and Bi G Q. 2021. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nature Biotechnology, 39(12): 1521-1528 [DOI: 10.1038/s41587-021-00986-5]
Xu Q, Guo L N, Cheng J L, Wang M Y, Geng Z J, Zhu W Z, Zhang B, Liao W H, Qiu S J, Zhang H, Xu X J, Yu Y Q, Gao B, Han T, Yao Z W, Cui G B, Liu F, Qin W, Zhang Q, Li M J, Liang M, Chen F, Xian J F, Li J C, Zhang J, Zuo X N, Wang D W, Shen W, Miao Y W, Yuan F, Lui S, Zhang X C, Xu K, Zhang L J, Ye Z X, Yu C S and CHIMGEN Consortium. 2020. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Molecular Psychiatry, 25(3): 517-529 [DOI: 10.1038/s41380-019-0627-6]
Yao D R, Sui J, Wang M L, Yang E K, Jiaerken Y, Luo N, Yap P T, Liu M X and Shen D G. 2021a. A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE transactions on medical imaging, 40(4): 1279-1289 [DOI: 10.1109/tmi.2021.3051604]
Yao Z Z, Liu H Q, Xie F M, Fischer S, Adkins R S, Aldridge A I, Ament S A, Bartlett A, Behrens M M, Van den Bérge K, Bertagnolli D, de Bezieux H R, Biancalani T, Booeshaghi A S, Bravo H C, Casper T, Colantuoni C, Crabtree J, Creasy H, Crichton K, Crow M, Dee N, Dougherty E L, Doyle W I, Dudoit S, Fang R X, Felix V, Fong O, Giglio M, Goldy J, Hawrylycz M, Herb B R, Hertzano R, Hou X M, Hu Q W, Kancherla J, Kroll M, Lathia K, Li Y E, Lucero J D, Luo C Y, Mahurkar A, McMillen D, Nadaf N M, Nery J R, Nguyen T N, Niu S Y, Ntranos V, Orvis J, Osteen J K, Pham T, Pinto-Duarte A, Poirion O, Preissl S, Purdom E, Rimorin C, Risso D, Rivkin A C, Smith K, Street K, Sulc J, Svensson V, Tieu M, Torkelson A, Tung H, Vaishnav E D, Vanderburg C R, van Velthoven C, Wang X X, White O R, Huang Z J, Kharchenko P V, Pachter L, Ngai J, Regev A, Tasic B, Welch J D, Gillis J, Macosko E Z, Ren B, Ecker J R, Zeng H K and Mukamel E A. 2021b. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature, 598(7879): 103-110 [DOI: 10.1038/s41586-021-03500-8]
Yi C L, Yao R W, Song L Y, Jiang L, Si Y J, Li P Y, Li F L, Yao D Z, Zhang Y and Xu P. 2021. A novel method for constructing EEG large-scale cortical dynamical functional network connectivity (dFNC): WTCS. IEEE Transactions on Cybernetics: #3090770 [DOI: 10.1109/TCYB.2021.3090770]
Zhang D Q, Shen D G and Alzheimer's Disease Neuroimaging Initiative. 2012. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage, 59(2): 895-907 [DOI: 10.1016/j.neuroimage.2011.09.069]
Zhao B X, Li T F, Yang Y, Wang X F, Luo T Y, Shan Y, Zhu Z L, Xiong D, Hauberg M E, Bendl J, Fullard J F, Roussos P, Li Y, Stein J L and Zhu H T. 2021. Common genetic variation influencing human white matter microstructure. Science, 372(6548): #3736 [DOI: 10.1126/science.abf3736]
Zhong S J, Ding W Y, Sun L, Lu Y F, Dong H, Fan X Y, Liu Z Y, Chen R G, Zhang S, Ma Q, Tang F C, Wu Q and Wang X Q. 2020. Decoding the development of the human hippocampus. Nature, 577(7791): 531-536 [DOI: 10.1038/s41586-019-1917-5]
Zong W J, Wu R L, Chen S Y, Wu J J, Wang H B, Zhao Z, Chen G Q, Tu R, Wu D L, Hu Y H, Xu Y Y, Wang Y, Duan Z L, Wu H T, Zhang Y F, Zhang J, Wang A M, Chen L Y and Cheng H P. 2021. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nature Methods, 18(1): 46-49 [DOI: 10.1038/s41592-020-01024-z]
Zuo N M and Jiang T Z. 2020. Multi-modal human brain mapping and Brainnetome study. Scientia Sinica Vitae, 50(11): 1296-1308
左年明, 蒋田仔. 2020. 多模态人脑影像与脑网络组学研究. 中国科学(生命科学), 50(11): 1296-1308 [DOI: 10.1360/SSV-2019-0228]
相关作者
相关机构