多媒体隐写研究进展
Overview of steganography on multimedia
- 2022年27卷第6期 页码:1918-1943
纸质出版日期: 2022-06-16 ,
录用日期: 2022-03-30
DOI: 10.11834/jig.211272
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-06-16 ,
录用日期: 2022-03-30
移动端阅览
张卫明, 王宏霞, 李斌, 任延珍, 杨忠良, 陈可江, 李伟祥, 张新鹏, 俞能海. 多媒体隐写研究进展[J]. 中国图象图形学报, 2022,27(6):1918-1943.
Weiming Zhang, Hongxia Wang, Bin Li, Yanzhen Ren, Zhongliang Yang, Kejiang Chen, Weixiang Li, Xinpeng Zhang, Nenghai Yu. Overview of steganography on multimedia[J]. Journal of Image and Graphics, 2022,27(6):1918-1943.
大数据分析可以跳过数据内容而仅从数据背景挖掘情报,传统的加密通信已经难以满足安全通信的需求。隐写技术是将秘密消息嵌入各种载体(如数字图像、音频、视频或文本)中实现隐蔽通信的技术,是应对大数据情报获取的有效手段,是密码技术的必要补充。人工智能,尤其是深度学习,在计算机视觉、语音和自然语言处理等领域的巨大成功,给隐写术带来了新机遇,提出了新挑战,促使基于图像、音/视频和文本的隐写术出现了一系列新思想、新方法。本文介绍隐写术的概念、分类、主要作用和研究意义,概述隐写术的发展历史、研究近况和应用场景。注意到各类载体上的隐写术虽然有差别,但是其核心追求有共通之处,可以提炼成通用的隐写编码问题。所以本文首先介绍隐写编码的基本思想与关键技术,然后针对最重要和流行的载体、图像、视频、音频和文本,分别介绍隐写术的进展。总体而言,本文从隐写编码、图像隐写、视频隐写、音频隐写和文本隐写5个方面概述隐写术的国际/国内发展现状,总结差异,对比优势和劣势,并分析发展趋势。
Big data analysis can skip the data content and mine intelligence from the data context
therefore encryption cannot meet the requirement for secure communication. Steganography is a technique to embed secret messages in various covers (such as digital images
audio
video or text) to achieve covert communication
which is an effective method to cope with big data intelligence acquisition and a necessary complement to cryptography. The advances of artificial intelligence
especially deep learning
in computer vision
speech and natural language processing in recent years have brought new opportunities and challenges to steganography
prompting a series of new ideas and methods in image
audio and video
and text steganography. This paper will introduce the concept
classification
main role and research significance of steganography
and outline the development history
research status and application scenarios of steganography. It is noted that although there are differences in steganography on various covers
their core pursuits have commonalities
which can be refined into general steganographic coding problems. Therefore
this paper will first introduce the basic ideas and key technologies of steganography
and then introduce the progress of steganography for the most important and popular covers
including image
video
audio and text. According to the development of steganographic coding
it can be divided into coding problems under five cost models: constant cost
two-level cost
multi-level cost
non-binary cost
non-additive cost. The coding efficiency and security have been greatly improved. With the effective steganographic coding methods
the focus of research turns to how to define the distortion introduce by embedding message. As for image steganography
this paper reviews model-based steganography
natural steganography
side-information steganography
adversarial steganography. The confrontation between steganography and steganalysis is getting fierce. The distribution of cover image is better preserved. Video is composed of multiple images
so image steganography can be directly used in the spatial domain of video. However
the video will always be compressed to save storage space and the steganography on the compression domain of video is more practical. Many motion-vector based video steganographic schemes have been proposed
which also benefit from the development of steganographic coding. Deep learning based video steganography is a more straight way for embedding messages
which can be also robust to loss video processing
such as recompression
cropping
Gaussian filtering. There are also quite a number of video steganographic tools on the internet
e.g.
OpenPuff. Audio can be seen as a part of video
and audio steganography can be divided into time domain and compression domain as well. The audio steganography has its own character
like echo hiding. Since the audio synthesis is very powerful and popular used
some generative audio steganography methods have also been proposed and show superior performance. Previous mentioned mediums will be easily lossy processed
while text seems to be more robust. Text steganography can be divided into format-based steganography and content-based steganography. Content-based steganography is more popular
where generative linguistic steganography shows strong vitality. The international and domestic development status of steganography from five aspects are separately summarized. The advantages and disadvantages of international and domestic development are compared. With these comparisons and corresponding analysis
we also give the development trend from five aspects: steganographic coding
image steganography
video steganography
audio steganography
and text steganography. Better error correction codes are promisingly transferred to better steganographic codes. Robust image steganography is an urgent need
because lossy operations are adopted on online social networks. Fast video steganography is also a potential direction since livestreaming and short-video are current hot spots. Latent codes edition is a direction of improving the performance of generative steganography. In a nutshell
this paper reviews steganography on multimedia and gives future directions of different aspects.
隐写编码文本隐写图像隐写音频隐写视频隐写
steganographic codestext steganographyimage steganographyaudio steganographyvideo steganography
AlSabhany A A, Ali A H, Ridzuan F, Azni A H and Mokhtar M R. 2020. Digital audio steganography: systematic review, classification, and analysis of the current state of the art. Computer Science Review, 38: #100316[DOI: 10.1016/j.cosrev.2020.100316]
Aly H A. 2011. Data hiding in motion vectors of compressed video based on their associated prediction error. IEEE Transactions on Information Forensics and Security, 6(1): 14-18[DOI: 10.1109/TIFS.2010.2090520]
Banjarnahor J, Siregar S D, Sihombing O, Turnip M, Purba W, Aisyah S and Banjarnahor J. 2019. Audio steganography applications using auditory features watermarking. Journal of Physics: Conference Series, 1230: #012073[DOI: 10.1088/1742-6596/1230/1/012073]
Bas P. 2017. An embedding mechanism for natural steganography after down-sampling//Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans, USA: IEEE: 2127-2131[DOI: 10.1109/ICASSP.2017.7952532http://dx.doi.org/10.1109/ICASSP.2017.7952532]
Bernard S, Bas P, Klein J and Pevny T. 2021a. Explicit optimization of min max steganographic game. IEEE Transactions on Information Forensics and Security, 16: 812-823[DOI: 10.1109/TIFS.2020.3021913]
Bernard S, Bas P, Pevny T and Klein J. 2021b. Optimizing additive approximations of non-additive distortion functions//Proceedings of 2021 ACM Workshop on Information Hiding and Multimedia Security. New York, USA: ACM: 105-112[DOI: 10.1145/3437880.3460407http://dx.doi.org/10.1145/3437880.3460407]
Bernard S, Pevny T, Bas P and Klein J. 2019. Exploiting adversarial embeddings for better steganography//Proceedings of ACM Workshop on Information Hiding and Multimedia Security. Paris, France: ACM: 216-221[DOI: 10.1145/3335203.3335737http://dx.doi.org/10.1145/3335203.3335737]
Bierbrauer J and Fridrich J. 2008. Constructing good covering codes for applications in steganography//Shi Y Q, ed. Transactions on Data Hiding and Multimedia Security Ⅲ. Berlin, Germany: Springer: 1-22[DOI: 10.1007/978-3-540-69019-1_1http://dx.doi.org/10.1007/978-3-540-69019-1_1]
Boroumand M and Fridrich J. 2020. Synchronizing embedding changes in side-informed steganography//Proceedings of ElectronicImaging: Media Watermarking, Security, and Forensics. Springfield: Society for Imaging Science and Technology: 290-1-290-12[DOI: 10.2352/ISSN.2470-1173.2020.4.MWSF-290http://dx.doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-290]
Butora J and Fridrich J. 2020a. Steganography and its detection in JPEG images obtained with the "TRUNC" quantizer//Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona, Spain: IEEE: 2762-2766[DOI: 10.1109/ICASSP40776.2020.9053696http://dx.doi.org/10.1109/ICASSP40776.2020.9053696]
Butora J and Fridrich J. 2020b. Minimum perturbation cost modulation for side-informed steganography//Proceedings of Electronic Imaging: Media Watermarking, Security, and Forensics. Springfield, USA: Society for Imaging Science and Technology: #289[DOI: 10.2352/ISSN.2470-1173.2020.4.MWSF-289http://dx.doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-289]
Butora J, Yousfi Y and Fridrich J. 2020. Turning cost-based steganography into model-based//Proceedings of 2020 ACM Workshop on Information Hiding and Multimedia Security. Denver, USA: ACM: 151-159[DOI: 10.1145/3369412.3395065http://dx.doi.org/10.1145/3369412.3395065]
Cao Y, Wang Y, Zhao X F, Zhu M N and Xu Z J. 2018. Cover block decoupling for content-adaptive H. 264 steganography//Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. Innsbruck, Austria: ACM: 23-30[DOI: 10.1145/3206004.3206014http://dx.doi.org/10.1145/3206004.3206014]
Cetin O and Ozcerit T. 2009. A new steganography algorithm based on color histograms for data embedding into raw video streams. Computers and Security, 28(7): 670-682[DOI: 10.1016/j.cose.2009.04.002]
Chang C Y and Clark S. 2010. Linguistic steganography using automatically generated paraphrases//Proceedings of Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, USA: Association for Computational Linguistics: 2010: 591-599
Chen K J, Zhou H, Zhao H Q, Chen D D, Zhang W M and Yu N H. 2021a. Distribution-preserving steganography based on text-to-speech generative models. IEEE Transactions on Dependable and Secure Computing, 14(4): 1052-1066[DOI: 10.1109/TDSC.2021.3095072]
Chen K J, Zhou H, Zhou W B, Zhang W M and Yu N H. 2019. Defining cost functions for adaptive JPEG steganography at the microscale. IEEE Transactions on Information Forensics and Security, 14(4): 1052-1066[DOI: 10.1109/TIFS.2018.2869353]
Chen Y, Wang H X, Choo K K R, He P S, Salcic Z, Kaafar D A and Zhang X Y. 2021c. DDCA: a distortion drift-based cost assignment method for adaptive video steganography in the transform domain. [J/OL]. IEEE Transactions on Dependable and Secure Computing, https://ieeexplore.ieee.org/document/9351637[DOI: 10.1109/TDSC.2021.3058134http://dx.doi.org/10.1109/TDSC.2021.3058134]
Chen Y L, Wang H X, Wu H Z, Wu Z Q, Li T and Malik A. 2021b. Adaptive video data hiding through cost assignment and STCs. IEEE Transactions on Dependable and Secure Computing, 18(3): 1320-1335[DOI: 10.1109/TDSC.2019.2932983]
Cogranne R, Giboulot Q and Bas P. 2020. Steganography by minimizing statistical detectability: the cases of JPEG and color images//Proceedings of 2020 ACM Workshop on Information Hiding and Multimedia Security. Denver, USA: ACM: 161-167[DOI: 10.1145/3369412.3395075http://dx.doi.org/10.1145/3369412.3395075]
Crandall R. 1998. Some notes on steganography. Posted on steganography mailing list, 1-6
Denemark T, Bas P and Fridrich J. 2018. Natural steganography in JPEG compressed images//Proceedings of Electronic Imaging: Media Watermarking, Security, and Forensics. [s. l.]: Society for Imaging Science and Technology: #316[DOI: 10.2352/ISSN.2470-1173.2018.07.MWSF-316http://dx.doi.org/10.2352/ISSN.2470-1173.2018.07.MWSF-316]
Denemark T and Fridrich J. 2017a. Model based steganography with precover//Proceedings of Electronic Imaging: Media Watermarking, Security, and Forensics. [s. l.]: Society for Imaging Science and Technology: 56-66[DOI: 10.2352/ISSN.2470-1173.2017.7.MWSF-326http://dx.doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-326]
Denemark T and Fridrich J. 2017b. Steganography with two JPEGs of the same scene//Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans, USA: IEEE: 2117-2121[DOI: 10.1109/ICASSP.2017.7952530http://dx.doi.org/10.1109/ICASSP.2017.7952530]
Denemark T and Fridrich J. 2017c. Steganography with multiple JPEG images of the same scene. IEEE Transactions on Information Forensics and Security, 12(10): 2308-2319[DOI: 10.1109/TIFS.2017.2705625]
Diouf B, Diop I, Keita K W, Diouf M, Farsi S M, Tall K and Khouma O. 2018. Polar coding steganographic embedding using successive cancellation//Proceedings of the 1st International Conference, InterSol 2017 and Sixth Collogue National sur la Recherche en Informatique et ses Applications. Dakar, Senegal: Springer: 189-201[DOI: 10.1007/978-3-319-72965-7_18http://dx.doi.org/10.1007/978-3-319-72965-7_18]
Dong Y, Jiang X H, Sun T F and Xu D W. 2017. Coding efficiency preserving steganography based on HEVC steganographic channel model//Proceedings of the 16th International Workshop on Digital Watermarking. Magdeburg, Germany: Springer: 149-162[DOI: 10.1007/978-3-319-64185-0_12http://dx.doi.org/10.1007/978-3-319-64185-0_12]
Dong Y, Sun T F and Jiang X H. 2019. A high capacity HEVC steganographic algorithm using intra prediction modes in multi-sized prediction blocks//Proceedings of the 17th International Workshop on Digital Watermarking. Jeju Island, Korea(South): Springer: 233-247[DOI: 10.1007/978-3-030-11389-6_18http://dx.doi.org/10.1007/978-3-030-11389-6_18]
Dutta H, Das R K, Nandi S, Nandi S and Prasanna S R M. 2020. An overview of digital audio steganography. IETE Technical Review, 37(6): 632-650[DOI: 10.1080/02564602.2019.1699454]
Feng B W, Liu Z Q, Wu X T and Lin Y C. 2020. Robust syndrome-trellis codes for fault-tolerant steganography//Proceedings of the 3rd International Conference on Security with Intelligent Computing and Big-data Services. New Taipei City, China: Springer: 115-127[DOI: 10.1007/978-3-030-46828-6_11http://dx.doi.org/10.1007/978-3-030-46828-6_11]
Filler T and Fridrich J. 2009. Wet ZZW construction for steganography//Proceedings of the 1st IEEE International Workshop on Information Forensics and Security. London, UK: IEEE: 131-135[DOI: 10.1109/WIFS.2009.5386467http://dx.doi.org/10.1109/WIFS.2009.5386467]
Filler T, Judas J and Fridrich J. 2011. Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Transactions on Information Forensics and Security, 6(3): 920-935[DOI: 10.1109/TIFS.2011.2134094]
Fridrich J and Filler T. 2007. Practical methods for minimizing embedding impact in steganography//Proceedings of SPIE 6505, Steganography, and Watermarking of Multimedia Contents IX. San Jose, USA: SPIE: #650502[DOI: 10.1117/12.697471http://dx.doi.org/10.1117/12.697471]
Fridrich J, Goljan M, Lisonek P and Soukal D. 2005b. Writing on wet paper. IEEE Transactions on Signal Processing, 53(10): 3923-3935[DOI: 10.1109/TSP.2005.855393]
Fridrich J, Goljan M and Soukal D. 2005a. Efficient wet paper codes//Proceedings of the 7th International Workshop on Information Hiding. Barcelona, Spain: Springer: 204-218[DOI: 10.1007/11558859_16http://dx.doi.org/10.1007/11558859_16]
Fridrich J, Goljan M and Soukal D. 2006. Wet paper codes with improved embedding efficiency. IEEE Transactions on Information Forensics and Security, 1(1): 102-110[DOI:10.1109/TIFS.2005.863487]
Fridrich J and Lisonek P. 2007. Grid colorings in steganography. IEEE Transactions on Information Theory, 53(4): 1547-1549[DOI: 10.1109/TIT.2007.892768]
Fridrich J and Soukal D. 2006. Matrix embedding for large payloads. IEEE Transactions on Information Forensics and Security, 1(3): 390-395[DOI: 10.1109/TIFS.2006.879281]
GalandF and Kabatiansky G. 2003. Information hiding by coverings//Proceedings of 2003 IEEE Information Theory Workshop. Paris, France: IEEE: 151-154[DOI: 10.1109/ITW.2003.1216717http://dx.doi.org/10.1109/ITW.2003.1216717]
Geiser B and Vary P. 2008. High rate data hiding in ACELP speech codecs//Proceedings of 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE: 4005-4008[DOI: 10.1109/ICASSP.2008.4518532http://dx.doi.org/10.1109/ICASSP.2008.4518532]
Giboulot Q, Bas P and Cogranne R. 2020b. Synchronization minimizing statistical detectability for side-informed JPEG steganography//Proceedings of 2020 IEEE International Workshop on Information Forensics and Security. New York, USA: IEEE: 1-6[DOI: 10.1109/WIFS49906.2020.9360884http://dx.doi.org/10.1109/WIFS49906.2020.9360884]
Giboulot Q, Cogranne R and Bas P. 2020a. JPEG steganography with side information from the processing pipeline//Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona, Spain: IEEE: 2767-2771[DOI: 10.1109/ICASSP40776.2020.9054486http://dx.doi.org/10.1109/ICASSP40776.2020.9054486]
Giboulot Q, Cogranne R and Bas P. 2021. Detectability-based JPEG steganography modeling the processing pipeline: the noise-content trade-off. IEEE Transactions on Information Forensics and Security, 16: 2202-2217[DOI: 10.1109/TIFS.2021.3050063]
Hu X L, Ni J Q and Shi Y Q. 2018a. Efficient JPEG steganography using domain transformation of embedding entropy. IEEE Signal Processing Letters, 25(6): 773-777[DOI: 10.1109/LSP.2018.2818674]
Hu X L, Ni J Q, Su W K and Huang J W. 2018b. Model-based image steganography using asymmetric embedding scheme. Journal of Electronic Imaging, 27(4): #043023[DOI: 10.1117/1.JEI.27.4.043023]
Huan W N, Li S, Qian Z X and Zhang X P. 2022. Exploring stable coefficients on joint sub-bands for robust video watermarking in DT CWT domain. IEEE Transactions on Circuits and Systems for Video Technology, 32(4): 1955-1965[DOI: 10.1109/TCSVT.2021.3092004]
Huang Y F, Liu C H, Tang S Y and Bai S. 2012. Steganography integration into a low-bit rate speech codec. IEEE Transactions on Information Forensics and Security, 7(6): 1865-1875[DOI: 10.1109/TIFS.2012.2218599]
Huang Y F, Tao H Z, Xiao B and Chang C C. 2017. Steganography in low bit-rate speech streams based on quantization index modulation controlled by keys. Science China Technological Sciences, 60(10): 1585-1596[DOI: 10.1007/s11431-016-0707-3]
Jamil T. 1999. Steganography: the art of hiding information in plain sight. IEEE Potentials, 18(1): 10-12[DOI: 10.1109/45.747237]
Jiang S Z, Ye D P, Huang J Q, Shang Y Y and Zheng Z Y. 2020. SmartSteganogaphy: light-weight generative audio steganography model for smart embedding application. Journal of Network and Computer Applications, 165: #102689[DOI: 10.1016/j.jnca.2020.102689]
Kapotas S K and Skodras A N. 2008. A new data hiding scheme for scene change detection in H. 264 encoded video sequences//Proceedings of 2008 IEEE International Conference on Multimedia and Expo. Hannover, Germany: IEEE: 277-280[DOI: 10.1109/ICME.2008.4607425http://dx.doi.org/10.1109/ICME.2008.4607425]
Kheddar H, Bouzid M and Megías D. 2019. Pitch and Fourier magnitude based steganography for hiding 2.4 kbps MELP bitstream. IET Signal Processing, 13(3): 396-407[DOI: 10.1049/iet-spr.2018.5339]
Kim Y, Duric Z and Richards D. 2007. Modified matrix encoding technique for minimal distortion steganography//Proceedings of the 8th International Workshop on Information Hiding. Alexandria, USA: Springer: 314-327[DOI: 10.1007/978-3-540-74124-4_21http://dx.doi.org/10.1007/978-3-540-74124-4_21]
Kin-Cleaves C and Ker A D. 2018. Adaptive steganography in the noisy channel with dual-syndrome trellis codes//Proceedings of 2018 IEEE International Workshop on Information Forensics and Security. Hong Kong, China: IEEE: 1-7[DOI: 10.1109/WIFS.2018.8630779http://dx.doi.org/10.1109/WIFS.2018.8630779]
Köhler O M, Pasquini C and Böhme R. 2017. On the statistical properties of syndrome trellis coding//Proceedings of the 16th International Workshop on Digital Watermarking. Magdeburg, Germany: Springer: 331-346[DOI: 10.1007/978-3-319-64185-0_25http://dx.doi.org/10.1007/978-3-319-64185-0_25]
Kohls K, Holz T, Kolossa D and Pöpper C. 2016. SkypeLine: robust hidden data transmission for VoIP//Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. Xi'an, China: ACM: 877-888[DOI: 10.1145/2897845.2897913http://dx.doi.org/10.1145/2897845.2897913]
Lee I S and Tsai W H. 2010. A new approach to covert communication via PDF files. Signal Processing, 90(2): 557-565[DOI: 10.1016/j.sigpro.2009.07.022]
Li L C, Yao Y Z, Zhang X Y, Zhang W M and Yu N H. 2020. Video steganography based on modification probability transformation and non-additive embedding distortion. Journal of Electronics and Information Technology, 42(10): 2357-2364
李林聪, 姚远志, 张晓雅, 张卫明, 俞能海. 2020. 基于修改概率转换和非加性嵌入失真的视频隐写方法. 电子与信息学报, 42(10): 2357-2364[DOI: 10.11999/JEIT200001]
Li M D, Mu K, Zhong P, Wen J and Xue Y M. 2019. Generating steganographic image description by dynamic synonym substitution. Signal Processing, 164: 193-201[DOI: 10.1016/j.sigpro.2019.06.014]
Li S B, Wang L R, Liu P and Huang Y F. 2016. A HEVC information hiding approach based on motion vection space encoding. Chinese Journal of Computers, 39(7): 1450-1463
李松斌, 王凌睿, 刘鹏, 黄永峰. 2016. 一种基于运动矢量空间编码的HEVC信息隐藏方法. 计算机学报, 39(7): 1450-1463 [DOI: 10.11897/SP.J.1016.2016.01450]
Li W X, Chen K J, Zhang W M, Zhou H, Wang Y F and Yu N H. 2020a. JPEG steganography with estimated side-information. IEEE Transactions on Circuits and Systems for Video Technology, 30(7): 2288-2294[DOI: 10.1109/TCSVT.2019.2925118]
Li W X, Zhang W M, Chen K J, Zhou W B and Yu N H. 2018. Defining joint distortion for JPEG steganography//Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. Innsbruck, Austria: ACM: 5-16[DOI: 10.1145/3206004.3206008http://dx.doi.org/10.1145/3206004.3206008]
Li W X, Zhang W M, Li L, Zhou H and Yu N H. 2020b. Designing near-optimal steganographic codes in practice based on polar codes. IEEE Transactions on Communications, 68(7): 3948-3962[DOI: 10.1109/TCOMM.2020.2982624]
Li Y and Wang H X. 2019. Robust H. 264/AVC video watermarking without intra distortion drift. Multimedia Tools and Applications, 78(7): 8535-8557[DOI: 10.1007/s11042-018-6942-0]
Liao X, Yu Y B, Li B, Li Z P and Qin Z. 2020. A new payload partition strategy in color image steganography. IEEE Transactions on Circuits and Systems for Video Technology, 30(3): 685-696[DOI: 10.1109/TCSVT.2019.2896270]
Liu J D, Li Z H, Jiang X H and Zhang Z Z. 2021. A high-performance CNN-applied HEVC steganography based on diamond-coded PU partition modes. IEEE Transactions on Multimedia: #3075858[DOI: 10.1109/TMM.2021.3075858http://dx.doi.org/10.1109/TMM.2021.3075858]
Liu Y J, Sun X M and Luo G. 2006. A novel information hiding algorithm based on structure of PDF document. Computer Engineering, 32(17): 230-232
刘友继, 孙星明, 罗纲. 2006. 一种新的基于PDF文档结构的信息隐藏算法. 计算机工程, 32(17): 230-232[DOI: 10.3969/j.issn.1000-3428.2006.17.081]
Liu Y L, Sun X M and Wu Y. 2005. A natural language watermarking based on Chinese syntax//Proceedings of the 1st International Conference on Natural Computation. Changsha, China: Springer: 958-961[DOI: 10.1007/11539902_119http://dx.doi.org/10.1007/11539902_119]
Liu Y X, Hu M S, Ma X J and Zhao H G. 2015. A new robust data hiding method for H. 264/AVC without Intra-frame distortion drift. Neurocomputing, 151(3): 1076-1085[DOI: 10.1016/j.neucom.2014.03.089]
Liu Y X, Li Z T, Ma X J and Liu J. 2013. A robust data hiding algorithm for H. 264/AVC video streams. Journal of Systems and Software, 86(8): 2174-2183[DOI: 10.1016/j.jss.2013.03.101]
Lu W, Zhang J H, Zhao X F, Zhang W M and Huang J W. 2021. Secure robust JPEG Steganography based on autoencoder with adaptive BCH encoding. IEEE Transactions on Circuits and Systems for Video Technology, 31(7): 2909-2922[DOI: 10.1109/TCSVT.2020.3027843]
Lu Y B, Zhai L M and Wang L N. 2020. Designing non-additive distortions for JPEG steganography based on blocking artifacts reduction//Proceedings of the 18th International Workshop on Digital Watermarking. Chengdu, China: Springer: 268-280[DOI: 10.1007/978-3-030-43575-2_23http://dx.doi.org/10.1007/978-3-030-43575-2_23]
Luo X Y, Li Y X, Chang H W, Liu C, Milanfar P and Yang F. 2021. DVMark: a deep multiscale framework for video watermarking[EB/OL]. [2021-11-30].https://arxiv.org/pdf/2104.12734.pdfhttps://arxiv.org/pdf/2104.12734.pdf
Luo Y B, Huang Y F, Li F F and Chang C C. 2016. Text steganography based on Ci-poetry generation using Markov chain model. KSⅡ Transactions on Internet and Information Systems, 10(9): 4568-4584[DOI: 10.3837/tiis.2016.09.029]
Ma S, Zhao X F and Liu Y Q. 2019. Adaptive spatial steganography based on adversarial examples. Multimedia Tools and Applications, 78(22): 32503-32522[DOI: 10.1007/s11042-019-07994-3]
Ma X J, Li Z T, Tu H and Zhang B C. 2010. A data hiding algorithm for H. 264/AVC video streams without intra-frame distortion drift. IEEE Transactions on Circuits and Systems for Video Technology, 20(10): 1320-1330[DOI: 10.1109/TCSVT.2010.2070950]
Mazurczyk W, Karaś M, Szczypiorski K and Janicki A. 2016. YouSkyde: information hiding for Skype video traffic. Multimedia Tools and Applications, 75(21): 13521-13540[DOI: 10.1007/s11042-015-2740-0]
Mazurczyk W and Szczypiorski K. 2008. Steganography of VoIP streams//Proceedings of OTM Confederated International Conferences On the Move to Meaningful Internet Systems. Berlin, Heidelberg: Springer: 1001-1018
Miao H B, Huang L S, Chen Z L, Yang W and Al-hawbani A. 2012. A new scheme for covert communication via 3G encoded speech. Computers and Electrical Engineering, 38(6): 1490-1501[DOI: 10.1016/j.compeleceng.2012.05.003]
Mielikainen J. 2006. LSB matching revisited. IEEE Signal Processing Letters, 13(5): 285-287[DOI: 10.1109/LSP.2006.870357]
Mo H X, Song T T, Chen B L, Luo W Q and Huang J W. 2019. Enhancing JPEG steganography using iterative adversarial examples//Proceedings of 2019 IEEE International Workshop on Information Forensics and Security. Delft, the Netherlands: IEEE: 1-6[DOI: 10.1109/WIFS47025.2019.9035101http://dx.doi.org/10.1109/WIFS47025.2019.9035101]
Mo X B, Tan S Q, Li B and Huang J W. 2021. MCTSteg: a Monte Carlo tree search-based reinforcement learning framework for universal non-additive steganography. IEEE Transactions on Information Forensics and Security, 16: 4306-4320[DOI: 10.1109/TIFS.2021.3104140]
Muñoz A, Gallardo J C and Álvarez I A. 2010. Improving N-Gram linguistic steganography based on templates//Proceedings of 2010 International Conference on Security and Cryptography. Athens, Greece: IEEE: 1-4
Munuera C. 2007. Steganography and error-correcting codes. Signal Processing, 87(6): 1528-1533[DOI: 10.1016/j.sigpro.2006.12.008]
Mustafayeva E, Huseynova G and Gasimov V. 2019. Implementing covert channels to transfer hidden information over whatsapp on mobile phones. International Journal of Engineering and Applied Sciences (IJEAS), 6(2): 32-35
Nakajima T V and Ker A D. 2020. The syndrome-trellis sampler for generative steganography//Proceedings of 2020 IEEE International Workshop on Information Forensics and Security. New York, USA: IEEE: 1-6[DOI: 10.1109/WIFS49906.2020.9360885http://dx.doi.org/10.1109/WIFS49906.2020.9360885]
Nie Q K, Xu X B, Feng B W and Zhang L Y. 2018. Defining embedding distortion for intra prediction mode-based video steganography. Computers, Materials and Continua, 55(1): 59-70[DOI: 10.3970/cmc.2018.055.059]
Pal D, Goswami A, Chowdhury S and Ghoshal N. 2021. A novel high-density multilayered audio steganography technique in hybrid domain//Bhattacharjee D, Kole D K, Dey N, Basu S and Plewczynski D, eds. Proceedings of International Conference on Frontiers in Computing and Systems. Singapore, Singapore: Springer: 721-730[DOI: 10.1007/978-981-15-7834-2http://dx.doi.org/10.1007/978-981-15-7834-2]
Qiao T, Wang S, Luo X Y and Zhu Z Q. 2021. Robust steganography resisting JPEG compression by improving selection of cover element. Signal Processing, 183: #108048[DOI: 10.1016/j.sigpro.2021.108048]
Qin X H, Li B and Huang J W. 2019. A new spatial steganographic scheme by modeling image residuals with multivariate Gaussian model//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton, UK: IEEE: 2617-2621[DOI: 10.1109/ICASSP.2019.8682688http://dx.doi.org/10.1109/ICASSP.2019.8682688]
Qin X H, Tan S Q, Tang W X, Li B and Huang J W. 2021. Image steganography based on iterative adversarial perturbations onto a synchronized-directions sub-image//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto, Canada: IEEE: 2705-2709[DOI: 10.1109/ICASSP39728.2021.9414055http://dx.doi.org/10.1109/ICASSP39728.2021.9414055]
Ren Y Z, Yang H Y, Wu H X, Tu W P and Wang L N. 2019. A secure AMR fixed codebook steganographic scheme based on pulse distribution model. IEEE Transactions on Information Forensics and Security, 14(10): 2649-2661[DOI: 10.1109/TIFS.2019.2905760]
Ren Y Z, Zheng W M and Wang L N. 2018. SILK steganography scheme based on the distribution of LSF parameter//Proceedings of 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Honolulu, USA: IEEE: 539-548[DOI: 10.23919/APSIPA.2018.8659509http://dx.doi.org/10.23919/APSIPA.2018.8659509]
Ren Y Z, Zhong S, Tu W P, Yang H Y and Wang L N. 2021. A SILK adaptive steganographic scheme based on minimizing distortion in pitch domain. IETE Technical Review, 38(1): 46-55[DOI: 10.1080/02564602.2020.1757520]
Sachnev V, Kim H J and Zhang R Y. 2009. Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding//Proceedings of the 11th ACM Workshop on Multimedia and Security. Princeton, USA: ACM: 131-140[DOI: 10.1145/1597817.1597841http://dx.doi.org/10.1145/1597817.1597841]
Saenger J, Mazurczyk W, Keller J and Caviglione L. 2020. VoIP network covert channels to enhance privacy and information sharing. Future Generation Computer Systems, 111: 96-106[DOI: 10.1016/j.future.2020.04.032]
Schönfeld D and Winkler A.2006. Embedding with syndrome coding based on BCH codes//Proceedings of the 8th Workshop on Multimedia and Security. Geneva, Switzerland: ACM: 214-223[DOI: 10.1145/1161366.1161405http://dx.doi.org/10.1145/1161366.1161405]
Shahadi H I, Kod M S, Qasem B and Farhan H R. 2021. Real-time scheme for covert communication based VoIP. Journal of Physics: Conference Series, 1997: #012020[DOI: 10.1088/1742-6596/1997/1/012020]
Shanableh T.2018. Altering split decisions of coding units for message embedding in HEVC. Multimedia Tools and Applications, 77(7): 8939-8953[DOI: 10.1007/s11042-017-4787-6]
Sharifzadeh M, Aloraini M and Schonfeld D. 2019. Quantized Gaussian embedding steganography//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton, UK: IEEE: 2637-2641[DOI: 10.1109/ICASSP.2019.8682757http://dx.doi.org/10.1109/ICASSP.2019.8682757]
Shen J M, Ji H and Han J W. 2020. Near-imperceptible neural linguistic steganography via self-adjusting arithmetic coding//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. [s. l.]: Association for Computational Linguistics: 303-313[DOI: 10.18653/v1/2020.emnlp-main.22http://dx.doi.org/10.18653/v1/2020.emnlp-main.22]
Song T T, Liu M L, Luo W Q and Zheng P J. 2021. Enhancing image steganography via stego generation and selection//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto, Canada: IEEE: 2695-2699[DOI: 10.1109/ICASSP39728.2021.9414723http://dx.doi.org/10.1109/ICASSP39728.2021.9414723]
Su W K, Ni J Q, Hu X L and Fridrich J. 2021. Image steganography with symmetric embedding using Gaussian Markov random field model. IEEE Transactions on Circuits and Systems for Video Technology, 31(3): 1001-1015[DOI: 10.1109/TCSVT.2020.3001122]
Su W K, Ni J Q, Hu X L and Huang J W. 2022. New design paradigm of distortion cost function for efficient JPEG steganography. Signal Processing, 190: #108319[DOI: 10.1016/j.sigpro.2021.108319]
Su W K, Ni J Q, Li X H and Shi Y Q. 2018. A new distortion function design for JPEG steganography using the generalized uniform embedding strategy. IEEE Transactions on Circuits and Systems for Video Technology, 28(12): 3545-3549[DOI: 10.1109/TCSVT.2018.2865537]
Su Y T, Zhang C Q and Zhang C T. 2011. A video steganalytic algorithm against motion-vector-basedsteganography. Signal Processing, 91(8): 1901-1909[DOI: 10.1016/j.sigpro.2011.02.012]
Sun X H, Wang K X and Li S J. 2021. Audio steganography with less modification to the optimal matching CNV-QIM path with the minimal hamming distance expected value to a secret. Multimedia Systems, 27(3): 341-352[DOI: 10.1007/s00530-021-00790-w]
Taburet T, Bas P, Fridrich J and Sawaya W. 2019b. Computing dependencies between DCT coefficients for natural steganography in JPEG domain//Proceedings of ACM Workshop on Information Hiding and Multimedia Security. Paris, France: ACM: 57-62[DOI: 10.1145/3335203.3335715http://dx.doi.org/10.1145/3335203.3335715]
Taburet T, Bas P, Sawaya W and Cogranne R. 2020. JPEG steganography and synchronization of DCT coefficients for a given development pipeline//Proceedings of 2020 ACM Workshop on Information Hiding and Multimedia Security. Denver, USA: ACM: 139-149[DOI: 10.1145/3369412.3395074http://dx.doi.org/10.1145/3369412.3395074]
Taburet T, Bas P, Sawaya W and Fridrich J. 2019a. A natural steganography embedding scheme dedicated to color sensors in the JPEG domain//Proceedings of Electronic Imaging: Media Watermarking, Security, and Forensics. Springfield: Society for Imaging Science and Technology: #542[DOI: 10.2352/ISSN.2470-1173.2019.5.MWSF-542http://dx.doi.org/10.2352/ISSN.2470-1173.2019.5.MWSF-542]
Taburet T, Bas P, Sawaya W and Fridrich J. 2021. Natural steganography in JPEG domain with a linear development pipeline. IEEE Transactions on Information Forensics and Security, 16: 173-186[DOI: 10.1109/TIFS.2020.3007354]
Tang G M, Jiang M M and Sun Y. 2019. Adaptive color image steganography based on dynamic distortion modification. Journal of Electronics and Information Technology, 41(3): 656-665
汤光明, 姜明明, 孙艺. 2019. 失真代价动态更新的自适应彩色图像隐写算法. 电子与信息学报, 41(3): 656-665[DOI: 10.11999/JEIT180388]
Tang W X, Li B, Barni M, Li J and Huang J W. 2021. An automatic cost learning framework for image steganography using deep reinforcement learning. IEEE Transactions on Information Forensics and Security, 16: 952-967[DOI: 10.1109/TIFS.2020.3025438]
Tang W X, Li B, Tan S Q, Barni M and Huang J W. 2019. CNN-based adversarial embedding for image steganography. IEEE Transactions on Information Forensics and Security, 14(8): 2074-2087[DOI: 10.1109/TIFS.2019.2891237]
Tang W X, Tan S Q, Li B and Huang J W. 2017. Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Processing Letters, 24(10): 1547-1551[DOI: 10.1109/LSP.2017.2745572]
Tao J Y, Li S, Zhang X P and Wang Z C. 2019. Towards robust image steganography. IEEE Transactions on Circuits and Systems for Video Technology, 29(2): 594-600[DOI: 10.1109/TCSVT.2018.2881118]
Tian H, Sun J, Chang C C, Qin J and Chen Y H. 2017. Hiding information into voice-over-IP streams using adaptive bitrate modulation. IEEE Communications Letters, 21(4): 749-752[DOI: 10.1109/LCOMM.2017.2659718]
Ueoka H, Murawaki Y and Kurohashi S. 2021. Frustratingly easy edit-based linguistic steganography with a masked language model//Proceedings of 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. [s. l.]: Association for Computational Linguistics[DOI: 10.18653/v1/2021.naacl-main.433http://dx.doi.org/10.18653/v1/2021.naacl-main.433]
Wang C, Zhang W M, Liu J F and Yu N H. 2012. Fast matrix embedding by matrix extending. IEEE Transactions on Information Forensics and Security, 7(1): 346-350[DOI: 10.1109/TIFS.2011.2164907]
Wang L N, Wang B, Zhai L M and Xu Y B. 2018. JPEG image steganography based on side information estimation. Journal of South China University of Technology (Natural Science Edition), 46(5): 9-18
王丽娜, 王博, 翟黎明, 徐一波. 2018. 基于边信息估计的JPEG图像隐写方法. 华南理工大学学报(自然科学版), 46(5): 9-15[DOI: 10.3969/j.issn.1000-565X.2018.05.002]
Wang L N, Wang M J, Zhai L M and Ren Y Z. 2014. H. 264/AVC video steganalysis algorithm based on motion vector abnormal correlation. Acta Electronica Sinica, 42(8): 1457-1464
王丽娜, 王旻杰, 翟黎明, 任延珍. 2014. 基于相关性异常的H. 264/AVC视频运动矢量隐写分析算法. 电子学报, 42(8): 1457-1464[DOI: 10.3969/j.issn.0372-2112.2014.08.001]
Wang L N, Xu Y B, Zhai L M and Ren Y Z. 2017. An adaptive video motion vector steganography based on macroblock complexity. Chinese Journal of Computers, 40(5): 1044-1056
王丽娜, 徐一波, 翟黎明, 任延珍. 2017. 基于宏块复杂度的自适应视频运动矢量隐写算法. 计算机学报, 40(5): 1044-1056[DOI: 10.11897/SP.J.1016.2017.01044]
Wang S Z, Zhang X P and Zhang K W. 2005. Digital Cryptography and Cryptography Analysis: Information Warfare Technology in the Internet Age. Beijing: Tsinghua University Press
王朔中, 张新鹏, 张开文. 2005. 数字密写和密写分析——互联网时代的信息战技术. 北京: 清华大学出版社
Wang Y, Cao Y and Zhao X F. 2021c. Minimizing embedding impact for H. 264 steganography by progressive trellis coding. IEEE Transactions on Information Forensics and Security, 16: 333-345[DOI: 10.1109/TIFS.2020.3013523]
Wang Y, Cao Y, Zhao X F, Zhou X J and Zhu M N. 2018a. Maintaining rate-distortion optimization for IPM-based video steganography by constructing isolated channels in HEVC//Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. Innsbruck, Austria: ACM: 97-107[DOI: 10.1145/3206004.3206020http://dx.doi.org/10.1145/3206004.3206020]
Wang Y F, Li W X, Zhang W M, Yu X Z, Liu K L and Yu N H. 2021a. BBC++: enhanced block boundary continuity on defining non-additive distortion for JPEG steganography. IEEE Transactions on Circuits and Systems for Video Technology, 31(5): 2082-2088[DOI: 10.1109/TCSVT.2020.3010554]
Wang YF, Zhang W M, Li W X and Yu N H. 2021b. Non-additive cost functions for JPEG steganography based on block boundary maintenance. IEEE Transactions on Information Forensics and Security, 16: 1117-1130[DOI: 10.1109/TIFS.2020.3029908]
Wang Y F, Zhang W M, Li W X, Yu X Z and Yu N H. 2020. Non-additive cost functions for color image steganography based on inter-channel correlations and differences. IEEE Transactions on Information Forensics and Security, 15: 2081-2095[DOI: 10.1109/TIFS.2019.2956590]
Wang Z C, Qian Z X, Zhang X P, Yang M and Ye D P. 2018b. On improving distortion functions for JPEG steganography. IEEE Access, 6: 74917-74930[DOI: 10.1109/ACCESS.2018.2884198]
Wang Z C, Yin Z X and Zhang X P. 2019. Asymmetric distortion function for JPEG steganography using block artifact compensation. International Journal of Digital Crime and Forensics, 11(1): 90-99[DOI: 10.4018/IJDCF.2019010107]
Wang Z C, Zhang X P and Qin C. 2018. Asymmetric distortion function for spatial adaptive steganography. Journal of Applied Sciences, 36(5): 819-825 (
王子驰, 张新鹏, 秦川. 2018. 非对称失真的空域自适应隐写. 应用科学学报, 36(5): 819-825[DOI: 10.3969/j.issn.0255-8297.2018.5.009]
Wang Z C, Zhang X P and Yin Z X. 2016. Hybrid distortion function for JPEG steganography. Journal of Electronic Imaging, 25(5): #050501[DOI: 10.1117/1.jei.25.5.050501]
Wayner P. 1992. Mimic functions. Cryptologia, 16(3): 193-214[DOI: 10.1080/0161-119291866883]
Wei Q D, Yin Z X, Wang Z C and Zhang X P. 2018. Distortion function based on residual blocks for JPEG steganography. Multimedia Tools and Applications, 77(14): 17875-17888[DOI: 10.1007/s11042-017-5053-7]
Westfeld A. 2001. F5—a steganographic algorithm//Proceedings of the 4th International Workshop on Information Hiding. Pittsburgh, USA: Springer: 289-302[DOI: 10.1007/3-540-45496-9_21http://dx.doi.org/10.1007/3-540-45496-9_21]
Wojtuń J and Piotrowski Z. 2021. Synchronization of acoustic signals for steganographic transmission. Sensors, 21(10): #3379[DOI: 10.3390/s21103379]
Wu J Q, Chen B L, Luo W Q and Fang Y M. 2020. Audio steganography based on iterative adversarial attacks against convolutional neural networks. IEEE Transactions on Information Forensics and Security, 15: 2282-2294[DOI: 10.1109/TIFS.2019.2963764]
Wu Z J, Yang W and Yang Y X. 2003. ABS-based speech information hiding approach. Electronics Letters, 39(22): 1617-1619[DOI: 10.1049/el:20030993]
Xiao B, Huang Y F and Tang S Y. 2008. An approach to information hiding in low bit-rate speech stream//Proceedings of 2008 IEEE Global Telecommunications Conference. New Orleans, USA: IEEE: 1-5[DOI: 10.1109/GLOCOM.2008.ECP.375http://dx.doi.org/10.1109/GLOCOM.2008.ECP.375]
Xie P, Zhang H, You W K, Zhao X F, Yu J C and Ma Y. 2019. Adaptive VP8 steganography based on deblocking filtering//Proceedings of ACM Workshop on Information Hiding and Multimedia Security. Paris, France: ACM: 25-30[DOI: 10.1145/3335203.3335711http://dx.doi.org/10.1145/3335203.3335711]
Yan D Q, Wang R D and Zhang L G. 2011. A high capacity MP3 steganography based on Huffman coding. Journal of Sichuan University (Natural Science Edition), 48(6): 1281-1286
严迪群, 王让定, 张力光. 2011. 基于Huffman编码的大容量MP3隐写算法. 四川大学学报(自然科学版), 48(6): 1281-1286[DOI: 10.3969/j.issn.0490-6756.2011.06.011]
Yang G B, Li J J, He Y L and Kang Z W. 2011. An information hiding algorithm based on intra-prediction modes and matrix coding for H. 264/AVC video stream. AEU-International Journal of Electronics and Communications, 65(4): 331-337[DOI: https://doi.org/10.1016/j.aeue.2010.03.011]
Yang J and Li S B. 2018. An efficient information hiding method based on motion vector space encoding for HEVC. Multimedia Tools and Applications, 77(10): 11979-12001[DOI: 10.1007/s11042-017-4844-1]
Yang J H, Ruan D Y, Huang J W, Kang X G and Shi Y Q. 2020a. An embedding cost learning framework using GAN. IEEE Transactions on Information Forensics and Security, 15: 839-851[DOI: 10.1109/TIFS.2019.2922229]
Yang J H, Ruan D Y, Kang X G and Shi Y Q. 2019a. Towards automatic embedding cost learning for JPEG steganography//Proceedings of ACM Workshop on Information Hiding and Multimedia Security. Paris, France: ACM: 37-46[DOI: 10.1145/3335203.3335713http://dx.doi.org/10.1145/3335203.3335713]
Yang K, Yi X W, Zhao X F and Zhou L N. 2017. Adaptive MP3 steganography using equal length entropy codes substitution//Proceedings of the 16th International Workshop on Digital Watermarking. Magdeburg, Germany: Springer: 202-216[DOI: 10.1007/978-3-319-64185-0_16http://dx.doi.org/10.1007/978-3-319-64185-0_16]
Yang Y Z, Wang Y T, Yi X W, Zhao X F and Ma Y. 2019b. Defining joint embedding distortion for adaptive MP3 steganography//Proceedings of ACM Workshop on Information Hiding and Multimedia Security. Paris, France: ACM: 14-24[DOI: 10.1145/3335203.3335710http://dx.doi.org/10.1145/3335203.3335710]
Yang Z L, Gong B T, Li Y M, Yang J S, Hu Z W and Huang Y F. 2020c. Graph-Stega: semantic controllable steganographic text generation guided by knowledge graph[EB/OL]. [2021-11-30].https://arxiv.org/pdf/2006.08339.pdfhttps://arxiv.org/pdf/2006.08339.pdf
Yang Z L, Guo X Q, Chen Z M, Huang Y F and Zhang Y J. 2019c. RNN-Stega: linguistic steganography based on recurrent neural networks. IEEE Transactions on Information Forensics and Security, 14(5): 1280-1295[DOI: 10.1109/TIFS.2018.2871746]
Yang Z L, Xiang L Y, Zhang S Y, Sun X M and Huang Y F. 2021. Linguistic generative steganography with enhanced cognitive-imperceptibility. IEEE Signal Processing Letters, 28: 409-413[DOI: 10.1109/LSP.2021.3058889]
Yang Z L, Zhang P Y, Jiang M Y, Huang Y F and Zhang Y J. 2018. RITS: real-time interactive text steganography based on automatic dialogue model//Proceedings of the 4th International Conference on Cloud Computing and Security. Haikou, China: Springer: 253-264[DOI: 10.1007/978-3-030-00012-7_24http://dx.doi.org/10.1007/978-3-030-00012-7_24]
Yang Z L, Zhang S Y, Hu Y T, Hu Z W and Huang Y F. 2021. VAE-Stega: linguistic steganography based on variational auto-encoder. IEEE Transactions on Information Forensics and Security, 16: 880-895[DOI: 10.1109/TIFS.2020.3023279]
Yao Y Z, Zhang W M, Yu N H and Zhao X F. 2015. Defining embedding distortion for motion vector-based video steganography. Multimedia Tools and Applications, 74(24): 11163-11186[DOI: 10.1007/s11042-014-2223-8]
Yi X W, Yang K, Zhao X F, Wang Y T and Yu H B. 2019. AHCM: adaptive Huffman code mapping for audio steganography based on psychoacoustic model. IEEE Transactions on Information Forensics and Security, 14(8): 2217-2231[DOI: 10.1109/TIFS.2019.2895200]
You W K, Cao Y and Zhao X F. 2017. Information hiding using CAVLC: misconceptions and a detection strategy//Proceedings of the 16th International Workshop on Digital Watermarking. Magdeburg, Germany: Springer: 187-201[DOI: 10.1007/978-3-319-64185-0_15http://dx.doi.org/10.1007/978-3-319-64185-0_15]
Yu X Z, Chen K J, Wang Y F, Li W X, Zhang W M and Yu N H. 2020. Robust adaptive steganography based on generalized dither modulation and expanded embedding domain. Signal Processing, 168: #107343[DOI: 10.1016/j.sigpro.2019.107343]
Zha H Y, Zhang W M, Qin C and Yu N H. 2019. Direct adversarial attack on stego sandwiched between black boxes//Proceedings of 2019 IEEE International Conference on Image Processing. Taipei, China: IEEE: 2284-2288[DOI: 10.1109/ICIP.2019.8804415http://dx.doi.org/10.1109/ICIP.2019.8804415]
Zhang H, Cao Y and Zhao X F. 2016a. Motion vector-based video steganography with preserved local optimality. Multimedia Tools and Applications, 75(21): 13503-13519[DOI: 10.1007/s11042-015-2743-x]
Zhang H, Cao Y, Zhao X F, Yu H B and Liu C J. 2017a. Data hiding in H. 264/AVC video files using the coded block pattern//Proceedings of the 15th International Workshop on Digital Watermarking.Beijing, China: Springer: 588-600[DOI: 10.1007/978-3-319-53465-7_44http://dx.doi.org/10.1007/978-3-319-53465-7_44]
Zhang H, Cao Y, Zhao X F, Zhang W M and Yu N H. 2014. Video steganography with perturbed macroblock partition//Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security. Salzburg, Austria: ACM: 115-122[DOI: 10.1145/2600918.2600936http://dx.doi.org/10.1145/2600918.2600936]
Zhang K, Xu L, Cuesta-Infante A and Veeramachaneni K. 2019. Robust invisible video watermarking with attention[EB/OL]. [2021-11-30].https://arxiv.org/pdf/1909.01285.pdfhttps://arxiv.org/pdf/1909.01285.pdf
Zhang S Y, Yang Z L, Yang J S and Huang Y F. 2021b. Linguistic steganography: from symbolic space to semantic space. IEEE Signal Processing Letters, 28: 11-15[DOI: 10.1109/LSP.2020.3042413]
Zhang S Y, Yang Z L, Yang J S and Huang Y F. 2021c. Provably secure generative linguistic steganography//Proceedings of Findings of the Association for Computational Linguistics. [s. l.]: Association for Computational Linguistics[DOI: 10.18653/v1/2021.findings-acl.268http://dx.doi.org/10.18653/v1/2021.findings-acl.268]
Zhang W M and Li S Q. 2008. A coding problem in steganography. Designs, Codes and Cryptography, 46(1): 67-81[DOI: 10.1007/s10623-007-9135-9]
Zhang W M, Liu J F, Wang X and Yu N H. 2010a. Generalization and analysis of the paper folding method for steganography. IEEE Transactions on Information Forensics and Security, 5(4): 694-704[DOI: 10.1109/TIFS.2010.2065804]
Zhang W M, Zhang X P and Wang S Z. 2007a. A double layered "plus-minus one" data embedding scheme. IEEE Signal Processing Letters, 14(11): 848-851[DOI: 10.1109/LSP.2007.903255]
Zhang W M, Zhang X P and Wang S Z. 2008. Maximizing steganographic embedding efficiency by combining Hamming codes and wet paper codes//Proceedings of the 10th International Workshop on Information Hiding. Santa Barbara, USA: Springer: 60-71[DOI: 10.1007/978-3-540-88961-8_5http://dx.doi.org/10.1007/978-3-540-88961-8_5]
Zhang W M, Zhang X P and Wang S Z. 2010b. Near-optimal codes for information embedding in gray-scale signals. IEEE Transactions on Information Theory, 56(3): 1262-1270[DOI: 10.1109/TIT.2009.2039087]
Zhang W M, Zhang Z, Zhang L L, Li H Y and Yu N H. 2017b. Decomposing joint distortion for adaptive steganography. IEEE Transactions on Circuits and Systems for Video Technology, 27(10): 2274-2280[DOI: 10.1109/TCSVT.2016.2587388]
Zhang X P. 2010. Efficient data hiding with plus-minus one or two. IEEE Signal Processing Letters, 17(7): 635-638[DOI: 10.1109/LSP.2010.2049415]
Zhang X P and Wang S Z. 2006. Efficient steganographic embedding by exploiting modification direction. IEEE Communications Letters, 10(11): 781-783[DOI: 10.1109/LCOMM.2006.060863]
Zhang Y, Luo X Y, Guo Y Q, Qin C and Liu F L. 2020a. Multiple robustness enhancements for image adaptive steganography in lossy channels. IEEE Transactions on Circuits and Systems for Video Technology, 30(8): 2750-2764[DOI: 10.1109/TCSVT.2019.2923980]
Zhang Y, Luo X Y, Wang J W, Guo Y Q and Liu F L. 2021a. Image robust adaptive steganography adapted to lossy channels in open social networks. Information Sciences, 564: 306-326[DOI: 10.1016/j.ins.2021.02.058]
Zhang Y, Luo X Y, Wang J W, Yang C F and Liu F L. 2018b. A robust image steganography method resistant to scaling and detection. Journal of Internet Technology, 19(2): 607-618[DOI: 10.3966/160792642018031902029]
Zhang Y, Luo X Y, Yang C F, Ye D P and Liu F L. 2016b. A framework of adaptive steganography resisting JPEG compression and detection. Security and Communication Networks, 9(15): 2957-2971[DOI: 10.1002/sec.1502]
Zhang Y, Luo X Y, Zhu X D, Li Z Y and Bors A G. 2020b. Enhancing reliability and efficiency for real-time robust adaptive steganography using cyclic redundancy check codes. Journal of Real-Time Image Processing, 17(1): 115-123[DOI: 10.1007/s11554-019-00905-7]
Zhang Y, Zhu X D, Qin C, Yang C F and Luo X Y. 2018c. Dither modulation based adaptive steganography resisting JPEG compression and statistic detection. Multimedia Tools and Applications, 77(14): 17913-17935[DOI: 10.1007/s11042-017-4506-3]
Zhang Y W, Zhang W M, Chen K J, Liu J Y, Liu Y J and Yu N H. 2018a. Adversarial examples against deep neural network based steganalysis//Proceedingsof the 6th ACM Workshop on Information Hiding and Multimedia Security. Innsbruck, Austria: ACM: 67-72[DOI: 10.1145/3206004.3206012http://dx.doi.org/10.1145/3206004.3206012]
Zhang Z Y, Yi X W and Zhao X F. 2020c. An AAC steganography scheme for adaptive embedding with distortion minimization model. Multimedia Tools and Applications, 79(37): 27777-27790[DOI: 10.1007/s11042-020-09344-0]
Zhao Z Z, Guan Q X, Zhang H and Zhao X F. 2019. Improving the robustness of adaptive steganographic algorithms based on transport channel matching. IEEE Transactions on Information Forensics and Security, 14(7): 1843-1856[DOI: 10.1109/TIFS.2018.2885438]
Zhao Z Z, Guan Q X and Zhao X F. 2016. Constructing near-optimal double-layered syndrome-trellis codes for spatial steganography//Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. Vigo, Spain: ACM: 139-148[DOI: 10.1145/2909827.2930802http://dx.doi.org/10.1145/2909827.2930802]
Zhong S P, Cheng X Q and Chen T R. 2007. Data hiding in a kind of PDF texts for secret communication. International Journal of Network Security, 4(1): 17-26
Zhong Z Y, Guo Y H and Xu G A. 2012. Digital watermarking algorithm based on structure of PDF document. Journal of Computer Applications, 32(10): 2776-2778, 2782
钟征燕, 郭燕慧, 徐国爱. 2012. 基于PDF文档结构的数字水印算法. 计算机应用, 32(10): 2776-2778, 2782[DOI: 10.3724/SP.J.1087.2012.02776]
Zhou W B, Zhang W M and Yu N H. 2017. A new rule for cost reassignment in adaptive steganography. IEEE Transactions on Information Forensics and Security, 12(11): 2654-2667[DOI: 10.1109/TIFS.2017.2718480]
Zhou X J, Peng W L, Yang B Y, Wen J, Xue Y M and Zhong P. 2021. Linguistic steganography based on adaptive probability distribution. [J/OL]. [2021-11-30]. IEEE Transactions on Dependable and Secure Computing,https://ieeexplore.ieee.org/document/9430708https://ieeexplore.ieee.org/document/9430708[DOI: 10.1109/TDSC.2021.3079957http://dx.doi.org/10.1109/TDSC.2021.3079957].
Zhou Z L, Mu Y, Zhao N S, Wu Q M J and Yang C N. 2016. Coverless information hiding method based on multi-keywords//Proceedings of the 2nd International conference on cloud computing and security. Nanjing, China: Springer: 39-47[DOI: 10.1007/978-3-319-48671-0_4http://dx.doi.org/10.1007/978-3-319-48671-0_4]
Zhu B L and Ni J Q. 2018. Uniform embedding for efficient steganography of H. 264 video//Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE: 1678-1682[DOI: 10.1109/ICIP.2018.8451214http://dx.doi.org/10.1109/ICIP.2018.8451214]
Zhu L Y, Luo X Y, Yang C F, Zhang Y and Liu F L. 2021a. Invariances of JPEG-quantized DCT coefficients and their application in robust image steganography. Signal Processing, 183: #108015[DOI: 10.1016/j.sigpro.2021.108015]
Zhu L Y, Luo X Y, Zhang Y, Yang C F and Liu F L. 2021b. Inverse interpolation and its application in robust image steganography[J/OL]. [2021-11-30]. IEEE Transactions on Circuits and Systems for Video Technology,https://ieeexplore.ieee.org/document/9521502https://ieeexplore.ieee.org/document/9521502[DOI: 10.1109/TCSVT.2021.3107342http://dx.doi.org/10.1109/TCSVT.2021.3107342].
Ziegler Z M, Deng Y T and Rush A M. 2019. Neural linguistic steganography//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong, China: Association for Computational Linguistics[DOI: 10.18653/v1/D19-1115http://dx.doi.org/10.18653/v1/D19-1115]