深度学习下主流染色体分类算法的性能评估
Performance evaluation of mainstream chromosome recognition algorithms under deep learning
- 2023年28卷第2期 页码:570-588
纸质出版日期: 2023-02-16 ,
录用日期: 2022-04-14
DOI: 10.11834/jig.210669
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2023-02-16 ,
录用日期: 2022-04-14
移动端阅览
易序晟, 尹爱华, 黄杰晟, 彭璟, 陈汉彪, 郭莉, 林成创, 李双印, 赵淦森. 深度学习下主流染色体分类算法的性能评估[J]. 中国图象图形学报, 2023,28(2):570-588.
Xusheng Yi, Aihua Yin, Jiesheng Huang, Jing Peng, Hanbiao Chen, Li Guo, Chengchuang Lin, Shuangyin Li, Gansen Zhao. Performance evaluation of mainstream chromosome recognition algorithms under deep learning[J]. Journal of Image and Graphics, 2023,28(2):570-588.
目的
2
染色体分类是医学影像处理的具体任务之一,最终结果可为医生提供重要的临床诊断信息,在产前诊断中起着重要作用。深度学习由于强大的特征表达能力在医学影像领域得到了广泛应用,但是基于深度学习的大部分染色体分类算法都是在轻量化私有数据库上得到的不同水准的分类结果,难以客观评估不同算法间的优劣,导致缺乏对算法的临床筛选标准,因此迫切需要在大规模数据库上对不同算法开展基于同样数据级的性能评估,以获取具有客观可对比性的性能数据,这对于科研成果的转化具有重要意义。
方法
2
本文基于广东省妇幼保健院提供的染色体数据,构建了包含126 453条染色体的临床数据库,精选6个主流染色体分类模型在该数据库上展开对比实验与性能评估。
结果
2
在本文构建的大规模染色体临床数据库上,实验和分析发现,参评模型分类准确率均达到92%以上,其中MixNet模型提升后分类效果最好,为98.92%。即使分类性能落后的模型在本数据集上训练也得到明显改善,准确率从86.7%提升至92.09%,相比早期报告的性能提升了5.39%。
结论
2
开展实证研究实验发现,数据库规模大小是影响染色体分类算法能否取得理想分类效果的重要因素之一。对于染色体分类任务而言,残差神经网络是比较合适的网络结构,但结果方面缺乏可解释性等原因,导致与高精度临床应用要求还存在差距。基于深度学习技术的染色体分类研究还需要进一步深入开展。
Objective
2
Deep learning technique-based medicinal image processing is essential for clinical information in related to disease diagnosis
treatment
and surgical planning. Chromosome-relevant segmentation can be as one of the specific tasks for medical-based image processing. It is beneficial to prenatal diagnosis via clinical diagnosis information gathering and analysis. In recent years
an end-to-end training features-based deep learning technique has been developing intensively. Chromosome-relevant segmentation has been facilitating as well. Chromosomes can be one of the key carriers of genetic information. Chromosomes-based genetic information analysis is often employed for human genetic diseases. Chromosome images-related karyotyping analysis is a commonly-used method for diagnosing birth defects and it can be as the "gold standard" for the clinical diagnosis of genetic diseases. Chromosome segmentation is challenged for the manipulation problem in the context of chromosome karyotype analysis. It has a strong reference value for prenatal diagnosis results. However
most of chromosome-related segmentation algorithms have restricted by its heterogeneity
resulting in a lack of a screening standard for algorithms in clinical applications. To carry out more comparative experiments on the large-scale chromosome-constructed database
we develop a multiple of chromosome-essential segmentation models.
Method
2
Our database is constructed and segmented in terms of the chromosome karyotype (funded by Guangdong Maternity and Child Health Hospital). first
it consists of large-scale chromosome clinical data in relevant to 126 453 chromosome samples. Then
the publicly-available multi-chromosome-essential recognition models are selected. Finally
experiments and performance evaluation of our model is carried out in the clinical chromosome database.
Result
2
Random sampling-stratified experiment is used to divide the clinical chromosome data set into training data set (80%)
validation data set (10%)
and test data set (10%) totally. The models-selected are all developed in terms of Pytorch framework. The training process of the model is summarized as mentioned below: First
all models are pre-trained and migrated from the ImageNet classification task. Second
a single-stage cycle learning (1 cycle LR) learning and training method is used to balance the performance of each model in the clinical data set gradually. The batch size of all experiments is set to 32 (batch_size=32). The balanced loss function is based on the cross-entropy loss function smoothed by the mark of
α
=0.1. The learning rate is set to 1E-4. The hyper parameter for the maximum number of training iterations is set to 500. Moreover
the early stopping strategy will be implemented to terminate the training process if the verification loss is not decreased in five consecutive periods. Finally
our training weights can be optimized and restored for the corresponding model. Large-scale clinical-oriented chromosome data sets are beneficial for evaluating existing chromosome classification methods and improving their performance. The CirNet and MixNet models-based initial performance and classification effect are optimized on the original ResNet networks. It can strengthen the depth and width of the network
increase the number of parameters
and get a better classification level. The guarantee of the amount of data can alleviate the problem of over-fitting. The classification accuracy rate is optimized and outreached to 98.92%
but there is still a gap between the high-precision clinical applications. Conclution To develop deep learning technique-based chromosome classification and ensure its high-precision potentially
a refined network structure is required to be designed and tackled the chromosome images-related homogeneity further. The quality and quantity of chromosome data samples should be guaranteed as well.
医学影像处理深度学习染色体分类残差神经网络分类评估
medical image processingdeep learningchromosome classificationresidual neural networkclassification evaluation
Abid F and Hamami L. 2018. A survey of neural network based automated systems for human chromosome classification. Artificial Intelligence Review, 49(1): 41-56[DOI: 10.1007/s10462-016-9515-5]
Bertinetto L, Valmadre J, Henriques J F, Vedaldi A and Torr P H S. 2016. Fully-convolutional Siamese networks for object tracking//Proceedings of 2016 European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 850-865[DOI: 10.1007/978-3-319-48881-3_56http://dx.doi.org/10.1007/978-3-319-48881-3_56]
Bromley J, Bentz J W, Bottou L, Guyon I, Lecun Y, Moore C, Säckinger E and Shah R. 1993. Signature verification using a "Siamese" time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7(4): 669-688[DOI: 10.1142/S0218001493000339]
Deng J, Dong W, Socher R, Li L J, Li K and Li F F. 2009. ImageNet: a large-scale hierarchical image database//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE: 248-255[DOI: 10.1109/cvpr.2009.5206848http://dx.doi.org/10.1109/cvpr.2009.5206848]
Grisan E, Poletti E and Ruggeri A. 2009. Automatic segmentation and disentangling of chromosomes in Q-band prometaphase images. IEEE Transactions on Information Technology in Biomedicine, 13(4): 575-581[DOI: 10.1109/TITB.2009.2014464]
He K M, Gkioxari G, Dollár P and Girshick R. 2017. Mask R-CNN//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2980-2988[DOI: 10.1109/ICCV.2017.322http://dx.doi.org/10.1109/ICCV.2017.322]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778[DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Hu X, Yi W L, Jiang L, Wu S J, Zhang Y, Du J Q, Ma T Y, Wang T and Wu X M. 2019. Classification of metaphase chromosomes using deep convolutional neural network. Journal of Computational Biology, 26(5): 473-484[DOI: 10.1089/cmb.2018.0212]
Jin X, Wen K, Lyu G F, Shi J, Chi M X, Wu Z and An H. 2020. Survey on the applications of deep learning to histopathology. Journal of Image and Graphics, 25(10): 1982-1993
金旭, 文可, 吕国锋, 石军, 迟孟贤, 武铮, 安虹. 2020. 深度学习在组织病理学中的应用综述. 中国图象图形学报, 25(10): 1982-1993[DOI: 10.11834/jig.200460]
Jindal S, Gupta G, Yadav M, Sharma M and Vig L. 2017. Siamese networks for chromosome classification//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops. [s. l.]: IEEE: 72-81
Khan S, DSouza A, Sanches J and Ventura R. 2012. Geometric correction of deformed chromosomes for automatic karyotyping//Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA: IEEE: 4438-4441[DOI: 10.1109/EMBC.2012.6346951http://dx.doi.org/10.1109/EMBC.2012.6346951]
Kiruthika P, Jayanthi K B and Nirmala M. 2018. Classification of metaphase chromosomes using deep learning neural network//Proceedings of the 4th International Conference on Frontiers of Signal Processing. Poitiers, France: IEEE: 110-114[DOI: 10.1109/ICFSP.2018.8552042http://dx.doi.org/10.1109/ICFSP.2018.8552042]
Kubola K and Wayalun P. 2018. Automatic determination of the G-band chromosomes number based on geometric features//Proceedings of the 15th International Joint Conference on Computer Science and Software Engineering. Nakhonpathom, Thailand: IEEE: 1-5[DOI: 10.1109/JCSSE.2018.8457330http://dx.doi.org/10.1109/JCSSE.2018.8457330]
Lecun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324[DOI: 10.1109/5.726791]
Li K, Xie N, Li X and Tan K. 2020. Statistical karyotype analysis using CNN and geometric optimization. Journal of Nanjing University (Natural Science), 56(1): 116-124
李康, 谢宁, 李旭, 谭凯. 2020. 基于卷积神经网络和几何优化的统计染色体核型分析方法. 南京大学学报(自然科学), 56(1): 116-124[DOI: 10.13232/j.cnki.jnju.2020.01.013]
Lin C C, Zhao G A, Yin A H, Guo L, Chen H B and Zhao L. 2020a. MixNet: a better promising approach for chromosome classification based on aggregated residual architecture//Proceedings of 2020 International Conference on Computer Vision, Image and Deep Learning. Chongqing, China: IEEE: 313-318[DOI: 10.1109/CVIDL51233.2020.00-79http://dx.doi.org/10.1109/CVIDL51233.2020.00-79]
Lin C C, Zhao G S, Yang Z R, Yin A H, Wang X M, Guo L, Chen H B, Ma Z H, Zhao L, Luo H Y, Wang T X, Ding B C, Pang X W and Chen Q R. 2020b. CIR-Net: automatic classification of human chromosome based on inception-resnet architecture. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(3): 1285-1293[DOI: 10.1109/TCBB.2020.3003445]
Lin C C, Zhao G S, Yin A H, Ding B C, Guo L and Chen H B. 2020. AS-PANet: a chromosome instance segmentation method based on improved path aggregation network architecture. Journal of Image and Graphics, 25(10): 2271-2280
林成创, 赵淦森, 尹爱华, 丁笔超, 郭莉, 陈汉彪. 2020. AS-PANet: 改进路径增强网络的重叠染色体实例分割. 中国图象图形学报, 25(10): 2271-2280[DOI: 10.11834/JIG.200236]
Lin M, Chen Q and Yan S C. 2013. Network in network[EB/OL]. [2021-07-01].https://arxiv.org/pdf/1312.4400.pdfhttps://arxiv.org/pdf/1312.4400.pdf
Lyu D D. 2019. Research on automatic segmentation arrangement and abnormal diagnosis of human chromosome images. Hangzhou: Zhejiang Sci-Tech University
吕丹丹. 2019. 人染色体图像自动分割排列与异常诊断研究. 杭州: 浙江理工大学[DOI: 10.27786/d.cnki.gzjlg.2019.000206http://dx.doi.org/10.27786/d.cnki.gzjlg.2019.000206]
McGowan-Jordan J, Simons A and Schmid M. 2016. ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016). New York, USA: S. Karger[DOI: 10.1159/isbn.978-3-318-06861-0http://dx.doi.org/10.1159/isbn.978-3-318-06861-0]
Moradi M, Setarehdan S K and Ghaffari S R. 2003. Automatic landmark detection on chromosomes' images for feature extraction purposes//The 3rd International Symposium on Image and Signal Processing and Analysis. Rome, Italy: IEEE: 567-570[DOI: 10.1109/ISPA.2003.1296960http://dx.doi.org/10.1109/ISPA.2003.1296960]
Oskouei B C and Shanbehzadeh J. 2010. Chromosome classification based on wavelet neural network//Proceedings of 2010 International Conference on Digital Image Computing: Techniques and Applications. Sydney, Australia: IEEE: 605-610[DOI: 10.1109/DICTA.2010.107http://dx.doi.org/10.1109/DICTA.2010.107]
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z M, Desmaison A, Antiga L and Lerer A. 2017. Automatic differentiation in PyTorch//Proceeding of the 31st Conference on Neural Information Processing Systems. Long Beach, USA: [s. n.]
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay É. 2011. Scikit-learn: machine learning in Python. The Journal of Machine Learning Research, 12: 2825-2830
Poletti E, Grisan E and Ruggeri A. 2008. Automatic classification of chromosomes in Q-band images//Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, Canada: IEEE: 1911-1914[DOI: 10.1109/IEMBS.2008.4649560http://dx.doi.org/10.1109/IEMBS.2008.4649560]
Poletti E, Ruggeri A and Grisan E. 2011. An improved classification scheme for chromosomes with missing data//Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, USA: IEEE: 5072-5075[DOI: 10.1109/IEMBS.2011.6091256http://dx.doi.org/10.1109/IEMBS.2011.6091256]
Popescu M, Gader P, Keller J, Klein C, Stanley J and Caldwell C. 1999. Automatic karyotyping of metaphase cells with overlapping chromosomes. Computers in Biology and Medicine, 29(1): 61-82[DOI: 10.1016/S0010-4825(98)00040-7]
Qin Y L, Wen J, Zheng H, Huang X L, Yang J, Song N, Zhu Y M, Wu L Q and Yang G Z. 2019. Varifocal-Net: a chromosome classification approach using deep convolutional networks. IEEE Transactions on Medical Imaging, 38(11): 2569-2581[DOI: 10.1109/TMI.2019.2905841]
Remya R S, Hariharan S, Vinod V, Fernandez D J W, Ajmal N M and Gopakumar C. 2020. A comprehensive study on convolutional neural networks for chromosome classification//Proceedings of 2020 Advanced Computing and Communication Technologies for High Performance Applications. Cochin, India: IEEE: 287-292[DOI: 10.1109/ACCTHPA49271.2020.9213238http://dx.doi.org/10.1109/ACCTHPA49271.2020.9213238]
Rungruangbaiyok S and Phukpattaranont P. 2010. Chromosome image classification using a two-step probabilistic neural network. Songklanakarin Journal of Science and Technology, 32(3): 255-262
Shaffer L G, McGowan-Jordan J and Schmid M. 2013. ISCN 2013: an international system for human cytogenetic nomenclature(2013). Karger Medical and Scientific Publishers
Sharma M, Saha O, Sriraman A, Hebbalaguppe R, Vig L and Karande S. 2017. Crowdsourcing for chromosome segmentation and deep classification//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA: IEEE: 786-793[DOI: 10.1109/CVPRW.2017.109http://dx.doi.org/10.1109/CVPRW.2017.109]
Sharma M, Swati and Vig L. 2018. Automatic chromosome classification using deep attention based sequence learning of chromosome bands//Proceedings of 2018 International Joint Conference on Neural Networks. Rio de Janeiro, Brazil: IEEE: 1-8[DOI: 10.1109/IJCNN.2018.8489321http://dx.doi.org/10.1109/IJCNN.2018.8489321]
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-07-01].https://arxiv.org/pdf/1409.1556.pdfhttps://arxiv.org/pdf/1409.1556.pdf
Smith L N. 2018. A disciplined approach to neural network hyper-parameters: part 1——learning rate, batch size, momentum, and weight decay[EB/OL]. [2021-07-01].https://arxiv.org/pdf/1803.09820.pdfhttps://arxiv.org/pdf/1803.09820.pdf
Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R. 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1): 1929-1958
Sun K, Xiao B, Liu D and Wang J D. 2019. Deep high-resolution representation learning for human pose estimation//Proceedings of 2919 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 5686-5696[DOI: 10.1109/CVPR.2019.00584http://dx.doi.org/10.1109/CVPR.2019.00584]
Swati, Gupta G, Yadav M, Sharma M and Vig L. 2017. Siamese networks for chromosome classification//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops. Venice, Italy: IEEE: 72-81[DOI: 10.1109/ICCVW.2017.17http://dx.doi.org/10.1109/ICCVW.2017.17]
Szegedy C, Ioffe S, Vanhoucke V and Alemi A A. 2017. Inception-v4, inception-resnet and the impact of residual connections on learning//Proceedings ofthe 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press: 4278-4284
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 1-9[DOI: 10.1109/cvpr.2015.7298594http://dx.doi.org/10.1109/cvpr.2015.7298594]
Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. 2016. Rethinking the inception architecture for computer vision//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 2818-2826[DOI: 10.1109/CVPR.2016.308http://dx.doi.org/10.1109/CVPR.2016.308]
Tian J X, Liu G C, Gu S S, Ju ZJ, Liu J G and Gu D D. 2018. Deep learning in medical image analysis and its challenges. Acta Automatica Sinica, 44(3): 401-424
田娟秀, 刘国才, 谷珊珊, 鞠忠建, 刘劲光, 顾冬冬. 2018. 医学图像分析深度学习方法研究与挑战. 自动化学报, 44(3): 401-424[DOI: 10.16383/j.aas.2018.c170153]
Valmadre J, Bertinetto L, Henriques J, Vedaldi A and Torr P H S. 2017. End-to-end representation learning for correlation filter based tracking//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 5000-5008[DOI: 10.1109/CVPR.2017.531http://dx.doi.org/10.1109/CVPR.2017.531]
Xie S N, Girshick R, Dollár P, Tu Z W and He K M. 2017. Aggregated residual transformations for deep neural networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 5987-5995[DOI: 10.1109/CVPR.2017.634http://dx.doi.org/10.1109/CVPR.2017.634]
Zagoruyko S and Komodakis N. 2015. Learning to compare image patches via convolutional neural networks//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 4353-4361[DOI: 10.1109/CVPR.2015.7299064http://dx.doi.org/10.1109/CVPR.2015.7299064]
Zeiler M D and Fergus R. 2014. Visualizing and understanding convolutional networks//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer: 818-833[DOI: 10.1007/978-3-319-10590-1_53http://dx.doi.org/10.1007/978-3-319-10590-1_53]
Zhang C C, Song J P, Xu S Q, Li H, Xu R H, Wang X Y, Zhang L, You Q J, Zhang K and Lin H T. 2020. Application research on classification of metaphase chromosomes based on deep convolutional neural networks. Chinese Journal of New Clinical Medicine, 13(2): 123-126
张成成, 宋婕萍, 徐淑琴, 李卉, 徐闰红, 王小艳, 张立, 游齐靖, 张凯, 林浩添. 2020. 基于深度卷积神经网络对中期染色体分类的应用研究. 中国临床新医学, 13(2): 123-126[DOI: 10.3969/j.issn.1674-3806.2020.02.04]
Zhang J P, Hu W J, Li S Y, Wen Y F, Bao Y, Huang H F, Xu C M and Qian D H. 2021. Chromosome classification and straightening based on an interleaved and multi-task network. IEEE Journal of Biomedical and Health Informatics, 25(8): 3240-3251[DOI: 10.1109/JBHI.2021.3062234]
Zhang W B, Song S F, Bai T M, Zhao Y X, Ma F, Su J L and Yu L M. 2018. Chromosome classification with convolutional neural network based deep learning//Proceedings of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Beijing, China: IEEE: 1-5[DOI: 10.1109/CISP-BMEI.2018.8633228http://dx.doi.org/10.1109/CISP-BMEI.2018.8633228]
Zhou X Y, Guan W J, Ma Y H and Liu G L. 2004. Chromosome banding technology and its significance in biological research. Shanghai Journal of Animal Husbandry and Veterinary Medicine, (5): 2-3
周雪雁, 关伟军, 马月辉, 刘桂林. 2004. 染色体显带技术及其在生物学研究中的意义. 上海畜牧兽医通讯, (5): 2-3[DOI:10.3969/j.issn.1000-7725.2004.05.001]
相关作者
相关机构