人脸活体检测综述
Review on face liveness detection
- 2022年27卷第1期 页码:63-87
纸质出版日期: 2022-01-16 ,
录用日期: 2021-10-04
DOI: 10.11834/jig.210470
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-01-16 ,
录用日期: 2021-10-04
移动端阅览
谢晓华, 卞锦堂, 赖剑煌. 人脸活体检测综述[J]. 中国图象图形学报, 2022,27(1):63-87.
Xiaohua Xie, Jintang Bian, Jianhuang Lai. Review on face liveness detection[J]. Journal of Image and Graphics, 2022,27(1):63-87.
人脸识别系统往往面临着各类人脸欺诈攻击,如打印相片、屏幕播放和3维面具等。如何区分真实人脸与虚假人脸,亦称人脸活体检测,对于人脸识别系统的安全具有十分重要的意义。近年来,已有大量人脸活体检测方法相继提出,部分已经成功获得实际应用。本文对人脸活体检测技术进行了全面的梳理回顾,包括硬件方案、算法、数据集、技术标准以及业界实际应用情况。最后,进行了总结与展望。整体而言,基于多模态数据,采取先验知识启发的深度学习方法目前能获得占优的人脸活体验证精度。随着人脸欺诈攻击方式的不断升级变更,面向未知类型攻击的人脸活体检测研究愈加重要,此外,新型的传感硬件方案也值得鼓励探讨。
Face recognition technology has been widely used nowadays
such as smart phone unlocking
users' account verification
access control system
financial payment
public security pursuit
and so forth. Face recognition system has been challenging with various face fraud attacks
such as printing photos
screen playing
3D masks
etc. Bending the printed face to make it have a general three-dimensional structure of the face in practice. Meanwhile
the movement of the key components of the real face can be integrated into the fake face via fake coverage of the printed face with the hollowed-out eyes and mouth. Face spoofing technologies has aimed to present realistic apparent texture
accurate three-dimensional face structure
reasonable face motion
and discriminative target identity features generally. The issue of false face distinguishing
also known as face liveness detection
is of great significance to the security of face recognition systems. This research reviewed current face liveness detection technologies based on hardware
algorithm
data set
technical standards
and practical application. For hardware
some popular tools used for face liveness detection
such as RGB cameras
binocular cameras
(near) infrared cameras
depth cameras
three-dimensional scanners
light field cameras and multispectral imagers. Flash lamps are used for assistance as well. For algorithms
the original methods distinguish a real face and a fake face via analyzing the texture information
motion information
image quality
structure information
and three-dimensional shape in the video or image. The analysis is assisted based on user interaction or changing the environment with flashing. Deep learning technology has been using in face liveness detection as well. It is necessary to opt the appropriate face detection method in accordance with the targeted application scenario. In reality
face liveness detection technologies are mainly used in unsupervised authentication scenarios
such as smartphone unlocking
mobile app login
the self-service terminal of the bank
and attendance machine. The illustrated methods are mainly evolved as following: 1) interactive verification based on a single camera
that is
the target is required to perform cooperative actions
such as shaking the head
blinking
opening mouth
and reading Arabic numerals; 2) the face liveness detection based on "visible light + near-infrared" dual-mode camera
in which near-infrared image is conducive to distinguish skin from other materials; 3) the face liveness detection based on "visible light + depth" dual-mode camera
in which the depth camera used to obtain the three-dimensional information of the object. The two methods latter can extract rich features for face liveness detection based on hardware combinations. Overall
based on multimodal data
the deep learning method has been adopted to obtain the optimal accuracy of liveness verification based on prior knowledge.In early 2018
China Information Security Standardization Technical Committee established the standards of liveness detection technology in the face recognition systems. In 2020
IEEE released the first international standard for face liveness detection (IEEE Std 2790-2020). With the emergence of new fraud methods
the research of face liveness detection will also encounter new challenges. First
face spoofing and face liveness detection will promote and upgrade each other. Therefore
it is particularly important to study the detection of unknown types of face fraud attacks. For unknown types of attacks
a feasible solution is to detect invisible attacks as abnormal samples. Next
the of face fraud upgrading means is related to the update of fraud media. In particular
the progress of high-precision 3D printing
flexible screen
and physiological mask will make face fraud more difficult to detect. Face liveness detection also needs to be developed at the hardware level consistently. It is necessary to explore the application of advanced sensing equipment such as multi-spectrometer
light field camera
and even ultrasound in face liveness detection. Moreover
the deep learning method plays a leading role in obtaining high accuracy. The lack of interpretability is also a major criticism of deep learning. For the application of face liveness detection
the interpretation of the deep learning methods needs to be conducted further. The interpretability mechanism has its priority to the design of the learning model
and to the integration of prior knowledge into the learning model. At last
it is necessary to develop a unified framework for joint face recognition and face liveness detection
which can improve the accuracy of both simultaneously.
人脸活体验证人脸防伪人脸识别深度学习特征学习
face liveness verificationface anti-spoofingface recognitiondeep learningfeature learning
Agarwal A, Singh R and Vatsa M. 2016. Face anti-spoofing using Haralick features//Proceedings of the 8th IEEE International Conference on Biometrics Theory, Applications and Systems (BTAS). Niagara Falls, USA: IEEE: 1-6[DOI: 10.1109/BTAS.2016.7791171http://dx.doi.org/10.1109/BTAS.2016.7791171]
Agarwal A, Yadav D, Kohli N, Singh R, Vatsa M and Noore A. 2017. Face presentation attack with latex masks in multispectral videos//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA: IEEE: 275-283[DOI: 10.1109/CVPRW.2017.40http://dx.doi.org/10.1109/CVPRW.2017.40]
Ahonen T, Hadid A and Pietikainen M. 2006. Face description with local binary patterns: application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12): 2037-2041[DOI: 10.1109/TPAMI.2006.244]
Akhtar Z, Micheloni C and Foresti G L. 2015. Biometric liveness detection: challenges and research opportunities. IEEE Security and Privacy, 13(5): 63-72[DOI: 10.1109/MSP.2015.116]
Alsufyani N, Ali A, Hoque S and Deravi F. 2018. Biometric presentation attack detection using gaze alignment//Proceedings of the 4th IEEE International Conference on Identity, Security, and Behavior Analysis (ISBA). Singapore, Singapore: IEEE: 1-8[DOI: 10.1109/ISBA.2018.8311472http://dx.doi.org/10.1109/ISBA.2018.8311472]
Anjos A and Marcel S. 2011. Counter-measures to photo attacks in face recognition: a public database and a baseline//Proceedings of 2011 International Joint Conference on Biometrics. Washington, USA: IEEE: 1-7[DOI: 10.1109/IJCB.2011.6117503http://dx.doi.org/10.1109/IJCB.2011.6117503]
Arashloo S R, Kittler J and Christmas W. 2017. An anomaly detection approach to face spoofing detection: a new formulation and evaluation protocol. IEEE Access, 5: 13868-13882[DOI: 10.1109/ACCESS.2017.2729161]
Bhattacharjee S and Marcel S. 2017. What you can't see can help you-extended-range imaging for 3D-mask presentation attack detection//Proceedings of 2017 International Conference of the Biometrics Special Interest Group (BIOSIG). Darmstadt, Germany: IEEE: 1-7[DOI: 10.23919/BIOSIG.2017.8053524http://dx.doi.org/10.23919/BIOSIG.2017.8053524]
Biggio B, Akhtar Z, Fumera G, Marcialis G L and Roli F. 2012. Security evaluation of biometric authentication systems under real spoofing attacks. IET Biometrics, 1(1): 11-24[DOI: 10.1049/iet-bmt.2011.0012]
Boulkenafet Z, Komulainen J, Akhtar Z, Benlamoudi A, Samai D, Bekhouche S E, Ouafi A, Dornaika F, Taleb-Ahmed A, Qin L, Peng F, Zhang L B, Long M, Bhilare S, Kanhangad V, Costa-Pazo A, Vazquez-Fernandez E, Perez-Cabo D, Moreira-Perez J J, Gonzalez-Jimenez D, Mohammadi A, Bhattacharjee S, Marcel S, Volkova S, Tang Y, Abe N, Li L, Feng X, Xia Z, Jiang X, Liu S, Shao R, Yuen P C, Almeida W R, Andalo F, Padilha R, Bertocco G, Dias W, Wainer J, Torres R, Rocha A, Angeloni M A, Folego G, Godoy A and Hadid A. 2017a. A competition on generalized software-based face presentation attack detection in mobile scenarios//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE: 688-696[DOI: 10.1109/BTAS.2017.8272758http://dx.doi.org/10.1109/BTAS.2017.8272758]
Boulkenafet Z, Komulainen J and Hadid A. 2016b. Face spoofing detection using colour texture analysis. IEEE Transactions on Information Forensics and Security, 11(8): 1818-1830[DOI: 10.1109/TIFS.2016.2555286]
Chan P P K, Liu W W, Chen D N, Yeung D S, Zhang F, Wang X Z and Hsu C C. 2018. Face liveness detection using a flash against 2D spoofing attack. IEEE Transactions on Information Forensics and Security, 13(2): 521-534[DOI: 10.1109/TIFS.2017.2758748]
Chen H N, Hu G S, Lei Z, Chen Y W, Robertson N M and Li S Z. 2020. Attention-based two-stream convolutional networks for face spoofing detection. IEEE Transactions on Information Forensics and Security, 15:578-593[DOI: 10.1109/TIFS.2019.2922241]
Chetty G and Wagner M. 2006. Multi-level liveness verification for face-voice biometric authentication//2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference. Baltimore, USA: IEEE: 1-6[DOI: 10.1109/BCC.2006.4341615http://dx.doi.org/10.1109/BCC.2006.4341615]
Chetty G. 2010. Biometric liveness checking using multimodal fuzzy fusion//Proceedings of International Conference on Fuzzy Systems. Barcelona, Spain: IEEE: 1-8[DOI: 10.1109/FUZZY.2010.5584864http://dx.doi.org/10.1109/FUZZY.2010.5584864]
Chingovska I, Anjos A and Marcel S. 2012. On the effectiveness of local binary patterns in face anti-spoofing//2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group. Darmstadt, Germany: IEEE: 1-7
Chingovska I,Dos Anjos A R and Marcel S. 2014. Biometrics evaluation under spoofing attacks. IEEE Transactions on Information Forensics and Security, 9(12): 2264-2276[DOI: 10.1109/TIFS.2014.2349158]
Chingovska I, Erdogmus N, Anjos A and Marcel S. 2016. Face recognition systems under spoofing attacks//Face Recognition Across the Imaging Spectrum. Switzerland, Cham: Springer: 165-194[DOI: 10.1007/978-3-319-28501-6_8http://dx.doi.org/10.1007/978-3-319-28501-6_8]
Chingovska I, Yang J, Lei Z, Yi D, Li S Z, Kähm O, Glaser C, Damer N, Kuijper A, Nouak A, Komulainen J, Pereira T, Gupta S, Khandelwal S, Bansal S, Rai A, Krishna T, Goyal D, Waris M A, Zhang H, Ahmad I, Kiranyaz S, Gabbouj M, Tronci R, Pili M, Sirena N, Roli F, Galbally J, Ficrrcz J, Pinto A, Pedrini H, Schwartz W S, Rocha A, Anjos A and Marcel S. 2013. The 2nd competition on counter measures to 2D face spoofing attacks//Proceedings of 2013 International Conference on Biometrics (ICB). Madrid, Spain: IEEE: 1-6[DOI: 10.1109/ICB.2013.6613026http://dx.doi.org/10.1109/ICB.2013.6613026]
Costa-Pazo A, Bhattacharjee S, Vazquez-Fernandez E and Marcel S. 2016. The replay-mobile face presentation-attack database//Proceedings of 2016 International Conference of the Biometrics Special Interest Group (BIOSIG). Darmstadt, Germany: IEEE: 1-7[DOI: 10.1109/BIOSIG.2016.7736936http://dx.doi.org/10.1109/BIOSIG.2016.7736936]
de Freitas Pereira T, Anjos A, De Martino J M and Marcel S. 2012. LBP-TOP based countermeasure against face spoofing attacks//Asian Conference on Computer Vision. Berlin, Heidelberg, Germany: Springer: 121-132[10.1007/978-3-642-37410-4_ 11]
De Marsico M, Nappi M, Riccio D and Dugelay J L. 2012. Moving face spoofing detection via 3D projective invariants//Proceedings of the 5th IAPR International Conference on Biometrics (ICB). New Delhi, India: IEEE: 73-78[DOI: 10.1109/ICB.2012.6199761http://dx.doi.org/10.1109/ICB.2012.6199761]
Deng J, Dong W, Socher R, Li K L, Li K and Li F F. 2009. ImageNet: a large-scale hierarchical image database//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE: 248-255[DOI: 10.1109/CVPR.2009.5206848http://dx.doi.org/10.1109/CVPR.2009.5206848]
El-Din Y, Moustafa M N and Mahdi H. 2020. Deep convolutional neural networks for face and iris presentation attack detection: survey and case study. IET Biometrics, 9(5): 179-193[DOI:10.1049/iet-bmt.2020.0004]
El-Din Y S, Moustafa M N and Mahdi H. 2021. Adversarial unsupervised domain adaptation guided with deep clustering for face presentation attack detection[EB/OL]. [2021-05-29].https://arxiv.org/pdf/2102.06864v1.pdfhttps://arxiv.org/pdf/2102.06864v1.pdf
Erdogmus N and Marcel S. 2013a. Spoofing attacks to 2D face recognition systems with 3D masks. 8034 (1): 1-8[10.1109/IC BAKE. 2013.87]
Erdogmus N and Marcel S. 2013b. Spoofing in 2D face recognition with 3D masks and anti-spoofing with Kinect//Proceedings of the 6th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS). Arlington, USA: IEEE: 1-6[DOI: 10.1109/BTAS.2013.6712688http://dx.doi.org/10.1109/BTAS.2013.6712688]
Erdogmus N and Marcel S. 2014. Spoofing face recognition with 3D masks. IEEE Transactions on Information Forensics and Security, 9(7): 1084-1097[DOI: 10.1109/TIFS.2014.2322255]
Fatemifar S, Awais M, Arashloo S R and Kittler J. 2019. Combining multiple one-class classifiers for anomaly based face spoofing attack detection//Proceedings of 2019 International Conference on Biometrics (ICB). Crete, Greece: IEEE: 1-7[DOI: 10.1109/ICB45273.2019.8987326http://dx.doi.org/10.1109/ICB45273.2019.8987326]
Feng L T, Po L M, Li Y M, Xu X Y, Yuan F, Cheung T C H and Cheung K W. 2016. Integration of image quality and motion cues for face anti-spoofing: a neural network approach. Journal of Visual Communication and Image Representation, 38: 451-460[DOI: 10.1016/j.jvcir.2016.03.019]
Frischholz R W and Dieckmann U. 2000. BiolD: a multimodal biometric identification system. Computer, 33(2): 64-68[DOI: 10.1109/2.820041]
Frischholz R W and Werner A. 2003. Avoiding replay-attacks in a face recognition system using head-pose estimation//Proceedings of 2003 IEEE International SOI Conference. Nice, France: IEEE: 234-235[DOI: 10.1109/AMFG.2003.1240849http://dx.doi.org/10.1109/AMFG.2003.1240849]
Galbally J, Marcel S and Fierrez J. 2014. Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition. IEEE Transactions on Image Processing, 23(2): 710-724[DOI: 10.1109/TIP.2013.2292332]
Galbally J and Satta R. 2016. Three-dimensional and two-and-a-half-dimensional face recognition spoofing using three-dimensional printed models. IET Biometrics, 5(2): 83-91[DOI: 10.1049/iet-bmt.2014.0075]
Ganin Y and Lempitsky V. 2015. Unsupervised domain adaptation by backpropagation//Proceedings of the 32nd International Conference on Machine Learning. Lille, France: JMLR: 1180-1189
George A and Marcel S. 2020. Learning one class representations for face presentation attack detection using multi-channel convolutional neural networks. IEEE Transactions on Information Forensics and Security, 16: 361-375[DOI: 10.1109/TIFS.2020.3013214]
George A and Marcel S. 2021. Cross modal focal loss for RGBD face anti-spoofing[EB/OL]. [2021-05-29].https://arxiv.org/pdf/2103.00948.pdfhttps://arxiv.org/pdf/2103.00948.pdf
George A, Mostaani Z, Geissenbuhler D, Nikisins O, Anjos A and Marcel S. 2019. Biometricface presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security, 15: 42-55[DOI: 10.1109/TIFS.2019.2916652]
Georghiades A S, Belhumeur P N and Kriegman D J. 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6): 643-660[DOI: 10.1109/34.927464]
Ghifary M, Kleijn W B, Zhang M J and Balduzzi D. 2015. Domain generalization for object recognition with multi-task autoencoders//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 2551-2559[DOI: 10.1109/ICCV.2015.293http://dx.doi.org/10.1109/ICCV.2015.293]
Gretton A, Borgwardt K M, Rasch M J, Schölkopf B and Smola A. 2012. A kernel two-sample test. The Journal of Machine Learning Research, 13(1): 723-773
Guo Y, Wei X X, Wang G Q and Zhang B. 2021. Meaningful adversarial stickers for face recognition in physical world[EB/OL]. [2021-05-29].https://arxiv.pdf/abs/2104.06728v1.pdfhttps://arxiv.pdf/abs/2104.06728v1.pdf
Hamdan B and Mokhtar K.2018. The detection of spoofing by 3D mask in a 2D identity recognition system. Egyptian Informatics Journal, 19(2): 75-82[DOI: 10.1016/j.eij.2017.10.001]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778[DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Heusch G and Marcel S. 2018. Pulse-based features for face presentation attack detection//Proceedings of the 9th IEEE International Conference on Biometrics Theory, Applications and Systems. Redondo Beach, USA: IEEE: 1-8[DOI: 10.1109/BTAS.2018.8698579http://dx.doi.org/10.1109/BTAS.2018.8698579]
Heusch G and Marcel S. 2019. Remote blood pulse analysis for face presentation attack detection//Handbook of Biometric Anti-Spoofing. Switzerland: Springer: 267-289[DOI: 10.1007/978-3-319-92627-8_13http://dx.doi.org/10.1007/978-3-319-92627-8_13]
Husseis A, Liu-Jimenez J, Goicoechea-Telleria I and Sanchez-Reillo R. 2019. A survey in presentation attack and presentation attack detection//Proceedings of 2019 International Carnahan Conference on Security Technology (ICCST). Chennai, India: IEEE: 1-13[DOI: 10.1109/CCST.2019.8888436http://dx.doi.org/10.1109/CCST.2019.8888436]
Jaiswal A, Babu A R, Zadeh M Z, Banerjee D and Makedon F. 2021. A survey on contrastive self-supervised learning. Technologies, 9(1): #2[DOI: 10.3390/technologies9010002]
Jaiswal A, Xia S, Masi I and AbdAlmageed W. 2019. RoPAD: robust presentation attack detection through unsupervised adversarial invariance//Proceedings of 2019 International Conference on Biometrics (ICB). Crete, Greece: IEEE: 1-8[DOI: 10.1109/ICB45273.2019.8987276http://dx.doi.org/10.1109/ICB45273.2019.8987276]
Jia S, Guo G D and Xu Z Q. 2020a. A survey on 3D mask presentation attack detection and countermeasures. Pattern Recognition, 98: #107032[DOI: 10.1016/j.patcog.2019.107032]
Jia Y P, Zhang J, Shan S G and Chen X L. 2020b. Single-side domain generalization for face anti-spoofing//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 8481-8490[DOI: 10.1109/CVPR42600.2020.00851http://dx.doi.org/10.1109/CVPR42600.2020.00851]
Jourabloo A, Liu Y J and Liu X M. 2018. Face de-spoofing: anti-spoofing via noise modeling//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 297-315[DOI: 10.1007/978-3-030-01261-8_18http://dx.doi.org/10.1007/978-3-030-01261-8_18]
Kim S, Ban Y and Lee S. 2014. Face liveness detection using a light field camera. Sensors, 14(12): 22471-22499[DOI: 10.3390/s141222471]
Kim W, Suh S and Han J J. 2015. Face liveness detection from a single image via diffusion speed model. IEEE Transactions on Image Processing, 24(8): 2456-2465[DOI: 10.1109/TIP.2015.2422574]
Kollreider K, Fronthaler H, Faraj M I and Bigun J. 2007. Real-time face detection and motion analysis with application in "liveness" assessment. IEEE Transactions on Information Forensics and Security, 2(3): 548-558[DOI: 10.1109/TIFS.2007.902037]
Komkov S and Petiushko A. 2019. AdvHat: real-world adversarial attack on ArcFace Face ID system[EB/OL]. [2021-05-29].https://arxiv.org/pdf/1908.08705.pdfhttps://arxiv.org/pdf/1908.08705.pdf
Komulainen J, Hadid A and Pietikäinen M. 2013. Context based face anti-spoofing//Proceedings of the 6th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS). Arlington, USA: IEEE: 1-8[DOI: 10.1109/BTAS.2013.6712690http://dx.doi.org/10.1109/BTAS.2013.6712690]
Kose N and Dugelay J L. 2013a. Countermeasure for the protection of face recognition systems against mask attacks//Proceedings of 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Shanghai, China: IEEE: 1-6[DOI: 10.1109/FG.2013.6553761http://dx.doi.org/10.1109/FG.2013.6553761]
Kose N and Dugelay J L. 2013b. On the vulnerability of face recognition systems to spoofing mask attacks//Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE: 2357-2361[DOI: 10.1109/ICASSP.2013.6638076http://dx.doi.org/10.1109/ICASSP.2013.6638076]
Kotwal K, Bhattacharjee S and Marcel S. 2019. Multispectral deep embeddings as a countermeasure to custom silicone mask presentation attacks. IEEE Transactions on Biometrics, Behavior, and Identity Science, 1(4): 238-251[DOI: 10.1109/TBIOM.2019.2939421]
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, USA: MIT: 1097-1105
LeCun Y, Bengio Y and Hinton G. 2015. Deep learning. Nature, 521(7553): 436-444[DOI: 10.1038/nature14539]
Li C, Li L, Xuan S X, Yang J and Du S Y. 2021. Face anti-spoofing algorithm using generative adversarial networks with hypercomplex wavelet. Journal of Xi'an Jiaotong University, 55(5): 113-122
李策, 李兰, 宣树星, 杨静, 杜少毅. 2021. 采用超复数小波生成对抗网络的活体人脸检测算法. 西安交通大学学报, 55(5): 113-122)[DOI: 10.7652/xjtuxb202105013]
Li H L, He P S, Wang S Q, Rocha A, Jiang X H and Kot A C. 2018a. Learning generalized deep feature representation for face anti-spoofing. IEEE Transactions on Information Forensics and Security, 13(10): 2639-2652[DOI: 10.1109/TIFS.2018.2825949]
Li H L, Li W, Cao H Wang S Q, Huang F Y and Kot A C. 2018b. Unsupervised domain adaptation for face anti-spoofing. IEEE Transactions on Information Forensics and Security, 13(7): 1794-1809[DOI: 10.1109/TIFS.2018.2801312]
Li J W, Wang Y H, Tan T N and Jain A K. 2004. Live face detection based on the analysis of fourier spectra//Proceedings Volume 5404, Biometric Technology for Human Identification. Orlando, USA: SPIE: 296-303[DOI: 10.1117/12.541955http://dx.doi.org/10.1117/12.541955]
Li L, Feng X Y, Boulkenafet Z, Xia Z Q, Li M M and Hadid A. 2016a. An original face anti-spoofing approach using partial convolutional neural network//Proceedings of the 6th 2016 International Conference on Image Processing Theory, Tools and Applications (IPTA). Oulu, Finland: IEEE: 1-6[DOI: 10.1109/IPTA.2016.7821013http://dx.doi.org/10.1109/IPTA.2016.7821013]
Li R, Jiao Q F, Cao W M, Wong H S and Wu S. 2020. Model adaptation: unsupervised domain adaptation without source data//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 9638-9647[DOI: 10.1109/CVPR42600.2020.00966http://dx.doi.org/10.1109/CVPR42600.2020.00966]
Li X B, Komulainen J, Zhao G Y, Yuan P C and Pietikainen M. 2016b. Generalized face anti-spoofing by detecting pulse from face videos//Proceedings of the 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico: IEEE: 4244-4249[DOI: 10.1109/ICPR.2016.7900300http://dx.doi.org/10.1109/ICPR.2016.7900300]
Lin C, Liao Z, Zhou P, Hu J G and Ni B B. 2018. Live face verification with multiple instantialized local homographic parameterization//Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI). Stockholm, Sweden: AAAI Press: 814-820
Liu A J, Tan Z C, Wan J, Escalera S, Guo G D and Li S Z. 2021. CASIA-SURF CeFA: a benchmark for multi-modal cross-ethnicity face anti-spoofing//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE: 1178-1186[DOI: 10.1109/WACV48630.2021.00122http://dx.doi.org/10.1109/WACV48630.2021.00122]
Liu C J and Wechsler H. 2002. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 11(4): 467-476[DOI: 10.1109/TIP.2002.999679]
Liu S Q, Lan X Y and Yuen P C. 2018a. Remote photoplethysmography correspondence feature for 3D mask face presentation attack detection//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer: 577-594[DOI: 10.1007/978-3-030-01270-0_34http://dx.doi.org/10.1007/978-3-030-01270-0_34]
Liu S Q, Lan X Y and Yuen P C. 2020. Temporal similarity analysis of remote photoplethysmography for fast 3D mask face presentation attack detection//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass, USA: IEEE: 2597-2605[DOI: 10.1109/WACV45572.2020.9093337http://dx.doi.org/10.1109/WACV45572.2020.9093337]
Liu S Q, Yang B Y, Yuen P C and Zhao G Y. 2016. A 3D mask face anti-spoofing database with real world variations//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, USA: IEEE: 1551-1557[DOI: 10.1109/CVPRW.2016.193http://dx.doi.org/10.1109/CVPRW.2016.193]
Liu Y J, Jourabloo A and Liu X M. 2018b. Learning deep models for face anti-spoofing: binary or auxiliary supervision//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 389-398[DOI: 10.1109/CVPR.2018.00048http://dx.doi.org/10.1109/CVPR.2018.00048]
Liu Y J, Stehouwer J, Jourabloo A and Liu X M. 2019. Deep tree learning for zero-shot face anti-spoofing//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 4675-4684[DOI: 10.1109/CVPR.2019.00481http://dx.doi.org/10.1109/CVPR.2019.00481]
Lu Z Q, Lu Z M, Shen F L and Wang Z H. 2020. A survey of face anti-spoofing. Journal of Cyber Security, 5(2): 18-27
卢子谦, 陆哲明, 沈冯立, 王总辉. 2020. 人脸反欺诈活体检测综述. 信息安全学报, 5(2): 18-27)[DOI: 10.19363/J.cnki.cn10-1380/tn.2020.02.02]
Lucena O, Junior A, Moia V, Souza R, Valle E and Lotufo R. 2017. Transfer learning using convolutional neural networks for face anti-spoofing//Proceedings of the 14th International Conference Image Analysis and Recognition. Montreal, Canada: Springer: 27-34[DOI: 10.1007/978-3-319-59876-5_4http://dx.doi.org/10.1007/978-3-319-59876-5_4]
Ma S Y, Zheng H and Guo W. 2020. Deep optical strain feature map for face anti-spoofing. Journal of Image and Graphics, 25(3): 618-628
马思源, 郑涵, 郭文. 2020. 应用深度光学应变特征图的人脸活体检测. 中国图象图形学报, 25(3): 618-628)[DOI: 10.11834/jig.190286]
Ma Y K, Wu L F, Jian M, Liu F H and Yang Z. 2019. Algorithm to generate adversarial examples for face-spoofing detection. Journal of Software, 30(2): 469-480
马玉琨, 毋立芳, 简萌, 刘方昊, 杨洲. 2019. 一种面向人脸活体检测的对抗样本生成算法. 软件学报, 30(2): 469-480)[DOI: 10.13328/j.cnki.jos.005568]
MäättäJ, Hadid A and Pietikäinen M. 2011. Face spoofing detection from single images using micro-texture analysis//Proceedings of 2011 International Joint Conference on Biometrics. Washington, USA: IEEE: 1-7[DOI: 10.1109/IJCB.2011.6117510http://dx.doi.org/10.1109/IJCB.2011.6117510]
Manjani I, Tariyal S, Vatsa M, Singh R and Majumdar A. 2017. Detecting silicone mask-based presentation attack via deep dictionary learning. IEEE Transactions on Information Forensics and Security, 12(7): 1713-1723[DOI: 10.1109/TIFS.2017.2676720]
Menotti D, Chiachia G, Pinto A, Schwartz W R, Pedrini H, Falcão A X and Rocha A. 2015. Deep representations for iris, face, and fingerprint spoofing detection. IEEE Transactions on Information Forensics and Security, 10(4): 864-879[DOI: 10.1109/tifs.2015.2398817]
Mishra S K, Sengupta K, Horowitz-Gelb M, Chu W S, Bouaziz S and Jacobs D. 2021. Improved detection of face presentation attacks using image decomposition[EB/OL]. [2021-05-29].https://arxiv.org/pdf/2103.12201v1.pdfhttps://arxiv.org/pdf/2103.12201v1.pdf
Naveen S, Fathima R S and Moni R S. 2016. Face recognition and authentication using LBP and BSIF mask detection and elimination//Proceedings of 2016 International Conference on Communication Systems and Networks (ComNet). Thiruvananthapuram, India: IEEE: 99-102[DOI: 10.1109/CSN.2016.7823994http://dx.doi.org/10.1109/CSN.2016.7823994]
Nikisins O, Mohammadi A, Anjos A and Marcel S. 2018. On effectiveness of anomaly detection approaches against unseen presentation attacks in face anti-spoofing//Proceedings of 2018 International Conference on Biometrics. Gold Coast, Australia: IEEE: 75-81[DOI: 10.1109/ICB2018.2018.00022http://dx.doi.org/10.1109/ICB2018.2018.00022]
Pan G, Sun L, Wu Z H and Lao S H. 2007. Eyeblink-based anti-spoofing in face recognition from a generic webcamera//Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE: 1-8[DOI: 10.1109/ICCV.2007.4409068http://dx.doi.org/10.1109/ICCV.2007.4409068]
Pan G, Wu Z H and Sun L. 2008. Liveness detection for face recognition//Recent Advances in Face Recognition. [s. l.]: InTech: 109-124
Parkin A and Grinchuk O. 2019. Recognizing multi-modal face spoofing with face recognition networks//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: IEEE: 1617-1623[DOI: 10.1109/CVPRW.2019.00204http://dx.doi.org/10.1109/CVPRW.2019.00204]
Patel K, Han H, Jain A K and Ott G. 2015. Live face video vs. spoof face video: use of moirépatterns to detect replay video attacks//Proceedings of 2015 International Conference on Biometrics (ICB). Phuket, Thailand: IEEE: 98-105[DOI: 10.1109/ICB.2015.7139082http://dx.doi.org/10.1109/ICB.2015.7139082]
Patel K, Han H and Jain A K. 2016. Secure face unlock: spoof detection on smartphones. IEEE Transactions on Information Forensics and Security, 11(10): 2268-2283[DOI: 10.1109/TIFS.2016.2578288]
Peixoto B, Michelassi C and Rocha A. 2011. Face liveness detection under bad illumination conditions//Proceedings of the 18th IEEE International Conference on Image Processing. Brussels, Belgium: IEEE: 3557-3560[DOI: 10.1109/ICIP.2011.6116484http://dx.doi.org/10.1109/ICIP.2011.6116484]
Perera P and Patel V M. 2019. Learning deep features for one-class classification. IEEE Transactions on Image Processing, 28(11): 5450-5463[DOI: 10.1109/TIP.2019.2917862]
Pérez-Cabo D, Jiménez-Cabello D, Costa-Pazo A and López-Sastre R J. 2019. Deep anomaly detection for generalized face anti-spoofing//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, USA: IEEE: 1591-1600[DOI: 10.1109/CVPRW.2019.00201http://dx.doi.org/10.1109/CVPRW.2019.00201]
Pinto A, Pedrini H, Schwartz W R and Rocha A. 2015. Face spoofing detection through visual codebooks of spectral temporal cubes. IEEE Transactions on Image Processing, 24(12): 4726-4740[DOI: 10.1109/TIP.2015.2466088]
Qin Y X, Zhao C X, Zhu X Y, Wang Z Z, Yu Z T, Fu T Y, Zhou F, Shi J P and Lei Z. 2020. Learning meta model for zero- and few-shot face anti-spoofing. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7): 11916-11923[DOI: 10.1609/aaai.v34i07.6866]
Raghavendra R, Raja K B and Busch C. 2015. Presentation attack detection for face recognition using light field camera. IEEE Transactions on Image Processing,24(3): 1060-1075[DOI: 10.1109/TIP.2015.2395951]
Ramachandra R and Busch C. 2017. Presentation attack detection methods for face recognition systems: a comprehensive survey. ACM Computing Surveys, 50(1): #8[DOI: 10.1145/3038924]
Shao R, Lan X Y, Li J W and Yuan P C. 2019. Multi-adversarial discriminative deep domain generalization for face presentation attack detection//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 10015-10023[DOI: 10.1109/CVPR.2019.01026http://dx.doi.org/10.1109/CVPR.2019.01026]
Shao R, Lan X Y and Yuen P C. 2017. Deep convolutional dynamic texture learning with adaptive channel-discriminability for 3D mask face anti-spoofing//Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE: 748-755[DOI: 10.1109/BTAS.2017.8272765http://dx.doi.org/10.1109/BTAS.2017.8272765]
Shao R, Lan X Y and Yuen P C. 2020. Regularized fine-grained meta face anti-spoofing. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7): 11974-11981[DOI: 10.1609/aaai.v34i07.6873]
Shao R, Perera P, Yuen P C and Patel V M. 2021. Federated generalized face presentation attack detection[EB/OL]. [2021-05-29].https://arxiv.org/pdf/2104.06595.pdfhttps://arxiv.org/pdf/2104.06595.pdf
Sharif M, Bhagavatula S, Bauer L and Reiter M K. 2016. Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition//Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna, Austria: ACM: 1528-1540[DOI: 10.1145/2976749.2978392http://dx.doi.org/10.1145/2976749.2978392]
Steiner H, Kolb A and Jung N. 2016. Reliable face anti-spoofing using multispectral SWIR imaging//Proceedings of 2016 International Conference on Biometrics (ICB). Halmstad, Sweden: IEEE: 1-8[DOI: 10.1109/ICB.2016.7550052http://dx.doi.org/10.1109/ICB.2016.7550052]
Sun Z N, He R, Wang L, Kan M N, Feng J J, Zheng F, Zheng W S, Zuo W M, Kang W X, Deng W H, Zhang J, Han H, Shan S G, Wang Y L, Ru Y W, Zhu Y H, Liu Y F and He Y. 2021. Overview of biometrics research. Journal of Image and Graphics, 26(6): 1254-1329
孙哲南, 赫然, 王亮, 阚美娜, 冯建江, 郑方, 郑伟诗, 左旺孟, 康文雄, 邓伟洪, 张杰, 韩琥, 山世光, 王云龙, 茹一伟, 朱宇豪, 刘云帆, 何勇. 2021. 生物特征识别学科发展报告. 中国图像图形学报, 26(6): 1254-1329)[DOI: 10.11834/jig.210078]
Tan R T and Ikeuchi K. 2008. Separating reflection components of textured surfaces using a single image//Digitally Archiving Cultural Objects. Boston, MA: Springer: 353-384[DOI: 10.1007/978-0-387-75807_17http://dx.doi.org/10.1007/978-0-387-75807_17]
Tan X Y, Li Y, Liu J and Jiang L. 2010. Face liveness detection from a single image with sparse low rank bilinear discriminative model//Proceedings of European Conference on Computer Vision. Heraklion, Greece: Springer: 504-517[DOI: 10.1007/978-3-642-15567-3_37http://dx.doi.org/10.1007/978-3-642-15567-3_37]
Tang Y H and Chen L M. 2017. 3D facial geometric attributes based anti-spoofing approach against mask attacks//Proceedings of the 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017). Washington, USA: IEEE: 589-595[DOI: 10.1109/FG.2017.74http://dx.doi.org/10.1109/FG.2017.74]
Tian Y and Xiang S J. 2018. LBP and multilayer DCT based anti-spoofing countermeasure in face liveness detection. Journal of Computer Research and Development, 55(3): 643-650
田野, 项世军. 2018. 基于LBP和多层DCT的人脸活体检测算法. 计算机研究与发展, 55(3): 643-650)[DOI: 10.7544/issn1000-1239.2018.20160417]
Tirunagari S, Poh N, Windridge D, Iorliam A, Suki N and Ho A T S. 2015. Detection of face spoofing using visual dynamics. IEEE Transactions on Information Forensics and Security, 10(4): 762-777[DOI: 10.1109/TIFS.2015.2406533]
Turk M and Pentland A. 1991. Eigenfaces for recognition. Journal of Cognitive Neuro Science, 3(1): 71-86[DOI: 10.1162/jocn.1991.3.1.71]
Wang G Q, Han H, Shan SG and Chen X L. 2019a. Improving cross-database face presentation attack detection via adversarial domain adaptation//Proceedings of 2019 International Conference on Biometrics (ICB). Crete, Greece: IEEE: 1-8[DOI: 10.1109/ICB45273.2019.8987254http://dx.doi.org/10.1109/ICB45273.2019.8987254]
Wang G Q, Lan C X, Han H, Shan S G and Chen X L. 2019b. Multi-modal face presentation attack detection via spatial and channel attentions//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: IEEE: 1584-1590[DOI: 10.1109/CVPRW.2019.00200http://dx.doi.org/10.1109/CVPRW.2019.00200]
Wang G Q, Han H, Shan S G and Chen X L. 2020a. Cross-domain face presentation attack detection via multi-domain disentangled representation learning//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 6677-6686[DOI: 10.1109/CVPR42600.2020.00671http://dx.doi.org/10.1109/CVPR42600.2020.00671]
Wang G Q, Han H, Shan S G and Chen X L. 2020b. Unsupervised adversarial domain adaptation for cross-domain face presentation attack detection. IEEE Transactions on Information Forensics and Security, 16: 56-69[DOI: 10.1109/TIFS.2020.3002390]
Wang J J, Zhang J Y, Bian Y, Cai Y Y, Wang C M and Pu S L. 2021. Self-domain adaptation for face anti-spoofing[EB/OL]. [2021-05-29].https://arxiv.org/pdf/2102.12129.pdfhttps://arxiv.org/pdf/2102.12129.pdf
Wang T, Yang J W, Lei Z, Liao S C and Li S Z. 2013. Face liveness detection using 3D structure recovered from a single camera//Proceedings of 2013 International Conference on Biometrics (ICB). Madrid, Spain: IEEE: 1-6[DOI: 10.1109/ICB.2013.6612957http://dx.doi.org/10.1109/ICB.2013.6612957]
Wang Y, Chen S, Li W X, Huang D and Wang Y H. 2018b. Face anti-spoofing to 3D masks by combining texture and geometry features//Proceedings of the 13th Chinese Conference on Biometric Recognition. Urumqi, China: Springer: 399-408[DOI: 10.1007/978-3-319-97909-0_43http://dx.doi.org/10.1007/978-3-319-97909-0_43]
Wang Y Y, Hao X L, Hou Y L and Guo C Q. 2013. A new multispectral method for face liveness detection//Proceedings of the 2nd IAPR Asian Conference on Pattern Recognition. Naha, Japan: IEEE: 922-926[DOI: 10.1109/ACPR.2013.169http://dx.doi.org/10.1109/ACPR.2013.169]
Wang Z H, ZhaoC X, Qin Y X, Zhou Q S, Qi G J, Wan J and Lei Z. 2019c. Exploiting temporal and depth information for multi-frame face anti-spoofing[EB/OL]. [2021-05-29].https://arxiv.org/pdf/1811.05118.pdfhttps://arxiv.org/pdf/1811.05118.pdf
Wen D, Han H and Jain A K. 2015. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 10(4): 746-761[DOI: 10.1109/TIFS.2015.2400395]
Xie X H, Gao Y, Zheng W S, Lai J H and Zhu J Y. 2017. One-snapshot face anti-spoofing using a light field camera//Proceedings of the 12th Chinese Conference on Biometric Recognition. Shenzhen, China: Springer: 108-117[DOI: 10.1007/978-3-319-69923-3_12http://dx.doi.org/10.1007/978-3-319-69923-3_12]
Xu Z Q, Shan L and Deng W H. 2015. Learning temporal features using LSTM-CNN architecture for face anti-spoofing//Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Kuala Lumpur, Malaysia: IEEE: 141-145[DOI: 10.1109/ACPR.2015.7486482http://dx.doi.org/10.1109/ACPR.2015.7486482]
Yang J W, Lei Z and Li S Z. 2014. Learn convolutional neural network for face anti-spoofing[EB/OL]. [2021-05-29].https://arxiv.org/pdf/1408.5601v1.pdfhttps://arxiv.org/pdf/1408.5601v1.pdf
Yang J W, Lei Z, Yi D and Li S Z. 2015. Person-specific face antispoofing with subject domain adaptation. IEEE Transactions on Information Forensics and Security, 10(4): 797-809[DOI: 10.1109/TIFS.2015.2403306]
Yang X, Luo W H, Bao L C, Gao Y, Gong D H, Zheng S B, Li Z F and Liu W. 2019. Face anti-spoofing: model matters, so does data//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 3502-3511[DOI: 10.1109/CVPR.2019.00362http://dx.doi.org/10.1109/CVPR.2019.00362]
Yin B J, Wang W X, Yao T P, Guo J F, Kong Z L, Ding S H, Li J L and Liu C. 2021. Adv-makeup: a new imperceptible and transferable attack on face recognition[EB/OL]. [2021-05-29].https://arxiv.org/pdf/2105.03162.pdfhttps://arxiv.org/pdf/2105.03162.pdf
Yu Z, Zhao C X, Wang Z Z, Qin Y X, Su Z, Li X B, Zhou F and Zhao G Y. 2020a. Searching central difference convolutional networks for face anti-spoofing//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 5294-5304[DOI: 10.1109/CVPR42600.2020.00534http://dx.doi.org/10.1109/CVPR42600.2020.00534]
Yu Z T, Li X B, Niu X S, Shi J G and Zhao G Y. 2020b. Face anti-spoofing with human material perception//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, Cham: 557-575[DOI: 10.1007/978-3-030-58571-6_33http://dx.doi.org/10.1007/978-3-030-58571-6_33]
Yu Z T, Li X B, Shi J G, Xia Z Q and Zhao G Y. 2021. Revisiting pixel-wise supervision for face anti-spoofing. IEEE Transactions on Biometrics, Behavior, and Identity Science, 3(3): 285-295[DOI: 10.1109/TBIOM.2021.3065526]
Zhang S F, Wang X B, Liu A J, Zhao C X, Wan J, Escalera S, Shi H L, Wang Z Z and Li S Z. 2019. A dataset and benchmark for large-scale multi-modal face anti-spoofing//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 919-928[DOI: 10.1109/CVPR.2019.00101http://dx.doi.org/10.1109/CVPR.2019.00101]
Zhang Z W, Yan J J, Liu S F, Lei Z, Yi D and Li S Z. 2012. A face antispoofing database with diverse attacks//Proceedings of the 5th IAPR International Conference on Biometrics (ICB). New Delhi, India: IEEE: 26-31[DOI: 10.1109/ICB.2012.6199754http://dx.doi.org/10.1109/ICB.2012.6199754]
Zhang Z W, Yi D, Lei Z and Li S Z. 2011. Face liveness detection by learning multispectral reflectance distributions//Proceedings of 2011 IEEE International Conference on Automatic Face and Gesture Recognition (FG). Santa Barbara, California, USA: IEEE: 436-441[DOI: 10.1109/FG.2011.5771438http://dx.doi.org/10.1109/FG.2011.5771438]
Zhe J, Hao Z and Wang Q. 2016. LFHOG: a discriminative descriptor for live face detection from light field image//Proceedings of 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, USA: IEEE: 1474-1478[DOI: 10.1109/ICIP.2016.7532603http://dx.doi.org/10.1109/ICIP.2016.7532603]
相关作者
相关机构