图像与视频质量评价综述
The critical review of image and video quality assessment methods
- 2022年27卷第5期 页码:1410-1429
纸质出版日期: 2022-05-16 ,
录用日期: 2021-08-12
DOI: 10.11834/jig.210314
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-05-16 ,
录用日期: 2021-08-12
移动端阅览
程茹秋, 余烨, 石岱宗, 蔡文. 图像与视频质量评价综述[J]. 中国图象图形学报, 2022,27(5):1410-1429.
Ruqiu Cheng, Ye Yu, Daizong Shi, Wen Cai. The critical review of image and video quality assessment methods[J]. Journal of Image and Graphics, 2022,27(5):1410-1429.
图像/视频的获取及传输过程中,由于物理环境及算法性能的限制,其质量难免会出现无法预估的衰减,导致其在实际场景中的应用受到限制,并对人的视觉体验造成显著影响。因此,作为计算机视觉领域的一项重要任务,图像/视频质量评价应运而生。其目的在于通过构建计算机数学模型来衡量图像/视频中的失真信息以判断其质量的好坏,达到自动预测质量的效果。在城市生活、交通监控以及多媒体直播等多个场景中具有广泛的应用前景。图像/视频质量评价研究取得了长足的发展,为计算机视觉领域中其他任务提供了一定的便利。本文在广泛调研前人研究的基础上,回顾了整个图像/视频质量评价领域的发展历程,分别列举了传统方法和深度学习方法中一些具有里程碑意义的算法和影响力较大的算法,然后从全参考、半参考和无参考3个方面分别对图像/视频质量评价领域的一些文献进行了综述,具体涉及的方法包含基于结构信息、基于人类视觉系统和基于自然图像统计的方法等;在LIVE(laboratory for image & video engineering)、CSIQ(categorical subjective image quality database)、TID2013等公开数据集的基础上,基于SROCC(Spearman rank order correlation coefficient)、PLCC(Pearson linear correlation coefficient)等评价指标,对一些具有代表性算法的性能进行了分析;最后总结当前质量评价领域仍存在的一些挑战与问题,并对其进行了展望。本文旨在为质量评价领域的研究人员提供一个较全面的参考。
Images and videos quality has a great impact on the information acquisition of human behavior visual system. Image/video quality assessment (I/VQA) can be regarded as a key factor for multimedia and network video services nowadays. The quality assessment methods are mainly segmented into qualitative and quantitative models. Qualitative methods conduct quality assessment based on the human's eyes
which cost lots of manpower and time consuming resources. Quantitative quality assessment simulates human observation and it can automatically forecast input quality for those of I/VQA researchers. Our review is critical reviewed quality assessment(QA) methods like full reference (FR)
reduced reference (RR) and no reference (NR) methods
which are categorized based on the "clean" data capability (the reference image with no distortion). The full reference methods assess the quality of the distorted images with comparison of the "clean" data. The pros of these methods are better performance
low complexity and good robustness. The cons are that the reference images are challenged to obtain in the in-situ scenarios. Compared with the full reference methods
the reduced reference methods reduce the number of the reference images based on featured reference data to predict the quality. All reference data are not required for the no reference methods. Traditional IQA methods are mainly based on structural similarity
human visual system (HVS) and natural scene statistical theory (NSS). The structure similarity based methods assesses the measurement quality derived of the structural information changes; the HVS based methods are based on some human eyes features; Natural scene statistics based methods fit the transformed coefficients distribution of images or videos and compare the gap of reference coefficients and test coefficients. The emerging deep learning methods based on convolutional neural network (CNN) extract image features through convolutional operations and implement logistic regression to update the models. The learning capability of the IQA-oriented CNN has its priority. VQA models are mainly divided into two categories. One category is that the temporal video quality can be obtained based on the IQA methods for single frame
and then integrate the quality of all frames. The integration methods are mainly divided into general average and weighted average methods in which the weights can be obtained in terms of manual setting or learning. The other one is forthe three dimensions (3D) video as mentioned below: First
extracting the coefficient distribution by 3D transformation or using 3D CNN to extract features
and then fitting the coefficient distribution or mapping the features to obtain the final quality. Compared to traditional methods
learning-based methods have higher complexity
but better performance. Most of the current VQA methods also use CNN as the backbone structure
which assists in the overall model construction. Our critical review analyzes the growth of I/VQA and lists some representative algorithms. Then
we review some I/VQA based literatures from two aspects
including traditional methods and deep learning-based methods
respectively. The capability of representative algorithms is analyzed derived of Spearman rank order correlation coefficient(SROCC) and Pearson linear correlation coefficient(PLCC) evaluation indexes in terms of laboratory for image & video engineering(LIVE)
categorical subjective image quality database(CSIQ)
TID2013 and other datasets. Finally
the challenging issues of quality assessment are summarized and predicted.
图像/视频质量评价(I/VQA)结构信息人类视觉系统(HVS)自然图像统计(NSS)深度学习
image/video quality assessment(I/VQA)structural informationhuman vision system(HVS)natural scene statistics(NSS)deep learning
Agarla M, Celona L and Schettini R. 2020. No-reference quality assessment of in-capture distorted videos. Journal of Imaging, 6(8): #74 [DOI: 10.3390/jimaging6080074]
Alex K, Ilya S and Geoffrey E. H. 2012. ImageNet classification with deep convolutional neural networks. Communication of the ACM, 60(6): 84-90[DOI: 10.1145/3065386]
Aydin T O, Čadík M, Myszkowski K and Seidel H P. 2010. Video quality assessment for computer graphics applications. ACM Transactions on Graphics, 29(6): #161 [DOI: 10.1145/1882261.1866187]
Babu R V, Suresh S and Perkis A. 2007. No-reference JPEG-image quality assessment using GAP-RBF. Signal Processing, 87(6): 1493-1503 [DOI: 10.1016/j.sigpro.2006.12.014]
Bampis C G, Gupta P, Soundararajan R and Bovik A C. 2017. SpEED-QA: spatial efficient entropic differencing for image and video quality. IEEE Signal Processing Letters, 24(9): 1333-1337 [DOI: 10.1109/LSP.2017.2726542]
Bosse S, Maniry D, Wiegand T and Samek W. 2016. A deep neural network for image quality assessment//Proceedings of 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, USA: IEEE: 3773-3777 [DOI: 10.1109/ICIP.2016.7533065http://dx.doi.org/10.1109/ICIP.2016.7533065]
Brandao T and Queluz M P. 2010. No-reference quality assessment of H. 264/AVC encoded video. IEEE Transactions on Circuits and Systems for Video Technology, 20(11): 1437-1447 [DOI: 10.1109/TCSVT.2010.2077474]
Chandler D M. 2013. Seven challenges in image quality assessment: past, present, and future research. International Scholarly Research Notices, 2013: #905685 [DOI: 10.1155/2013/905685]
Chen B L, Li H L, Fan H F and Wang S Q, 2021a. No-reference screen content image quality assessment with unsupervised domain adaptation. IEEE Transactions on Image Processing, 30: 5463-5476 [DOI: 10.1109/TIP.2021.3084750]
Chen G H, Yang C L and Xie S L. 2006. Gradient-based structural similarity for image quality assessment//Proceedings of 2006 International Conference on Image Processing. Atlanta, USA: IEEE: 2929-2932 [DOI: 10.1109/ICIP.2006.313132http://dx.doi.org/10.1109/ICIP.2006.313132]
Chen P F, Li L D, Ma L, Wu J J and Shi G M. 2020. RIRNet: recurrent-in-recurrent network for video quality assessment//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM: 834-842 [DOI: 10.1145/3394171.3413717http://dx.doi.org/10.1145/3394171.3413717]
Chen P F, Li L D, Wu J J, Zhang Y B and Lin W S. 2021b. Temporal reasoning guided QoE evaluation for mobile live video broadcasting. IEEE Transactions on Image Processing, 30: 3279-3292 [DOI: 10.1109/tip.2021.3060255]
Chetouani A. 2018. Convolutional neural network and saliency selection for blind image quality assessment//Proceedings of the 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE: 2835-2839 [DOI: 10.1109/icip.2018.8451654http://dx.doi.org/10.1109/icip.2018.8451654]
Ciancio A, Da Costa A L N T T, Da Silva E A B, Said A, Samadani R and Obrador P. 2011. No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Transactions on Image Processing, 20(1): 64-75 [DOI: 10.1109/TIP.2010.2053549]
Fang Y M, Ma K D, Wang Z, Lin W S, Fang Z J and Zhai G T. 2015. No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Signal Processing Letters, 22(7): 838-842 [DOI: 10.1109/LSP.2014.2372333]
Fang Y M, Sui X J, Yan J B, Liu X L and Huang L P. 2021. Progress in no-reference image quality assessment. Journal of Image and Graphics, 26(2): 265-286
方玉明, 眭相杰, 鄢杰斌, 刘学林, 黄丽萍. 2021. 无参考图像质量评价研究进展. 中国图象图形学报, 26(2): 265-286) [DOI: 10.11834/jig.200274]
Fang Y M, Zhu H W, Zeng Y, Ma K D and Wang Z. 2020. Perceptual quality assessment of smartphone photography//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 3674-3683 [DOI: 10.1109/CVPR42600.2020.00373http://dx.doi.org/10.1109/CVPR42600.2020.00373]
Feng Y J, Li S M and Chang Y L 2021. Multi-scale feature-guided stereoscopic video quality assessment based on 3d convolutional neural network//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, Canada: IEEE: 2095-2099 [DOI: 10.1109/ICASSP39728.2021.9414231http://dx.doi.org/10.1109/ICASSP39728.2021.9414231]
Fu J, Wang H L and Zuo L X. 2016. Blind image quality assessment for multiply distorted images via convolutional neural networks//Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE: 1075-1079 [DOI: 10.1109/icassp.2016.7471841http://dx.doi.org/10.1109/icassp.2016.7471841]
Gao F, Yu J, Zhu S G, Huang Q M and Tian Q. 2018. Blind image quality prediction by exploiting multi-level deep representations. Pattern Recognition, 81: 432-442 [DOI: 10.1016/j.patcog.2018.04.016]
Gao M J, Dang H S, Wei L L, Wang H L and Zhang X D. 2020. Combining global and local variation for image quality assessment. Acta Automatica Sinica, 46(12): 2662-2671
高敏娟, 党宏社, 魏立力, 王海龙, 张选德. 2020. 结合全局与局部变化的图像质量评价. 自动化学报, 46(12): 2662-2671) [DOI: 10.16383/j.aas.c190697]
Ghadiyaram D and Bovik A C. 2015. LIVE in the wild image quality challenge database[DB/OL]. [2021-05-27].http://live.ece.utexas.edu/research/ChallengeDB/index.htmlhttp://live.ece.utexas.edu/research/ChallengeDB/index.html.
Ghadiyaram D, Pan J, Bovik A C, Moorthy A K, Panda P, and Yang K C. 2018. In-capture mobile video distortions: a study of subjective behavior and objective algorithms. IEEE Transactions on Circuits and Systems for Video Technology, 28(9): 2061-2077 [DOI: 10.1109/TCSVT.2017.2707479]
Gunawan I P and Ghanbari M. 2008. Reduced-reference video quality assessment using discriminative local harmonic strength with motion consideration. IEEE Transactions on Circuits and Systems for Video Technology, 18(1): 71-83 [DOI: 10.1109/TCSVT.2007.913755]
Harel J, Koch C and Perona P. 2006. Graph-based visual saliency//Proceedings of the 19th International Conference on Neural Information Processing Systems (NIPS). Vancouver, Canada: NIPS: 545-552 [DOI: 10.5555/2976456.2976525http://dx.doi.org/10.5555/2976456.2976525]
He L H, Lu W, Jia C C and Hao L. 2017. Video quality assessment by compact representation of energy in 3D-DCT domain. Neurocomputing, 269: 108-116 [DOI: 10.1016/j.neucom.2016.08.143]
He L H, Zhong Y Z, Lu W and Gao X B. 2019. A visual residual perception optimized network for blind image quality assessment. IEEE Access, 7: 176087-176098 [DOI: 10.1109/access.2019.2957292]
Hosu V, Hahn F, Jenadeleh M, Lin H, Men H, Szirányi T, Li S J and Saupe D. 2017. The konstanz natural video database (KoNViD-1k)//Proceedings of the 9th International Conference on Quality of Multimedia Experience (QoMEX). Erfurt, Germany: IEEE: 1-6 [DOI: 10.1109/QoMEX.2017.7965673http://dx.doi.org/10.1109/QoMEX.2017.7965673]
Hosu V, Lin H H, Sziranyi T and Saupe D. 2020. KonIQ-10k: an ecologically valid database for deep learning of blind image quality assessment. IEEE Transactions on Image Processing, 29: 4041-4056 [DOI: 10.1109/TIP.2020.2967829]
Ian J G, Jean P A, Mehdi M, Bing X, David W F, Sherjil O, Aaron C and Yoshua B. 2014. Generative Adversarial Nets//Proceedings of Advances in Neural Information Processing Systems. Montreal, Canada: NIPS 2672-2680[DOI: 10.1109/NIPS.1406.2661http://dx.doi.org/10.1109/NIPS.1406.2661]
Jin B, Li C F and Wu X J. 2012. No-reference image quality assessment based on natural scene statistics and wavelet. Journal of Image and Graphics, 17(1): 33-39
金波, 李朝锋, 吴小俊. 2012. 结合NSS和小波变换的无参考图像质量评价. 中国图象图形学报, 17(1): 33-39 [DOI: 10.11834/jig.20120105]
Kang L, Ye P, Li Y and Doermann D. 2014. Convolutional neural networks for no-reference image quality assessment//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: 1733-1740 [DOI: 10.1109/CVPR.2014.224http://dx.doi.org/10.1109/CVPR.2014.224]
Kang L, Ye P, Li Y and Doermann D. 2015. Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks//Proceedings of 2015 IEEE International Conference on Image Processing (ICIP). Quebec City, Canada: IEEE: 2791-2795 [DOI: 10.1109/ICIP.2015.7351311http://dx.doi.org/10.1109/ICIP.2015.7351311]
Kim W, Kim J, Ahn S, Kim J and Lee S. 2018. Deep video quality assessor: from spatio-temporal visual sensitivity to a convolutional neural aggregation network//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer: 224-241 [DOI: 10.1007/978-3-030-01246-5_14http://dx.doi.org/10.1007/978-3-030-01246-5_14]
Larson E C and Chandler D M. 2010. Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(1): #011006 [DOI: 10.1117/1.3267105]
Le Callet P, Viard-GaudinC and Barba D. 2006. A convolutional neural network approach for objective video quality assessment. IEEE Transactions on Neural Networks, 17(5): 1316-1327 [DOI: 10.1109/TNN.2006.879766]
Li C F and Bovik A C. 2009. Three-component weighted structural similarity index//Proceedings of the SPIE 7242, Image Quality and System Performance VI. San Jose, USA: SPIE: 72420Q [DOI: 10.1117/12.811821http://dx.doi.org/10.1117/12.811821]
Li C H, Zhuo L and Li J F. 2019. Content-based H. 264 non-reference video quality evaluation model. Measurement and Control Technology, 38(1): 106-110, 135
李晨昊, 卓力, 李嘉锋. 2019. 基于内容的H. 264无参考视频质量评价模型. 测控技术, 38(1): 106-110, 135 [DOI: 10.19708/j.ckjs.2019.01.023]
Li D Q, Jiang T T and Jiang M. 2018. Exploiting high-level semantics for no-reference image quality assessment of realistic blur images//Proceedings of the 25th ACM International Conference on Multimedia. Mountain View, USA: ACM: 378-386 [DOI: 10.1145/3123266.3123322http://dx.doi.org/10.1145/3123266.3123322]
Li D Q, Jiang T T and Jiang M. 2019. Quality assessment of in-the-wild videos//Proceedings of the 27th ACM International Conference on Multimedia. Nice, France: ACM: 2351-2359 [DOI: 10.1145/3343031.3351028http://dx.doi.org/10.1145/3343031.3351028]
Li D Q, Jiang T T and Jiang M. 2021. Unified quality assessment of in-the-wild videos with mixed datasets training. International Journal of Computer Vision, 129(4): 1238-1257 [DOI: 10.1007/s11263-020-01408-w]
Li Q and Wang Z. 2009. Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE Journal of Selected Topics in Signal Processing, 3(2): 202-211 [DOI: 10.1109/JSTSP.2009.2014497]
Li X L, Guo Q and Lu X Q. 2016a. Spatiotemporal statistics for video quality assessment. IEEE Transactions on Image Processing, 25(7): 3329-3342 [DOI: 10.1109/TIP.2016.2568752]
Li Y M, Po L M, Feng L T and Yuan F. 2016b. No-reference image quality assessment with deep convolutional neural networks//Proceedings of 2016 IEEE International Conference on Digital Signal Processing (DSP). Beijing, China: IEEE: 685-689 [DOI: 10.1109/ICDSP.2016.7868646http://dx.doi.org/10.1109/ICDSP.2016.7868646]
Lin H H, Hosu V and Saupe D. 2019. KADID-10k: a large-scale artificially distorted IQA database//Proceedings of the 11th International Conference on Quality of Multimedia Experience (QoMEX). Berlin, Germany: IEEE: 1-3 [DOI: 10.1109/QoMEX.2019.8743252http://dx.doi.org/10.1109/QoMEX.2019.8743252]
Lin K Y and Wang G X. 2018. Hallucinated-IQA: no-reference image quality assessment via adversarial learning//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, America: IEEE: 732-741 [DOI: 10.1109/CVPR.2018.00083http://dx.doi.org/10.1109/CVPR.2018.00083]
Liu W T, Duanmu Z F and Wang Z. 2018b. End-to-end blind quality assessment of compressed videos using deep neural networks//Proceedings of the 26th ACM international conference on Multimedia. Seoul, Korea(South): ACM: 546-554 [DOI: 10.1145/3240508.3240643http://dx.doi.org/10.1145/3240508.3240643]
Liu X L, Van De Weijer J and Bagdanov A D. 2017. RankIQA: learning from rankings for no-reference image quality assessment//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 1040-1049 [DOI: 10.1109/ICCV.2017.118http://dx.doi.org/10.1109/ICCV.2017.118]
Liu Y T, Zhai G T, Gu K, Liu X M, Zhao D B and Gao W. 2018a. Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Transactions on Multimedia, 20(2): 379-391 [DOI: 10.1109/tmm.2017.2729020]
Ma J P, Wu J J, Li L D, Dong W S and Xie X M. 2020. Active inference of GAN for no-reference image quality assessment//Proceedings of 2020 IEEE International Conference on Multimedia and Expo (ICME). London, UK: IEEE: 1-6 [DOI: 10.1109/ICME46284.2020.9102895http://dx.doi.org/10.1109/ICME46284.2020.9102895]
Ma L, Li S N, Zhang F and Ngan K N. 2011. Reduced-reference image quality assessment using reorganized DCT-based image representation. IEEE Transactions on Multimedia, 13(4): 824-829 [DOI: 10.1109/TMM.2011.2109701]
Ma L, Ngan K N and Xu L. 2013. Reduced reference video quality assessment based on spatial HVS mutual masking and temporal motion estimation//Proceedings of 2013 IEEE International Conference on Multimedia and Expo (ICME). San Jose, America: IEEE: 1-6 [DOI: 10.1109/ICME.2013.6607611http://dx.doi.org/10.1109/ICME.2013.6607611]
Manasa K and Channappayya S S. 2016. An optical flow-based full reference video quality assessment algorithm. IEEE Transactions on Image Processing, 25(6): 2480-2492 [DOI: 10.1109/TIP.2016.2548247]
Marziliano P, Dufaux F, Winkler S and Ebrahimi T. 2004. Perceptual blur and ringing metrics: application to JPEG2000. Signal Processing: Image Communication, 19(2): 163-172 [DOI: 10.1016/j.image.2003.08.003]
Mittal A, Moorthy A K and Bovik A C. 2012. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12): 4695-4708 [DOI: 10.1109/TIP.2012.2214050]
Mittal A, Saad M A and Bovik A C. 2016. A completely blind video integrity oracle. IEEE Transactions on Image Processing, 25(1): 289-300 [DOI: 10.1109/TIP.2015.2502725]
Mittal A, Soundararajan R and Bovik A C. 2013. Making a "completely blind" image quality analyzer. IEEE Signal Processing Letters, 20(3): 209-212 [DOI: 10.1109/LSP.2012.2227726]
Moorthy A K and Bovik A C. 2010. Efficient video quality assessment along temporal trajectories. IEEE Transactions on Circuits and Systems for Video Technology, 20(11): 1653-1658 [DOI: 10.1109/TCSVT.2010.2087470]
Ninassi A, Le Meur O, Le Callet P and Barba D. 2007. Does where you gaze on an image affect your perception of quality? Applying visual attention to image quality metric//Proceedings of 2007 IEEE International Conference on Image Processing. San Antonio, America: IEEE: II-169-II-172 [DOI: 10.1109/ICIP.2007.4379119http://dx.doi.org/10.1109/ICIP.2007.4379119]
Niu Y Z, Huang D, Shi Y Q and Ke X. 2019. Siamese-network-based learning to rank for no-reference 2D and 3D image quality assessment. IEEE Access, 7: 101583-101595 [DOI: 10.1109/access.2019.2930707]
Nuutinen M, Virtanen T, Vaahteranoksa M, Vuori T, Oittinen P and Häkkinen J. 2016. CVD2014—a database for evaluating no-reference video quality assessment algorithms. IEEE Transactions on Image Processing, 25(7): 3073-3086 [DOI: 10.1109/TIP.2016.2562513]
Park J, Seshadrinathan K, Lee S and Bovik A C. 2013. Video quality pooling adaptive to perceptual distortion severity. IEEE Transactions on Image Processing, 22(2): 610-620 [DOI: 10.1109/TIP.2012.2219551]
Pinson M H and Wolf S. 2004. A new standardized method for objectively measuring video quality. IEEE Transactions on Broadcasting, 50(2): 312-322 [DOI: 10.1109/TBC.2004.834028]
Ponomarenko N, Jin L N, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F and Kuo C C J. 2015. Image database TID2013: peculiarities, results and perspectives. Signal Processing: Image Communication, 30: 57-77 [DOI: 10.1016/j.image.2014.10.009]
Ren H Y, Chen D Q and Wang Y Z. 2017. RAN4IQA: restorative adversarial nets for no-reference image quality assessment//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, America: AAAI: 7308-7314
Saad M A, Bovik A C and Charrier C. 2012. Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 21(8): 3339-3352 [DOI: 10.1109/TIP.2012.2191563]
Saad M A, Bovik A C and Charrier C. 2014. Blind prediction of natural video quality. IEEE Transactions on Image Processing, 23(3): 1352-1365 [DOI: 10.1109/TIP.2014.2299154]
Seshadrinathan K and Bovik A C. 2010. Motion tuned spatio-temporal quality assessment of natural videos. IEEE Transactions on Image Processing, 19(2): 335-350 [DOI: 10.1109/TIP.2009.2034992]
Seshadrinathan K, Soundararajan R, Bovik A C and Cormack L K. 2010. A subjective study to evaluate video quality assessment algorithms//Proceedings of SPIE 7527, Human Vision and Electronic Imaging XV. San Jose, America: SPIE: 75270H [DOI: 10.1117/12.845382http://dx.doi.org/10.1117/12.845382]
Shahreza H O, Amini A and Behroozi H. 2019. No-reference video quality assessment using recurrent neural networks//Proceedings of the 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS). Shahrood, Iran: IEEE: 1-5 [DOI: 10.1109/icspis48872.2019.9066015http://dx.doi.org/10.1109/icspis48872.2019.9066015]
Sheikh H R and Bovik A C. 2006. Image information and visual quality. IEEE Transactions on Image Processing, 15(2): 430-444 [DOI: 10.1109/TIP.2005.859378]
Sheikh H R, Bovik A C and Cormack L. 2005b. No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 14(11): 1918-1927 [DOI: 10.1109/TIP.2005.854492]
Sheikh H R, Bovik A C and De Veciana G. 2005a. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 14(12): 2117-2128 [DOI: 10.1109/TIP.2005.859389]
Sheikh H R, Wang Z, Cormack L and Bovik A C. 2006. LIVE image quality assessment database release 2[DB/OL]. [2021-04-08].http://live.ece.utexas.edu/research/Quality/subjective.htmhttp://live.ece.utexas.edu/research/Quality/subjective.htm.
Song W, Liu S M, Huang D M, Wang W J and Wang J. 2020. Non-reference underwater video quality assessment method for small size samples. Journal of Image and Graphics, 25(9): 1787-1799
宋巍, 刘诗梦, 黄冬梅, 王文娟, 王建. 2020. 适用小样本的无参考水下视频质量评价方法. 中国图象图形学报, 25(9): 1787-1799) [DOI: 10.11834/jig.200025]
Soundararajan R and Bovik A C. 2013. Video quality assessment byreduced reference spatio-temporal entropic differencing. IEEE Transactions on Circuits and Systems for Video Technology, 23(4): 684-694 [DOI: 10.1109/TCSVT.2012.2214933]
Su S L, Yan Q S, Zhu Y, Zhang C, Ge X, Sun J Q and Zhang Y N. 2020. Blindly assess image quality in the wild guided by a self-adaptive hyper network//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, America: IEEE: 3664-3673 [DOI: 10.1109/CVPR42600.2020.00372http://dx.doi.org/10.1109/CVPR42600.2020.00372]
Varga D and Szirányi T. 2019. No-reference video quality assessment via pretrained CNN and LSTM networks. Signal, Image and Video Processing, 13(8): 1569-1576 [DOI: 10.1007/s11760-019-01510-8]
Virtanen T, Nuutinen M, Vaahteranoksa M, Oittinen P and Häkkinen J. 2015. CID2013: a database for evaluating no-reference image quality assessment algorithms. IEEE Transactions on Image Processing, 24(1): 390-402 [DOI: 10.1109/TIP.2014.2378061]
Vu P V, Vu C T and Chandler D M. 2011. A spatiotemporal most-apparent-distortion model for video quality assessment//Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE: 2505-2508 [DOI: 10.1109/ICIP.2011.6116171http://dx.doi.org/10.1109/ICIP.2011.6116171]
Vu V P and Chandler D M. 2014. ViS3: an algorithm for video quality assessment via analysis of spatial and spatiotemporal slices. Journal of Electronic Imaging, 23(1): #013016 [DOI: 10.1117/1.JEI.23.1.013016]
C F, Su L and Zhang W G, 2018. COME for no-reference video quality assessment//Proceedings of 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). Miami, USA: IEEE: 232-237 [DOI: 10.1109/MIPR.2018.00056http://dx.doi.org/10.1109/MIPR.2018.00056]
Wang M M, Zhang F and Agrafiotis D. 2015. A very low complexity reduced reference video quality metric based on spatio-temporal information selection//Proceedings of 2015 IEEE International Conference on Image Processing (ICIP). Quebec, Canada: IEEE: 571-575 [DOI: 10.1109/ICIP.2015.7350863http://dx.doi.org/10.1109/ICIP.2015.7350863]
Wang Y, Jiang T T, Ma S W and Gao W. 2012. Novel spatio-temporal structural information based video quality metric. IEEE Transactions on Circuits and Systems for Video Technology, 22(7): 989-998 [DOI: 10.1109/TCSVT.2012.2186745]
Wang Z, Bovik A C, Sheikh H R and Simoncelli E P. 2004a. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4): 600-612 [DOI: 10.1109/TIP.2003.819861]
Wang Z and Li Q. 2007. Video quality assessment using a statistical model of human visual speed perception. Journal of the Optical Society of America A, 24(12): B61-B69 [DOI: 10.1364/JOSAA.24.000B61]
Wang Z and Li Q. 2011. Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 20(5): 1185-1198 [DOI: 10.1109/TIP.2010.2092435]
Wang Z, Sheikh H R and Bovik A C. 2002. No-reference perceptual quality assessment of JPEG compressed images//Proceedings of International Conference on Image Processing. Rochester, America: IEEE: 1 [DOI: 10.1109/ICIP.2002.1038064http://dx.doi.org/10.1109/ICIP.2002.1038064]
Wang Z, Simoncelli E P and Bovik A C. 2004b. Multiscale structural similarity for image quality assessment//Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE: 1398-1402 [DOI: 10.1109/ACSSC.2003.1292216http://dx.doi.org/10.1109/ACSSC.2003.1292216]
Wang Z, Wu G X, Sheikh H R, Simoncelli E P, Yang E H and Bovik A C. 2006. Quality-aware images. IEEE Transactions on Image Processing, 15(6): 1680-1689 [DOI: 10.1109/TIP.2005.864165]
Wu P, Ding W X, You Z X and An P. 2019. Virtual reality video quality assessment based on 3d convolutional neural networks//Proceedings of the 26th IEEE International Conference on Image Processing (ICIP). Taipei, China: IEEE: 3187-3191 [DOI: 10.1109/icip.2019.8803023http://dx.doi.org/10.1109/icip.2019.8803023]
Xue W F and Mou X Q. 2010. Reduced reference imagequality assessment based on Weibull statistics//Proceedings of the 2nd International Workshop on Quality of Multimedia Experience (QoMEX). Trondheim, Norway: IEEE: 1-6 [DOI: 10.1109/QOMEX.2010.5518131http://dx.doi.org/10.1109/QOMEX.2010.5518131]
Yan P and Mou X Q. 2018. Video quality assessment based on motion structure partition similarity of spatiotemporal slice images. Journal of Electronic Imaging, 27(3): #033019 [DOI: 10.1117/1.JEI.27.3.033019]
Yang J C, Liu T L, Jiang B, Song H B and Lu W. 2018. 3D panoramic virtual reality video quality assessment based on 3D convolutional neural networks. IEEE Access, 6: 38669-38682 [DOI: 10.1109/access.2018.2854922]
Zeng K and Wang Z. 2010. Temporal motion smoothness measurement for reduced-reference video quality assessment//Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas, America: IEEE: 1010-1013 [DOI: 10.1109/ICASSP.2010.5495316http://dx.doi.org/10.1109/ICASSP.2010.5495316]
Zhai G T and Min X K. 2020. Perceptual image quality assessment: a survey. Science China Information Sciences, 63(11): #211301 [DOI: 10.1007/s11432-019-2757-1]
Zhai G T, Wu X L, Yang X K, Lin W S and Zhang W J. 2012. A psychovisual quality metric in free-energy principle. IEEE Transactions on Image Processing, 21(1): 41-52 [DOI: 10.1109/TIP.2011.2161092]
Zhang L, Zhang L, Mou X Q and Zhang D. 2011. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20(8): 2378-2386 [DOI: 10.1109/TIP.2011.2109730]
Zhang X D, Feng X C, Wang W W and Xue W F. 2013. Edge strength similarity for image quality Assessment. IEEE Signal Processing Letters, 20(4): 319-322 [DOI: 10.1109/LSP.2013.2244081]
Zhu H C, Li L D, Wu J J, Dong W S and Shi G M. 2020. MetaIQA: deep meta-learning for no-reference image quality assessment//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE: 14131-14140 [DOI: 10.1109/CVPR42600.2020.01415http://dx.doi.org/10.1109/CVPR42600.2020.01415]
Zhu H J, Zong P and Cong Y H. 2021. Multi-scale image quality assessment method based on weight pool. Computer Engineering and Applications, 57(3): 215-221
朱惠娟, 宗平, 丛玉华. 2021. 基于权重池的多尺度图像质量评估方法. 计算机工程与应用, 57(3): 215-221) [DOI: 10.3778/j.issn.1002-8331.2008-0365]
Zhu K F, Barkowsky M, Shen M M, Le Callet P and Saupe D. 2014. Optimizing feature pooling and prediction models of VQA algorithms//Proceedings of 2014 IEEE International Conference on Image Processing (ICIP). Paris, France: IEEE: 541-545 [DOI: 10.1109/ICIP.2014.7025108http://dx.doi.org/10.1109/ICIP.2014.7025108]
Zhu K F, Li C Q, Asari V and Saupe D. 2015. No-reference video quality assessment based on artifact measurement and statistical analysis. IEEE Transactions on Circuits and Systems for Video Technology, 25(4): 533-546 [DOI: 10.1109/TCSVT.2014.2363737]
Zhu W H, Zhai G T, Min X K, Hu M H, Liu J, Guo G D and Yang X K. 2019. Multi-channel decomposition in tandem with free-energy principle for reduced-reference image quality assessment. IEEE Transactions on Multimedia, 21(9): 2334-2346 [DOI: 10.1109/TMM.2019.2902484]
相关作者
相关机构