MRI脑肿瘤图像的超像素/体素分割及发展现状
The review of superpixel/voxel segmentation on MRI brain tumor images
- 2022年27卷第10期 页码:2897-2915
纸质出版日期: 2022-10-16 ,
录用日期: 2021-10-06
DOI: 10.11834/jig.210293
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2022-10-16 ,
录用日期: 2021-10-06
移动端阅览
方玲玲, 王欣. MRI脑肿瘤图像的超像素/体素分割及发展现状[J]. 中国图象图形学报, 2022,27(10):2897-2915.
Lingling Fang, Xin Wang. The review of superpixel/voxel segmentation on MRI brain tumor images[J]. Journal of Image and Graphics, 2022,27(10):2897-2915.
超像素/体素分割算法把具有相同结构信息的点划分至同一子区域,获得可准确描述图像局部特征且符合功能子结构的平滑边缘信息,在医学磁共振成像(magnetic resonance imaging
MRI)分割领域广泛应用。本文比较了不同超像素算法分割脑肿瘤医学图像的性能。归纳并总结了多种最新超像素/体素算法的研究成果及应用,为进一步比较算法性能,选取了多模态脑肿瘤分割挑战赛(Multimodal Brain Tumor Segmentation Challenge
BraTS) 2018数据集中的部分脑肿瘤图像进行超像素分割。同时,通过边缘召回率、欠分割错误率、紧密度评测和可达分割准确率4项指标分析算法性能,并阐述算法的未来发展趋势和可行性空间。通过上述算法分析可得:基于图论的(graph-based)、标准化分割(normalized cut)、随机游走算法(lazy random walk)可获得精准的核心肿瘤信息,但对增强肿瘤的准确率稍显不足,不利于后续特征区域提取。基于密度的聚类算法(density-based spatial clustering of applications with noise
DBSCAN)和线性谱聚类(linear spectral clustering
LSC)算法可较好保留肿瘤边界信息,具有较好的局部局灶信息特征,但不能实现邻域信息表达,且没有解决质量跨度较大的问题。拓扑保持正则、Turbopixels和简单线性迭代聚类分割算法(simple linear iterative clustering algorithm
SLIC)的超像素形状结构上更加完整紧凑,对病灶边界的特征描述较为平滑柔和,以此弥补算法对边界描述的不足之处。通过评价指标、国内外最新发展动态和实验对比分析,可看出超像素/体素分割算法具有较高的分割性能,研究领域具有良好的发展前景。
To obtain smooth edge information that can accurately describe the local features and conform to the functional sub structure
the superpixel/voxel segmentation algorithm divides the points with the similar structure information into the same sub region. It is widely used in the field of magnetic resonance imaging (MRI) segmentation. We carry out the comparative performance analysis of different algorithms in brain tumor medical image segmentation. Our algorithms are used to set the number of superpixel seed points directly in the contexts of graph-based
normalized cut
entropy rate
topology preserving regularization
lazy random walk
Turbopixels
density-based spatial clustering of applications with noise(DBSCAN)
linear spectral clustering(LSC)
and simple linear iterative clustering algorithm (SLIC)
respectively. Due to the watershed and the superpixel lattice algorithms cannot achieve accurate manipulations of the number of superpixels
it is required to achieve the superpixel segmentation of the brain tumor images in BraTS 2018 dataset. The graph-based algorithm can segment the core tumor region accurately and identify the brain tumor region with vascular filling effectively. However
it is insufficient for the segmentation accuracy of the completed and enhanced tumor regions of slightly. The performance of the normalized cut algorithm can obtain the brain tumor boundary derived of strong dependence information and retain the characteristic information of the tumor boundary. However
the algorithm divides the lesion region
the gray matter
and the white matter into the same superpixel. The whole tumor region can be divided into the multiple regions
which cannot represent the functional substructure of human brains effectively. The superpixel lattice algorithm can obtain the core tumor location better
but the segmented superpixel boundary does not have the strong attachment. The boundary information of the enhanced tumor can be obtained based on the entropy rate algorithm accurately
which has the obvious density difference between the tumor region and the surrounding tumor. Yet
the generated shape of superpixel boundary is irregular
which cannot express the clear neighborhood information. The topology preserving regularization algorithm can describe the focus accurately
but it cannot clarify the large mass span issue. The lazy random walk algorithm can generate more regular core tumor superpixel boundary
but it can not obtain enhanced tumor boundary information and cannot retain the characteristics of tumor boundary information. The watershed algorithm can obtain the weak boundary information of peripheral edema and intratumoral hemorrhage caused by brain tumor with obvious space occupying effect or lateral ventricular extrusion. However
the obtained superpixel does not conform to the structure of brain functional
which tends to different superpixel from the division of the same functional blocks. The Turbopixels algorithm overcomes the problem that the number of superpixels is different in the initial setting
which leads to the difference of the accuracy of the segmentation results and enhances the robustness of the algorithm. However
the algorithm has little contrast to the whole gray level and the accuracy of segmentation is greatly reduced with the presence of adhesion between the brain tumor location and the surrounding tissues. The DBSCAN algorithm can obtain the core tumor information and identify the necrotic region and the liquefied region in accordance with the image density
which can provide tumor information for complications. However
the algorithm is more sensitive to the noise points and is not robust to the boundary information. The LSC algorithm can release boundary blur and fuzziness of medical imaging equipment. But
the superpixel boundary divides the brain regions with the same features and functional substructures into the multiple blocks
which cannot reflect the shape
size
appearance
other forms of brain tumors
and the pull with the surrounding meninges or blood vessels. The SLIC algorithm has a strong compact and complete retention of feature continuity
which can extract brain tumor features. However
there is a lot of redundancy in the algorithm calculation process
which is challenged to large-scale object segmentation operation
the SLICO algorithm is improved through the SLIC algorithm
which has the high efficient segmentation with low computational complexity. In conclusion
such algorithms can preserve tumor boundary information and have local focal information better in related to graph-based
the normalized cut
the lazy random walk
the DBSCAN
and the LSC. The four algorithms keep the shape structure of the superpixel more complete and compact in regular like topology preserving regularization
Turbopixels
SLIC
and SLICO. Furthermore
the feature description of the lesion boundary is smooth and soft to make up the boundary deficiency. We summarize the current results and applications of various superpixel/voxel algorithms. The performance of the algorithm is analyzed by four indexes like boundary recall
under-segmentation error
compactness measure
and achievable segmentation accuracy. The superpixel/voxel algorithm can improve the efficiency of medical image processing with large object efficiency
which is beneficial to the expression of local information of the brain structure. Some future challenging issues are predicted as mentioned below: 1) to divide the brain function and regions without brain structure into the same sub region; 2) to resolve over-fitting or insufficient segmentation caused by abnormal points and noise points near the boundary; 3) to integrate multi-modal lesion information via machine learning.
图像处理磁共振成像(MRI)超像素/体素脑肿瘤分割评价指标
image processingmagnetic resonance imaging(MRI)superpixel/voxelbrain tumor segmentationevaluation indicators
Abate A F, Barra S, D′Aniello F and Narducci F. 2016. Two-tier image features clustering for iris recognition on mobile//Proceedings of 11th International Workshop on Fuzzy Logic and Applications. Naples, Italy: Springer: 260-269 [DOI: 10.1007/978-3-319-52962-2_23http://dx.doi.org/10.1007/978-3-319-52962-2_23]
Achanta R, Shaji A, Smith K, Lucchi A, Fua P and Süsstrunk S. 2012. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11): 2274-2282 [DOI: 10.1109/TPAMI.2012.120]
Amami A, Azouz Z B and Alouane M T H. 2019. AdaSLIC: adaptive supervoxel generation for volumetric medical images. Multimedia Tools and Applications, 78(3): 3723-3745 [DOI: 10.1007/s11042-017-5563-3]
Angulakshmi M and Lakshmi Priya G G. 2019. Walsh hadamard transform for simple linear iterative clustering (SLIC) superpixel based spectral clustering of multimodal MRI brain tumor segmentation. IRBM, 40(5): 253-262 [DOI: 10.1016/j.irbm.2019.04.005]
Bagherimofidi S M, Yang C C, Rey-Dios R, Kanakamedala M R and Fatemi A. 2019. Evaluating the accuracy of geometrical distortion correction of magnetic resonance images for use in intracranial brain tumor radiotherapy. Reports of Practical Oncology and Radiotherapy, 24(6): 606-613 [DOI: 10.1016/j.rpor.2019.09.011]
Bechar M E, Settouti N, Barra V and Chikh M A. 2018. Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease. Multidimensional Systems and Signal Processing, 29(3): 979-998 [DOI: 10.1007/s11045-017-0483-y]
Buyssens P, Gardin I, Ruan S and Elmoataz A. 2014. Eikonal-based region growing for efficient clustering. Image and Vision Computing, 32(12): 1045-1054 [DOI: 10.1016/j.imavis.2014.10.002]
Cao X H and Cao X J. 2013. Background aware saliency detection//Proceedings of 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013). Xi′an, China: IEEE: 1-4 [DOI: 10.1109/TENCON.2013.6718951http://dx.doi.org/10.1109/TENCON.2013.6718951]
Cour T, Benezit F and Shi J. 2005. Spectral segmentation with multiscale graph decomposition//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005). San Diego, USA: IEEE: 1124-1131 [DOI: 10.1109/CVPR.2005.332http://dx.doi.org/10.1109/CVPR.2005.332]
Cui Q. 2018. Superpixel based Random Walk Method for Efficient Liver Organ Image Segmentation and Its Application. Hangzhou: Zhejiang University
崔强. 2018. 基于超像素的随机游走肝脏图像高速分割方法及其应用. 杭州: 浙江大学
Dutta A, Engels J and Hahn M. 2019. Segmentation of laser point clouds in urban areas by a modified normalized cut method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(12): 3034-3047 [DOI: 10.1109/TPAMI.2018.2869744]
Felzenszwalb P F and Huttenlocher D P. 2004. Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2): 167-181 [DOI: 10.1023/B:VISI.0000022288.19776.77]
Fu H Z, Cao X C, Tang D, Han Y H and Xu D. 2014. Regularity preserved superpixels and supervoxels. IEEE Transactions on Multimedia, 16(4): 1165-1175 [DOI: 10.1109/TMM.2014.2305571]
Galvão F L, Guimarães S J F and Falcão A X. 2020. Image segmentation using dense and sparse hierarchies of superpixels. Pattern Recognition, 108: #107532 [DOI: 10.1016/j.patcog.2020.107532]
Gao Z J, Bu W, Zheng Y L and Wu X Q. 2017. Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach. Computerized Medical Imaging and Graphics, 55: 42-53 [DOI: 10.1016/j.compmedimag.2016.07.006]
Ge T, Mu N and Li L. 2017. A brain tumor segmentation method based on softmax regression and graph cut. Acta Electronica Sinica, 45(3): 644-649
葛婷, 牟宁, 李黎. 2017. 基于softmax回归与图割法的脑肿瘤分割算法. 电子学报, 45(3): 644-649 [DOI: 10.3969/j.issn.0372-2112.2017.03.021]
Ghosh P, Mail K and Das S K. 2018. Use of spectral clustering combined with normalized cuts (N-Cuts) in an iterative k-means clustering framework (NKSC) for superpixel segmentation with contour adherence. Pattern Recognition and Image Analysis, 28(3): 400-409 [DOI: 10.1134/S1054661818030161]
Giraud R, Ta V T and Papadakis N. 2018. Robust superpixels using color and contour features along linear path. Computer Vision and Image Understanding, 170: 1-13 [DOI: 10.1016/j.cviu.2018.01.006]
Hinton G E, Osindero S and the Y W. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18(7): 1527-1554 [DOI: 10.1162/neco.2006.18.7.1527]
Hu J. 2010. Research on Interpolation of Medical Image and Image Segmentation in 3D Reconstruction System. Nanjing: Nanjing University of Aeronautics and Astronautics
胡军. 2010. 医学图像的层间插值和三维重建系统中图像分割的研究. 南京: 南京航空航天大学
Huang X H, Yang C L, Ranka S and Rangarajan A. 2018. Supervoxel-based segmentation of 3D imagery with optical flow integration for spatiotemporal processing. IPSJ Transactions on Computer Vision and Applications, 10(1): #9 [DOI: 10.1186/s41074-018-0045-8]
Irving B, Franklin J M, Papie B W, Anderson E M, Sharma R A, Gleeson F V, Brady S M and Schnabel J A. 2016. Pieces-of-parts for supervoxel segmentation with global context: application to DCE-MRI tumour delineation. Medical Image Analysis, 32: 69-83 [DOI: 10.1016/j.media.2016.03.002]
Ji S Y, Wei B Z, Yu Z, Yang G P and Yin Y L. 2014. A new multistage medical segmentation method based on superpixel and fuzzy clustering. Computational and Mathematical Methods in Medicine, 2014: #747549 [DOI: 10.1155/2014/747549]
Jiang T, Lin Z Z, Wu S C, Wang X R and Lin Y P. 2020. Liver segmentation based on convolutional neural network and superpixel in CT image. China Medical Devices, 35(2): 72-76
姜涛, 林仲志, 吴水才, 王笑茹, 林沅平. 2020. 基于卷积神经网络和超像素的CT图像肝脏分割. 中国医疗设备, 35(2): 72-76 [DOI: 10.3969/j.issn.1674-1633.2020.02.018]
Jin L Y, Guo S X, Ma S Z, Liu X M, Sun C J and Li X Y. 2018. Liver segmentation in CT image based on semi-supervised ladder network. Journal of Jilin University (Information Science Edition), 36(2): 158-164
金兰依, 郭树旭, 马树志, 刘晓鸣, 孙长建, 李雪妍. 2018. 基于半监督阶梯网络的肝脏CT影像分割. 吉林大学学报(信息科学版), 36(2): 158-164 [DOI: 10.19292/j.cnki.jdxxp.2018.02.007]
Khosravanian A, Rahmanimanesh M, Keshavarzi P and Mozaffari S. 2021. Fast level set method for glioma brain tumor segmentation based on Superpixel fuzzy clustering and lattice Boltzmann method. Computer Methods and Programs in Biomedicine, 198: #105809 [DOI: 10.1016/J.CMPB.2020.105809]
Kong Y Y, Wu J S, Yang G Y, Zuo Y L, Chen Y, Shu H Z and Coatrieux J L. 2019. Iterative spatial fuzzy clustering for 3D brain magnetic resonance image supervoxel segmentation. Journal of Neuroscience Methods, 311: 17-27 [DOI: 10.1016/j.jneumeth.2018.10.007]
Lai X B, Xu M S and Xu X M. 2019. Glioblastoma multiforme multi-modal MR images segmentation using multi-class CNN. Acta Electronica Sinica, 47(8): 1738-1747
赖小波, 许茂盛, 徐小媚. 2019. 多分类CNN的胶质母细胞瘤多模态MR图像分割. 电子学报, 47(8): 1738-1747 [DOI: 10.3969/j.issn.0372-2112.2019.08.018]
Leblond A and Kauffmann C. 2016. Ultrafast superpixel segmentation of large 3D medical datasets//Proceedings Volume 9788, Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging. San Diego, USA: SPIE: 97881 N [DOI: 10.1117/12.2216486http://dx.doi.org/10.1117/12.2216486]
Lee H, Hong H and Kim J. 2014. Segmentation of anterior cruciate ligament in knee MR images using graph cuts with patient-specific shape constraints and label refinement. Computers in Biology and Medicine, 55: 1-10 [DOI: 10.1016/j.compbiomed.2014.09.004]
Levinshtein A, Stere A, Kutulakos K N, Fleet D J, Dickinson S J and Siddiqi K. 2009. TurboPixels: fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12): 2290-2297 [DOI: 10.1109/TPAMI.2009.96]
Li M X, Xu R, Zhang T H, Chen L and Hao J L. 2020. A retinal vessel segmentation method based on super-pixel and generative adversarial networks. Journal of Integration Technology, 9(6): 21-28
李孟歆, 徐睿, 张天慧, 陈莉, 郝佳丽. 2020. 一种基于超像素和生成对抗网络的视网膜血管分割方法. 集成技术, 9(6): 21-28 [DOI: 10.12146/j.issn.2095-3135.20200707001]
Li Q, Bai K X, Zhao L and Guan X. 2020. Progresss and challenges of MRI brain tumor image segmentation. Journal of Image and Graphics, 25(3): 419-431
李锵, 白柯鑫, 赵柳, 关欣. 2020. MRI脑肿瘤图像分割研究进展及挑战. 中国图象图形学报, 25(3): 419-431 [DOI: 10.11834/jig.190524]
Li Y Y. 2008. Research on Image Segmentation in Medical Image Processing and 3D Reconstruction System. Chengdu: University of Electronic Science and Technology of China
李媛媛. 2008. 医学图像处理与三维重建系统中图像分割的研究. 成都: 电子科技大学
Li Z Q and Chen J S. 2015. Superpixel segmentation using linear spectral clustering//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE: 1356-1363 [DOI: 10.1109/CVPR.2015.7298741http://dx.doi.org/10.1109/CVPR.2015.7298741]
Liu B. 2017. Research on Image Segmentation Methods based on Superpixel. Kaifeng: Henan University
刘斌. 2017. 基于超像素的图像分割方法研究. 开封: 河南大学
Liu C, Zhang L B, Wang L and Lu H T. 2019. Multi-scale B-spline medical image registration based on pixel reconstruction. Intelligent Computer and Applications, 9(1): 24-27
刘晨, 张龙波, 王雷, 卢海涛. 2019. 基于超像素重建的多尺度B样条医学图像配准. 智能计算机与应用, 9(1): 24-27 [DOI: 10.3969/j.issn.2095-2163.2019.01.005]
Liu H, Wang J, Song E M, Xu X Y, Qin Y Y, Li J and Tang X Y. 2014. Segmentation of specific tissue in brain MR images based on weighted similarity measurement.Chinese Journal of Computers, 37(6): 1241-1250
刘宏, 王捷, 宋恩民, 许向阳, 覃媛媛, 李峻, 汤翔宇. 2014. 基于加权相似性度量的脑MR图像特定组织分割. 计算机学报, 37(6): 1241-1250 [DOI: 10.3724/SP.J.1016.2014.01241]
Liu J and Huang Y Q. 2018. Medical image segmentation research based on improvement FLICM incorporating SCoW. Application Research of Computers, 35(6): 1887-1890
刘静, 黄玉清. 2018. 结合SCoW的改进FLICM医学图像分割研究. 计算机应用研究, 35(6): 1887-1890 [DOI: 10.3969/j.issn.1001-3695.2018.06.064]
Liu M Y, Tuzel O, Ramalingam S and Chellappa R. 2011. Entropy rate superpixel segmentation//Proceedings of CVPR 2011. Colorado Springs, USA: IEEE: 2097-2104 [DOI: 10.1109/CVPR.2011.5995323http://dx.doi.org/10.1109/CVPR.2011.5995323]
Liu M Y, Tuzel O, Ramalingam S and Chellappa R. 2014. Entropy-rate clustering: cluster analysis via maximizing a submodular function subject to a matroid constraint. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1): 99-112 [DOI: 10.1109/TPAMI.2013.107]
Luo X G, Lyu J R and Peng Z M. 2019. Recent research progress of superpixel segmentation and evaluation. Laser and Optoelectronics Progress, 56(9): #090005
罗学刚, 吕俊瑞, 彭真明. 2019. 超像素分割及评价的最新研究进展. 激光与光电子学进展, 56(9): #090005 [DOI: 10.3788/LOP56.090005]
Lü Z H. 2018. Superpixel Based Multi-Organ Segmentation of Abdominal Images. Xi'an: Northwestern University
吕朝晖. 2018. 基于超像素的腹部图像多器官分割算法研究. 西安: 西北大学
Moore A P, Prince S J D, Warrell J, Mohammed U and Jones G. 2008. Superpixel lattices//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA. IEEE: 1-8 [DOI: 10.1109/CVPR.2008.4587471http://dx.doi.org/10.1109/CVPR.2008.4587471]
Qi Q. 2018. Research of Medical Image Superpixel Segmentation Algorithm Based on std_SLIC. Changchun: Jilin University
祁琪. 2018. 基于std_SLIC的医学图像超像素分割算法研究. 长春: 吉林大学
Randrianasoa J F, Kurtz C, Desjardin é and Passat N. 2018. Binary partition tree construction from multiple features for image segmentation. Pattern Recognition, 84: 237-250 [DOI: 10.1016/j.patcog.2018.07.003]
Ren X F and Malik J. 2003. Learning a classification model for segmentation//Proceedings of 9th IEEE International Conference on Computer Vision. Nice, France: IEEE: 10-17 [DOI: 10.1109/ICCV.2003.1238308http://dx.doi.org/10.1109/ICCV.2003.1238308]
Saha R, Bajger M and Lee G. 2018. Segmentation of cervical nuclei using SLIC and pairwise regional contrast//Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Honolulu, USA: IEEE: 3422-3425 [DOI: 10.1109/EMBC.2018.8513021http://dx.doi.org/10.1109/EMBC.2018.8513021]
Schick A, Fischer M and Stiefelhagen R. 2012. Measuring and evaluating the compactness of superpixels//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan: IEEE: 930-934
Shan X, Li B N and Xiang K. 2018. Numerical simulation of magnetic resonance elastography for brain tissue study. Acta Electronica Sinica, 46(5): 1207-1212
单翔, 李炳南, 向馗. 2018. 磁共振脑组织弹性成像的数值仿真算法. 电子学报, 46(5): 1207-1212 [DOI: 10.3969/j.issn.0372-2112.2018.05.028]
Shen J B, Du Y F, Wang W G and Li X L. 2014. Lazy random walks for superpixel segmentation. IEEE Transactions on Image Processing, 23(4): 1451-1462 [DOI: 10.1109/TIP.2014.2302892]
Shen J B, Hao X P, Liang Z Y, Liu Y, Wang W G and Shao L. 2016. Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE Transactions on Image Processing, 25(12): 5933-5942 [DOI: 10.1109/TIP.2016.2616302]
Singh N K, Singh N J and Kumar W K. 2020. Image classification using SLIC superpixel and FAAGKFCM image segmentation. IET Image Processing, 14(3): 487-494 [DOI: 10.1049/iet-ipr.2019.0255]
Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones T L, Barrick T R, Howe F A and Ye X J. 2018. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Computer Methods and Programs in Biomedicine, 157: 69-84 [DOI: 10.1016/j.cmpb.2018.01.003]
Song X Y, Zhou L L, Li Z G, Chen J, Zeng L and Yan B. 2015. Review on superpixel methods in image segmentation. Journal of Image and Graphics, 20(5): 599-608
宋熙煜, 周利莉, 李中国, 陈健, 曾磊, 闫镔. 2015. 图像分割中的超像素方法研究综述. 中国图象图形学报, 20(5): 599-608 [DOI: 10.11834/jig.20150502]
Stutz D, Hermans A and Leibe B. 2018. Superpixels: an evaluation of the state-of-the-art. Computer Vision and Image Understanding, 166: 1-27 [DOI: 10.1016/j.cviu.2017.03.007]
Sun M J. 2017. Research on Intracranial Hemorrhage Region Segmentation based on Supervoxel. Hangzhou: Zhejiang University
孙明杰. 2017. 基于超体素的颅内出血区域分割研究. 杭州: 浙江大学
Tang D, Fu H Z and Cao X C. 2012. Topology preserved regular superpixel//Proceedings of 2012 IEEE International Conference on Multimedia and Expo. Melbourne, Australia: IEEE: 765-768 [DOI: 10.1109/ICME.2012.184http://dx.doi.org/10.1109/ICME.2012.184]
Van Den Heuvel M, Mandl R and Pol H H. 2008. Normalized cut group clustering of resting-state FMRI data. PLoS ONE, 3(4): #2001 [DOI: 10.1371/journal.pone.0002001]
Vincent L and Soille P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6): 583-598 [DOI: 10.1109/34.87344]
Vupputuri A, Ashwal S, Tsao B and Ghosh N. 2020. Ischemic stroke segmentation in multi-sequence MRI by symmetry determined superpixel based hierarchical clustering. Computers in Biology and Medicine, 116: #103536 [DOI: 10.1016/j.compbiomed.2019.103536]
Vupputuri A, Dighade S, Prasanth P S and Ghosh N. 2018. Symmetry determined superpixels for efficient lesion segmentation of ischemic stroke from MRI//Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, USA: IEEE: 742-745 [DOI: 10.1109/EMBC.2018.8512283http://dx.doi.org/10.1109/EMBC.2018.8512283]
Wang C, Lin X L and Chen C S. 2019. Gravel image auto-segmentation based on an improved normalized cuts algorithm. Journal of Applied Mathematics and Physics, 7(3): 603-610 [DOI: 10.4236/jamp.2019.73044]
Wang C Y, Chen J Z and Li W. 2014. Review on superpixel segmentation algorithms. Application Research of Computers, 31(1): 6-12
王春瑶, 陈俊周, 李炜. 2014. 超像素分割算法研究综述. 计算机应用研究, 31(1): 6-12 [DOI: 10.3969/j.issn.1001-3695.2014.01.002]
Wang H O, Liu H, Guo Q, Deng K and Zhang C M. 2019. Design of superpiexl U-Net network for medical image segmentation. Journal of Computer-Aided Design and Computer Graphics, 31(6): 1007-1017
王海鸥, 刘慧, 郭强, 邓凯, 张彩明. 2019. 面向医学图像分割的超像素U-Net网络设计. 计算机辅助设计与图形学学报, 31(6): 1007-1017 [DOI: 10.3724/SP.J.1089.2019.17389]
Wang M R, Liu X B, Gao Y X, Ma X and Soomro N Q. 2017. Superpixel segmentation: a benchmark. Signal Processing: Image Communication, 56: 28-39 [DOI: 10.1016/j.image.2017.04.007]
Wang Y J, Ye Y S and Shi X B. 2014. Multi-focus image fusion based on entropy rate superpixel segmentation. Opto-Electronic Engineering, 41(9): 56-62
王亚杰, 叶永生, 石祥滨. 2014. 一种基于熵率超像素分割的多聚焦图像融合. 光电工程, 41(9): 56-62 [DOI: 10.3969/j.issn.1003-501X.2014.09.010]
Wu L Y and Wan W G. 2020. Real-time monocular 3D reconstruction based on superpixel segmentation. Electronic Measurement Technology, 43(11): 96-101
吴连耀, 万旺根. 2020. 基于超像素分割的实时单目三维重建. 电子测量技术, 43(11): 96-101 [DOI: 10.19651/j.cnki.emt.2004141]
Wu W L, Lin J Y, Wang S, Li Y, Liu M Y, Liu G Q, Cai J Y, Chen G N and Chen R. 2017. A novel multiphoton microscopy images segmentation method based on superpixel and watershed. Journal of Biophotonics, 10(4): 532-541 [DOI: 10.1002/jbio.201600007]
Xiang S M, Pan C H, Nie F P and Zhang C S. 2010. TurboPixel segmentation using eigen-images. IEEE Transactions on Image Processing, 19(11): 3024-3034 [DOI: 10.1109/TIP.2010.2052268]
Xing C D, Wang M L, Dong C, Duan C W and Wang Z S. 2020. Joint sparse-collaborative representation to fuse hyperspectral and multispectral images. Signal Processing, 173: #107585 [DOI: 10.1016/j.sigpro.2020.107585]
Yang Y T. 2018. Brain Magnetic Resonance Image Segmentation based on Supervoxel and Fully Convolution Network. Nanjing: Southeast University
杨雨婷. 2018. 基于超体素与全卷积神经网络的大脑磁共振图像分割的研究. 南京: 东南大学
Zeng Y Y. 2019. Research on Multispectral Image Segmentation and Vascular Detection. Nanjing: Nanjing University of Science and Technology
曾元一. 2019. 多光谱图像分割与血管检测技术研究. 南京: 南京理工大学
Zhang L, Kong H, Liu S X, Wang T F, Chen S P and Sonka M. 2017. Graph-based segmentation of abnormal nuclei in cervical cytology. Computerized Medical Imaging and Graphics, 56: 38-48 [DOI: 10.1016/j.compmedimag.2017.01.002]
Zhang L M, Song M L, Liu Z C, Liu X, Bu J J and Chen C. 2013. Probabilistic graphlet cut: exploiting spatial structure cue for weakly supervised image segmentation//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE: 1908-1915 [DOI: 10.1109/CVPR.2013.249http://dx.doi.org/10.1109/CVPR.2013.249]
Zhang M H, Lu Z T, Zhang J, Yang W, Chen W F and Zhang Y. 2016. Brain image segmentation based on multiple atlas active contour model. Chinese Journal of Computers, 39(7): 1490-1500
张明慧, 卢振泰, 张娟, 阳维, 陈武凡, 张煜. 2016. 基于多图谱活动轮廓模型的脑部图像分割. 计算机学报, 39(7): 1490-1500 [DOI: 10.11897/SP.J.1016.2016.01490]
Zhang Z L, Li A H and Li C W. 2020. Superpixel segmentation based on clustering by finding density peaks. Chinese Journal of Computers, 43(1): 1-15
张志龙, 李爱华, 李楚为. 2020. 基于密度峰值搜索聚类的超像素分割算法. 计算机学报, 43(1): 1-15 [DOI: 10.11897/SP.J.1016.2020.00001]
Zhang Z Z and Li X M. 2017. Study of 3D reconstruction method based on superpixels matching. Industrial Control Computer, 30(2): 107-108, 110
张志忠, 李晓明. 2017. 基于超像素匹配的三维重建方法研究. 工业控制计算机, 30(2): 107-108, 110 [DOI: 10.3969/j.issn.1001-182X.2017.02.049]
Zhao H F, Quan H Y and Wang C B. 2017. Three-dimensional object reconstruction using patch significance correspondence. Journal of Electronic Imaging, 26(2): #023017 [DOI: 10.1117/1.JEI.26.2.023017]
Zhou Y L, Yu Y, Shen L S and Ling Z L. 2010. Computer assisted reconstrutction of three dimensional visible model of hip joint and its clinical applications. Zhejiang Journal of Traumatic Surgery, 15(6): 715-719
周友龙, 余意, 沈龙山, 凌遵龙. 2010. 基于CT数据的计算机辅助髋关节体素三维重建与应用. 浙江创伤外科, 15(6): 715-719 [DOI: 10.3969/j.issn.1009-7147.2010.06.004]
相关作者
相关机构