个性化图像美学评价的研究进展与趋势
The review of personalized image aesthetics assessment
- 2022年27卷第10期 页码:2937-2951
收稿日期:2021-03-19,
修回日期:2021-05-17,
录用日期:2021-5-25,
纸质出版日期:2022-10-16
DOI: 10.11834/jig.210211
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2021-03-19,
修回日期:2021-05-17,
录用日期:2021-5-25,
纸质出版日期:2022-10-16
移动端阅览
图像美学评价方法是当前研究的热点问题。图像美学评价分为大众化和个性化两种。大众化图像美学评价主要研究大多数人对图像共同的审美感知评估,而个性化图像美学评价可以针对用户的个性化审美感知进行评估。现有的研究工作主要集中在大众化图像美学评价上,但是由于人们对图像的审美体验具有高度主观性,研究针对特定用户的个性化图像美学评价方法更加符合现实意义。目前研究人员针对个性化图像美学评价展开了相关研究,并取得了一定的研究进展。但是现有的文献中缺少对个性化图像美学评价方法的综述,本文针对个性化图像美学评价的研究进展与趋势进行概述。首先分析图像美学评价的研究现状与发展趋势; 然后针对现阶段的个性化图像美学评价模型进行概述,将现有的个性化图像美学评价模型总结为基于协同过滤的模型、基于用户交互的模型和基于审美差异的模型,并分析这3类模型主要的设计思路以及优缺点; 最后介绍个性化图像美学评价在精准营销、个性化推荐系统、个性化视觉增强和个性化艺术设计上的应用前景,并指出未来研究工作在主观特性分析和知识驱动建模等方面的发展方向。
The multimedia imaging technology can meet people's visual demands to a certain extent. People can easily obtain high-quality images through mobile devices
so people begin to pay more attention to their aesthetic experience of images
which makes the image aesthetics assessment (IAA) method become a hotspot issue and frontier technology in the current image processing and computer vision fields. Intelligent IAA can be developed to imitate people's aesthetic perception of images and predict the results of aesthetic evaluation automatically. Aesthetic-preference images can be screened out. Consequently
IAA is critical to be applied in photography
beauty
photo album management
interface design
and marketing. Generally
IAA can be classified into two categories
including generic image aesthetics assessment (GIAA) and personalized image aesthetics assessment (PIAA). Early researches believe that people have a consensus on the aesthetic experience of images
and leverage the general photography rules to describe most people's visual aesthetics on images
which are usually affected by many factors
such as light intensity
color richness
and composition. Most of the current GIAA model can predict most people's aesthetic evaluation results of images. GIAA models can be divided into three aesthetic-related tasks like classification
score regression and distribution prediction. The aesthetic classification task is focused on dividing the image into two classes of "high" and "low" according to the aesthetic experience of most people. The research goal of the aesthetic score regression task can predict the aesthetic score of an image. This task leverages the average aesthetic ratings of most people as the image aesthetic score for regression modeling. However
the two tasks shown above need to convert different people's aesthetic ratings of images into a unified result ("high" or "low" and score). Label uncertainty is derived from people's aesthetic experience of images
which makes it difficult for the consensus result. Therefore
the predictable aesthetic distribution is more concerned to reflect people's subjectivity. The goal of the aesthetic distribution prediction task can predict the aesthetic distribution results of multiple people's ratings of an image. This task predicts the aesthetic distribution straightforward and converts the aesthetic distribution result into aesthetic scores and aesthetic classes. Consequently
recent GIAA models researches are mainly focused on the task of aesthetic distribution prediction. Although the aesthetic distribution prediction task of the GIAA model can reflect people's subjectivity of image aesthetics to a certain extent
the task can realize people's visual aesthetic preferences from the image level only. Besides
it is more realistic to develop the PIAA model for specification beneficial from the growth of customized services. Therefore
the PIAA model has received great attention recently
which can predict the accurate aesthetic results for customized users. We introduce the existing PIAA models published from 2014 to 2020 due to the lack of reviews on PIAA models. Generally
the PIAA model faces two challenges for specific users as mentioned below: First
PIAA is a typical small sample learning task. This is because the PIAA model is a real-time system for specific users
which cannot force users to annotate a large number of images aesthetically. In addition
a small number of image samples can just be obtained for model training. Second
the user's subjective characteristics become important factors to affect their aesthetic perception of images since the user's aesthetic experience of images is highly subjective. Meanwhile
users' aesthetic experience is influenced by many subjective factors like emotion and personality traits. Therefore
the existing framework of the PIAA model is mainly divided into two stages based on machine learning or deep learning. In the first stage
the GIAA dataset rated by a large number of users is used to obtain the prior knowledge of the PIAA model through supervision training for the smalls sized sample learning issue of the PIAA task. In the second stage
a user's PIAA dataset is used for fine-tuning on the prior knowledge model for the high subjectivity of users' image aesthetic experience
and the subjective knowledge of users is integrated to obtain the PIAA model that conforms to the user's aesthetic perception. The existing PIAA models can be divided into three categories like collaborative filtering based PIAA models
user interaction based PIAA models
and aesthetic difference based PIAA models. To demonstrate the differences between these three PIAA models
we first introduce each of the three PIAA models separately. Then
we summarize the design clues
pros and cons of existing PIAA models. Meanwhile
we introduce the commonly used datasets and evaluation criteria of PIAA models
as well as the application prospect of PIAA models in precision marketing
personalized recommendation systems
personalized visual enhancement
and personalized art design. Finally
the future direction of the PIAA model is predicted in subjective characteristic analysis and knowledge-driven modeling.
Bai R Y, Guo X Y, Jia C H and Geng H J. 2019. Overview of research methods of painting aesthetics. Journal of Image and Graphics, 24(11): 1860-1881
白茹意, 郭小英, 贾春花, 耿海军. 2019. 绘画图像美学研究方法综述. 中国图象图形学报, 24(11): 1860-1881 [DOI: 10.11834/jig.190118]
Bianco S, Cusano C, Piccoli F and Schettini R. 2020. Personalized image enhancement using neural spline color transforms. IEEE Transactions on Image Processing, 29: 6223-6236 [DOI: 10.1109/TIP.2020.2989584]
Cavanagh P. 2005. The artist as neuroscientist. Nature, 434(7031): 301-307 [DOI: 10.1038/434301a]
Ceroni A. 2018. Personal photo management and preservation//Mezaris V, Niederée C and Logie R H, eds. Personal Multimedia Preservation: Remembering or Forgetting Images and Video. Cham: Springer: 279-314 [ DOI: 10.1007/978-3-319-73465-1_8 http://dx.doi.org/10.1007/978-3-319-73465-1_8 ]
Chaudhary P, Shaw K and Mallick P K. 2018. A survey on image enhancement techniques using aesthetic community//Proceedings of International Conference on Intelligent Computing and Applications. Singapore, Singapore: Springer: 585-596 [ DOI: 10.1007/978-981-10-5520-1_53 http://dx.doi.org/10.1007/978-981-10-5520-1_53 ]
Cui C R, Liu H H, Lian T, Nie L Q, Zhu L and Yin Y L. 2019. Distribution-oriented aesthetics assessment with semantic-aware hybrid network. IEEE Transactions on Multimedia, 21(5): 1209-1220 [DOI: 10.1109/TMM.2018.2875357]
Cui C R, Yang W Y, Shi C, Wang M, Nie X S and Yin Y L. 2020. Personalized image quality assessment with social-sensed aesthetic preference. Information Sciences, 512: 780-794 [DOI: 10.1016/j.ins.2019.10.011]
Datta R, Li J and Wang J Z. 2008. Algorithmic inferencing of aesthetics and emotion in natural images: an exposition//Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, USA: IEEE: 105-108 [ DOI: 10.1109/ICIP.2008.4711702 http://dx.doi.org/10.1109/ICIP.2008.4711702 ]
Deng X, Cui C R, Fang H D, Nie X S and Yin Y L. 2017a. Personalized image aesthetics assessment//Proceedings of 2017 ACM on Conference on Information and Knowledge Management. Singapore, Singapore: ACM: 2043-2046 [ DOI: 10.1145/3132847.3133052 http://dx.doi.org/10.1145/3132847.3133052 ]
Deng Y B, Loy C C and Tang X O. 2017b. Image aesthetic assessment: an experimental survey. IEEE Signal Processing Magazine, 34(4): 80-106 [DOI: 10.1109/MSP.2017.2696576]
Fang H D, Cui C R, Deng X, Nie X S, Jian MW and Yin Y L. 2018. Image aesthetic distribution prediction with fully convolutional network//Proceedings of the 24th International Conference on Multimedia Modeling. Bangkok, Thailand: Springer: 267-278 [ DOI: 10.1007/978-3-319-73603-7_22 http://dx.doi.org/10.1007/978-3-319-73603-7_22 ]
Guntuku S C, Yaden D B, Kern M L, Ungar L H and Eichstaedt J C. 2017. Detecting depression and mental illness on social media: an integrative review. Current Opinion in Behavioral Sciences, 18: 43-49 [DOI: 10.1016/j.cobeha.2017.07.005]
He X N, Liao L Z, Zhang H W, Nie L Q, Hu X and Chua T S. 2017. Neural collaborative filtering//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia: ACM: 173-182 [ DOI: 10.1145/3038912.3052569 http://dx.doi.org/10.1145/3038912.3052569 ]
Hosu V, Saupe D, Goldluecke B, Lin W S, Cheng W H, See J and Wong L K. 2020. From technical to aesthetics quality assessment and beyond: challenges and potential//Proceedings of 2020 Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends. Seattle, USA: ACM: 19-20 [ DOI: 10.1145/3423268.3423589 http://dx.doi.org/10.1145/3423268.3423589 ]
Hou J W, Yang S and Lin W S. 2020. Object-level attention for aesthetic rating distribution prediction//Proceedings of the 28th ACM International Conference on Multimedia. Seattle, USA: ACM: 816-824 [ DOI: 10.1145/3394171.3413695 http://dx.doi.org/10.1145/3394171.3413695 ]
Huang L W, Jiang B T, Lyu S Y, Liu Y B and Li D Y. 2018. Survey on deep learning based recommender systems. Chinese Journal of Computers, 41(7): 1619-1647
黄立威, 江碧涛, 吕守业, 刘艳博, 李德毅. 2018. 基于深度学习的推荐系统研究综述. 计算机学报, 41(7): 1619-1647 [DOI: 10.11897/SP.J.1016.2018.01619]
Jacobsen T. 2006. Bridging the arts and sciences: a framework for the psychology of aesthetics. Leonardo, 39(2): 155-162 [DOI: 10.1162/leon.2006.39.2.155]
Ji Z Y, Yao W N and Pi H Y. 2017. Research on personalized image retrieval and recommendation. Journal of Beijing University of Posts and Telecommunications, 40(3): 19-30
冀振燕, 姚伟娜, 皮怀雨. 2017. 个性化图像检索和推荐的研究. 北京邮电大学学报, 40(3): 19-30 [DOI: 10.13190/j.jbupt.2017.03.002]
Jin X, Wu L, Li X D, Chen S Y, Peng S W, Chi J Y, Ge S M, Song C G and Zhao G. 2018. Predicting aesthetic score distribution throughcumulative jensen-shannon divergence//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans, USA: AAAI Press: 10
Jin X, Zhou B, Zou D Q, Li X D, Sun H B and Wu L. 2018. Image aesthetic quality assessment: a survey. Science and Technology Review, 36(9): 36-45
金鑫, 周彬, 邹冬青, 李晓东, 孙红波, 吴乐. 2018. 图像美学质量评价技术发展趋势. 科技导报, 36(9): 36-45 [DOI: 10.3981/j.issn.1000-7857.2018.09.005]
Jing L L and Tian Y L. 2021. Self-supervised visual feature learning with deep neural networks: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11): 4037-4058 [DOI: 10.1109/TPAMI.2020.2992393]
Joshi D, Datta R, Fedorovskaya E, Luong Q T, Wang J Z, Li J and Luo J B. 2011. Aesthetics and emotions in images. IEEE Signal Processing Magazine, 28(5): 94-115 [DOI: 10.1109/MSP.2011.941851]
Ke S C, Zhao Y W, Li B C and Peng T Q. 2017. Image retrieval based on convolutional neural network and kernel-based supervised hashing. Acta Electronica Sinica, 45(1): 157-163
柯圣财, 赵永威, 李弼程, 彭天强. 2017. 基于卷积神经网络和监督核哈希的图像检索方法. 电子学报, 45(1): 157-163 [DOI: 10.3969/j.issn.0372-2112.2017.01.022]
Kim H U, Koh Y J and Kim C S. 2020a. PieNet: personalized image enhancement network//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 374-390 [ DOI: 10.1007/978-3-030-58577-8_23 http://dx.doi.org/10.1007/978-3-030-58577-8_23 ]
Kim W H, Choi J H and Lee J S. 2020b. Objectivity and subjectivity in aesthetic quality assessment of digital photographs. IEEE Transactions on Affective Computing, 11(3): 493-506 [DOI: 10.1109/TAFFC.2018.2809752]
Koenderink J J. 2010. Color for the Sciences. Cambridge: MIT Press
Kong S, Shen X H, Lin Z, Mech R and Fowlkes C. 2016. Photo aesthetics ranking network with attributes and content adaptation//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 662-679 [ DOI: 10.1007/978-3-319-46448-0_40 http://dx.doi.org/10.1007/978-3-319-46448-0_40 ]
Krizhevsky A, Sutskever I and Hinton G E. 2012. Imagenet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: Curran Associates Inc: 1097-1105
Kuzovkin D. 2019. Assessment of Photos in Albums Based on Aesthetics and Context. Rennes: University of Rennes
Leder H, Belke B, Oeberst A and Augustin D. 2004. A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95(4): 489-508 [DOI: 10.1348/0007126042369811]
Li D B, Wu H K, Zhang J G and Huang K Q. 2018. A2-RL: aesthetics aware reinforcement learning for image cropping//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 8193-8201 [ DOI: 10.1109/CVPR.2018.00855 http://dx.doi.org/10.1109/CVPR.2018.00855 ]
Li L D, Zhu H C, Zhao S C, Ding G G and Lin W S. 2020. Personality-assisted multi-task learning for generic and personalized image aesthetics assessment. IEEE Transactions on Image Processing, 29: 3898-3910 [DOI: 10.1109/TIP.2020.2968285]
Lu Y, Guo C, Lin Y L, Zhuo F and Wang F Y. 2020. Computational aesthetics of fine art paintings: the state of the art and outlook. Acta Automatica Sinica, 46(11): 2239-2259
鲁越, 郭超, 林懿伦, 卓凡, 王飞跃. 2020. 绘画艺术图像的计算美学: 研究前沿与展望. 自动化学报, 46(11): 2239-2259 [DOI: 10.16383/j.aas.c200358]
Luo L J. 2014. Emotional Aesthetics——On the Beauty and Aesthetics. Beijing: China Economic Publishing House
罗利建. 2014. 情感美学: 论美和美感. 北京: 中国经济出版社
Lyu P, Wang M, Xu Y B, Peng Z, Sun J Y, Su S M, Zhou B and Xu M L. 2018. USAR: an interactive user-specific aesthetic ranking framework for images//Proceedings of the 26th ACM International Conference on Multimedia. Seoul, Korea (South): ACM: 1328-1336 [ DOI: 10.1145/3240508.3240635 http://dx.doi.org/10.1145/3240508.3240635 ]
Martindale C. 2007. Recent trends in the psychological study of aesthetics, creativity, and the arts. Empirical Studies of the Arts, 25(2): 121-141 [DOI: 10.2190/B637-1041-2635-16 NN]
Murray N, Marchesotti L and Perronnin F. 2012. AVA: a large-scale database for aesthetic visual analysis//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE: 2408-2415 [ DOI: 10.1109/CVPR.2012.6247954 http://dx.doi.org/10.1109/CVPR.2012.6247954 ]
Nanay B, Smith M, Irvin S and Schellekens E. 2019. Is psychology relevant to aesthetics? A symposium. Estetika: The Central European Journal of Aesthetics, 56(1): 87-138 [DOI: 10.33134/eeja.185]
O′Donovan P, Agarwala A and Hertzmann A. 2014. Collaborative filtering of color aesthetics//Proceedings of the Workshop on Computational Aesthetics. Vancouver, Canada: ACM: 33-40 [ DOI: 10.1145/2630099.2630100 http://dx.doi.org/10.1145/2630099.2630100 ]
Palmer S E, Schloss K B and Sammartino J. 2013. Visual aesthetics and human preference. Annual Review of Psychology, 64: 77-107 [DOI: 10.1146/annurev-psych-120710-100504]
Park K, Hong S, Baek M and Han B. 2017. Personalized image aesthetic quality assessment by joint regression and ranking//Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision. Santa Rosa, USA: IEEE: 1206-1214 [ DOI: 10.1109/WACV.2017.139 http://dx.doi.org/10.1109/WACV.2017.139 ]
Ren J, Shen X H, Lin Z, Mech R and Foran D J. 2017. Personalized image aesthetics//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 638-647 [ DOI: 10.1109/ICCV.2017.76 http://dx.doi.org/10.1109/ICCV.2017.76 ]
Song X M, Han X J, Li Y K, Chen J Y, Xu X S and Nie L Q. 2019. GP-BPR: personalized compatibility modeling for clothing matching//Proceedings of the 27th ACM International Conference on Multimedia. Nice, France: ACM: 320-328 [ DOI: 10.1145/3343031.3350956 http://dx.doi.org/10.1145/3343031.3350956 ]
Swami V and Furnham A. 2014. Personality and Aesthetics Preferences. Cambridge: Cambridge University Press
Talebi H and Milanfar P. 2018. NIMA: neural image assessment. IEEE Transactions on Image Processing, 27(8): 3998-4011 [DOI: 10.1109/TIP.2018.2831899]
Tang X O, Luo W and Wang X G. 2013. Content-based photo quality assessment. IEEE Transactions on Multimedia, 15(8): 1930-1943 [DOI: 10.1109/TMM.2013.2269899]
Vo N, Jiang L, Sun C, Murphy K, Li L J, Li FF and Hays J. 2019. Composing text and image for image retrieval-an empirical odyssey//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 6439-6448 [ DOI: 10.1109/CVPR.2019.00660 http://dx.doi.org/10.1109/CVPR.2019.00660 ]
Wang G L, Yan J C and Qin Z. 2018. Collaborative and attentive learning for personalized image aesthetic assessment//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: ACM: 957-963
Wang H, Zhang Y, Shen H H and Zhang J Z. 2017. Review of image enhancement algorithms. Chinese Optics, 10(4): 438-448
王浩, 张叶, 沈宏海, 张景忠. 2017. 图像增强算法综述. 中国光学, 10(4): 438-448 [DOI: 10.3788/CO.20171004.0438]
Wang W N, Ma X D, Su J J, Luo J B and Xu X M. 2020. User image aesthetic representation based on personalized generation template aggregation. Journal of South China University of Technology (Natural Science Edition), 48(3): 1-9
王伟凝, 马学东, 苏俊杰, 罗杰波, 徐向民. 2020. 基于个性化生成模板集聚的用户图像美感表征. 华南理工大学学报(自然科学版), 48(3): 1-9 [DOI: 10.12141/j.issn.1000-565X.190442]
Wang W N, Su J J, Li L M, Xu X M and Luo J B. 2019. Meta-learning perspective for personalized image aesthetics assessment//Proceedings of 2019 IEEE International Conference on Image Processing. Taipei, China: IEEE: 1875-1879 [ DOI: 10.1109/ICIP.2019.8803119 http://dx.doi.org/10.1109/ICIP.2019.8803119 ]
Wang W N, Wang L, Zhao M Q, Cai C J, Shi T T and Xu X M. 2016. Image aesthetic classification using parallel deep convolutional neural networks. Acta Automatica Sinica, 42(6): 904-914
王伟凝, 王励, 赵明权, 蔡成加, 师婷婷, 徐向民. 2016. 基于并行深度卷积神经网络的图像美感分类. 自动化学报, 42(6): 904-914 [DOI: 10.16383/j.aas.2016.c150718]
Wang W N, Yi J J and He Q H. 2012. Review for computational image aesthetics. Journal of Image and Graphics, 17(8): 893-901
王伟凝, 蚁静缄, 贺前华. 2012. 可计算图像美学研究进展. 中国图象图形学报, 17(8): 893-901 [DOI: 10.11834/jig.20120801]
Wang W N, Yi J J, Xu X M and Wang L. 2014. Computational aesthetics of image classification and evaluation. Journal of Computer-Aided Design and Computer Graphics, 26(7): 1075-1083
王伟凝, 蚁静缄, 徐向民, 王励. 2014. 可计算的图像美学分类与评估. 计算机辅助设计与图形学学报, 26(7): 1075-1083
Wang Z M. 2015. Review of no-reference image quality assessment. Acta Automatica Sinica, 41(6): 1062-1079
王志明. 2015. 无参考图像质量评价综述. 自动化学报, 41(6): 1062-1079 [DOI: 10.16383/j.aas.2015.c140404]
Wells L. 2015. Photography: A Critical Introduction. London: Routledge
Wortsman M, Ehsani K, Rastegari M, Farhadi A and Mottaghi R. 2019. Learning to learn how to learn: self-adaptive visual navigation using meta-learning//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 6743-6752 [ DOI: 10.1109/CVPR.2019.00691 http://dx.doi.org/10.1109/CVPR.2019.00691 ]
Xu M N, Zhong J X, Ren Y R, Liu S and Li G. 2020. Context-aware attention network for predicting image aesthetic subjectivity//Proceedings of the 28th ACM International Conference on Multimedia. Seattle, USA: ACM: 798-806 [ DOI: 10.1145/3394171.3413834 http://dx.doi.org/10.1145/3394171.3413834 ]
Yeh C H, Barsky B A and Ouhyoung M. 2014. Personalized photograph ranking and selection system considering positive and negative user feedback. ACM Transactions on Multimedia Computing, Communications, and Applications, 10(4): #36 [DOI: 10.1145/2584105]
Zeki S. 2013. Clive Bell's "Significant Form" and theneurobiology of aesthetics. Frontiers in Human Neuroscience, 7: #730 [DOI: 10.3389/fnhum.2013.00730]
Zeng H, Cao Z S, Zhang L and Bovik A C. 2020. A unified probabilistic formulation of image aesthetic assessment. IEEE Transactions on Image Processing, 29: 1548-1561 [DOI: 10.1109/TIP.2019.2941778]
Zhang J, Yang Y, Tian Q, Zhuo L and Liu X. 2017. Personalized social image recommendation method based on user-image-tag model. IEEE Transactions on Multimedia, 19(11): 2439-2449 [DOI: 10.1109/TMM.2017.2701641]
Zhang J, Yang Y, Zhuo L, Tian Q and Liang X. 2019a. Personalized recommendation of social images by constructing a user interest tree with deep features and tag trees. IEEE Transactions on Multimedia, 21(11): 2762-2775 [DOI: 10.1109/TMM.2019.2912124]
Zhang X D, Gao X B, Lu W and He L H. 2019b. A gated peripheral-foveal convolutional neural network for unified image aesthetic prediction. IEEE Transactions on Multimedia, 21(11): 2815-2826 [DOI: 10.1109/TMM.2019.2911428]
Zhang X D,Gao X B, Lu W, He L H and Li J. 2020. Beyond vision: a multimodal recurrent attention convolutional neural network for unified image aesthetic prediction tasks. IEEE Transactions on Multimedia, 23: 611-623 [DOI: 10.1109/TMM.2020.2985526]
Zhao S C, Yao H X, Gao Y, Ding G G and Chua T S. 2018. Predicting personalized image emotion perceptions in social networks. IEEE Transactions on Affective Computing, 9(4): 526-540 [DOI: 10.1109/TAFFC.2016.2628787]
Zhu H C, Li L D, Wu J J, Zhao S C, Ding G G and Shi G M. 2022. Personalized image aesthetics assessment via meta-learning with bilevel gradient optimization. IEEE Transactions on Cybernetics, 52(3): 1798-1811 [DOI: 10.1109/TCYB.2020.2984670]
Zhu H C, Li L D, Zhao S C and Jiang H Y. 2018. Evaluating attributed personality traits from scene perception probability. Pattern Recognition Letters, 116: 121-126 [DOI: 10.1016/j.patrec.2018.09.027]
相关文章
相关作者
相关机构