高光谱图像空谱特征提取综述
Review of spatial-spectral feature extraction for hyperspectral image
- 2021年26卷第8期 页码:1737-1763
纸质出版日期: 2021-08-16 ,
录用日期: 2021-05-19
DOI: 10.11834/jig.210198
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-08-16 ,
录用日期: 2021-05-19
移动端阅览
叶珍, 白璘, 何明一. 高光谱图像空谱特征提取综述[J]. 中国图象图形学报, 2021,26(8):1737-1763.
Zhen Ye, Lin Bai, Mingyi He. Review of spatial-spectral feature extraction for hyperspectral image[J]. Journal of Image and Graphics, 2021,26(8):1737-1763.
由于高光谱图像包含了丰富的光谱、空间和辐射信息,且具有光谱接近连续、图谱合一的特性,可用于地质勘探、精细农业、生态环境、城市遥感以及军事目标检测等领域的目标精准分类与识别。对高光谱图像进行空谱特征提取是遥感领域的研究热点和前沿课题之一。传统空谱特征提取方法对高光谱图像分类的计算量和样本需求小、理论可解释性好、抗噪声能力强,但应用于分类的精度受限于特征来源;基于深度学习的高光谱图像空谱特征提取方法虽然计算量和样本需求大,但是由于深层空谱特征的表达能力更好,可以大幅度提高分类器的性能。为了便于对高光谱图像空谱特征提取领域进行更深入有效的探索,本文系统综述了相关研究进展。首先,概述了空间纹理与形态学特征提取、空间邻域信息获取及空间信息后处理等传统高光谱空谱特征提取方法的原理,对大量的已有工作进行了梳理、分析与总结。然后,从深度空谱特征提取角度出发,介绍了当前流行的卷积神经网络、图卷积神经网络及跨场景多源数据模型的结构特点及研究进展,分析、评价了基于深度学习的网络模型对高光谱图像空谱特征提取的优势及问题所在。最后,对该研究领域的未来相关发展提出建议并进行了展望。
Hyperspectral imaging spectrometers collect radiation data from the ground in many adjacent and overlapping narrow spectral bands at the same time. The hyperspectral image (HSI) usually has hundreds of bands. Each of these bands contains the reflected light value within the specified range of the electromagnetic spectrum. Thus
the HSI contains a wealth of spectral and radiation information. The development of remote sensing imaging technology has increased the spatial resolution of HSI data obtained by hyperspectral imaging spectrometer. Therefore
HSI can be applied to accurately classify ground objects in various fields
such as geological exploration
precision agriculture
ecological environment
scientific remote sensing
and military target detection. However
many challenges and difficulties are encountered in classification applications because HSI has a large dataset
multiple bands
and strong band correlation. Specifically
the number of dimensionalities of HSI is often more than the number of available training samples. The lack of training samples and high computational cost are the inevitable obstacles in practical classification applications. Dimensionality reduction methods are often used to project HSI data into low-dimensional feature spaces for avoiding "Hughes" phenomenon. Spatial information can help create a more accurate classification map given the high probability of adjacent pixels belonging to the same category. In recent years
an increasing number of studies have applied spatial and spectral information to further improve the accuracy of classification. According to the characteristics and combination of spatial information
spectral information
and classifiers
the methods of spatial-spectral feature extraction for HSI can be defined into three types: spatial texture and morphological feature extraction
spatial neighborhood information acquisition
and spatial information post-processing. For the first type
spatial texture or morphological features (e.g.
Gabor
local binary pattern
and morphological attribute features) are extracted in advance to preprocess the spatial information of pixels. In other words
spatial features are extracted through certain structures and rules
and then
the obtained features are sent to the classifier. The second method directly combines the relationship between the pixel and its spatial neighborhood pixels into the classifier. Spatial-spectral information is directly constructed into the classification models (e.g.
sparse/collaborative representation of joint spatial information and kernel-based spatial information extraction and classification) through mathematical expressions. As a result
feature extraction and classification can be completed simultaneously. In the third category
spectral features are first classified. Then
the obtained classification results are corrected through spatial information post-processing methods (e.g.
random fields
bilateral filtering
and graph segmentation) to further improve the classification accuracy. The traditional spatial-spectral feature extraction method for HSI has small computation
good mathematical theory foundation and explanation
and strong robustness against noise. However
the traditional spatial-spectral feature extraction methods mostly design shallow feature extraction schemes manually
which involves a lot of expert experience and parameter setting and thus affects the ability of feature expression and learning. For HSI data
scattering from other objects can distort the spectral properties of the interest object. In addition
different atmospheric scattering conditions and intra-class variability cause difficulty in extracting spatial-spectral features by traditional methods. Deep neural network has many advantages
such as learning representative and discriminant features
improving information representation through deep structure
and realizing automatic extraction and representation of features. Thus
higher accuracy of HSI classification will be achieved by designing the structure of deep network reasonably. In this study
the application of spatial-spectral feature extraction from deep learning is expounded and analyzed from the perspectives of convolutional neural network (CNN)
graph neural network (GNN)
and multi-source data cross-scene model. CNN shares weights and uses local connections to extract spatial information effectively. CNN model cannot generally adapt to local regions with various object distributions and geometric appearance because it convolves regular square regions with fixed size and weights. GNN model can represent many potential relationships between data with graphs. As a result
GNN can be applied for spatial-spectral feature extraction and classification for HSI. In some scenes (e.g.
complex city scenes)
different ground objects composed of the same material or substance need to be distinguished through shape
elevation
texture
and other information. Light detection and ranging data can be used to describe the elevation of the scene and the height of objects and obtain the spatial context and structural information without the effect of time and weather. Therefore
multi-sensor data can be considered to build joint-feature space for more accurate classification in some special scenes. In recent years
spatial-spectral feature extraction techniques for HSI have greatly progressed and achieved satisfactory results. However
the following problems need to be solved. 1) The methods of traditional and deep spatial-spectral feature extraction can be combined to fully utilize their respective advantages. 2) The small-sample-size and over-fitting problems from deep neural network need to be overcome through designing semi-supervised learning
active learning
or self-supervised learning models. 3) Using GNN to train HSI will lead to high computational cost and large memory usage. Thus
the model oriented to reduce the computational complexity should be studied. 4) Combining multi-source data from different sensors should consider reasonably unifying and complementary expressing multi-source data features. 5) Using multi-temporal
hyperspectral
and multi-perspective information to simultaneously mine spatial-spectral-temporal joint-feature information of complex dynamic targets has become a new frontier. 6) Using multi-temporal
hyperspectral and multi-perspective information to simultaneously extract spatial-spectral-temporal features of complex dynamic targets has become a new frontier. 7) With the progress of space remote sensing technologies in China
domestic hyperspectral data will receive more and more attention for research. 8) According to the development trend of big data and machine intelligence
the research on spatial-spectral feature extraction and classification of hyperspectral image based on the combination of applied domain knowledge and hyperspectral data will be a hot topic. From two sides of the traditional and deep spatial-spectral feature extraction in this study
the research status is systematically sorted out and comprehensively summarized. The existing problems are analyzed and evaluated
and the future development trend is evaluated and prospected.
高光谱图像(HSI)空谱特征提取卷积神经网络(CNN)图卷积网络(GCN)多源数据融合深度神经网络
hyperspectral image(HSI)spatial-spectral feature extractionconvolutional neural network(CNN)graph convolutional network(GCN)multi-data fusiondeep neutral network
Alam F I, Zhou J, Liew A W C, Jia X P, Chanussot J and Gao Y S. 2019. Conditional random field and deep feature learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(3): 1612-1628[DOI: 10.1109/TGRS.2018.2867679]
Andrejchenko V, Liao W Z, Philips W and Scheunders P. 2019. Decision fusion framework for hyperspectral image classification based on Markov and conditional random fields. Remote Sensing, 11(6): #624[DOI: 10.3390/rs11060624]
Bao J F, Chi M M and Benediktsson J A. 2013. Spectral derivative features for classification of hyperspectral remote sensing images: experimental evaluation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2): 594-601[DOI: 10.1109/JSTARS.2013.2237758]
Bau T C, Sarkar S and Healey G. 2010. Hyperspectral region classification using a three-dimensional Gabor filterbank. IEEE Transactions on Geoscienceand Remote Sensing, 48(9): 3457-3464[DOI: 10.1109/TGRS.2010.2046494]
Benediktsson J A, Palmason J A and Sveinsson J R. 2005. Classification of hyperspectral data fromurban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 43(3): 480-491[DOI: 10.1109/TGRS.2004.842478]
Benediktsson J A, Pesaresi M and Amason K. 2003. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, 41(9): 1940-1949[DOI: 10.1109/TGRS.2003.814625]
Berge A and Solberg A H S. 2006. Structured Gaussian components for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3386-3396[DOI: 10.1109/TGRS.2006.880626]
Cai D, He X F, Wang X H, Bao H J and Han J W. 2009. Locality preserving nonnegative matrix factorization//Proceedings of the International Joint Conference on Artificial Intelligence. Pasadena, USA: AAAI Press: 1010-1015
Camps-Valls G and Bruzzone L. 2005. Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1351-1362[DOI: 10.1109/TGRS.2005.846154]
Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Vila-Frances J and Calpe-Maravilla J. 2006. Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 3(1): 93-97[DOI: 10.1109/LGRS.2005.857031]
Cao X H, Wang X Z, Wang D, Zhao J and Jiao L C. 2019a. Spectral-spatial hyperspectral image classification using cascaded Markov random fields. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12): 4861-4872[DOI: 10.1109/JSTARS.2019.2938208]
Cao X Y, Xu Z B and Meng D Y. 2019b. Spectral-spatial hyperspectral image classification via robust low-rank feature extraction and Markov random field. Remote Sensing, 11(13): #1565[DOI: 10.3390/rs11131565]
Chen L C, Papandreou G, Kokkinos I, Murphy K and Yuille A J. 2018. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834-848[DOI: 10.1109/TPAMI.2017.2699184]
Chen S S, Donoho D L and Saunders M A. 2001. Atomic decomposition by basis pursuit. SIAM Review, 43(1): 129-159[DOI: 10.1137/S003614450037906X]
Chen Y, Nasrabadi N M and Tran T D. 2011. Hyperspectral image classification using dictionary-based sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 49(10): 3973-3985[DOI: 10.1109/TGRS.2011.2129595]
Chen Y S, Jiang H L, Li C Y, Jia X P and Ghamisi P. 2016. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10): 6232-6251[DOI: 10.1109/TGRS.2016.2584107]
Chen Y S, Lin Z H, Zhao X, Wang G and Gu Y F. 2014. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2094-2107[DOI: 10.1109/JSTARS.2014.2329330]
Chen Y S, Zhao X and Jia X P. 2015. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 2381-2392[DOI: 10.1109/JSTARS.2015.2388577]
Clausi D A and Jernigan M E. 2000. Designing Gabor filters for optimal texture separability. Pattern Recognition, 33(11): 1835-1849[DOI: 10.1016/S0031-3203(99)00181-8]
Dai W and Milenkovic O. 2009. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5): 2230-2249[DOI: 10.1109/TIT.2009.2016006]
Dalponte M, Bruzzone L and Gianelle D. 2008. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing, 46(5): 1416-1427[DOI: 10.1109/TGRS.2008.916480]
Du P J, Gan L, Xia J S and Wang D M. 2018. Multikernel adaptive collaborative representation for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(8): 4664-4677[DOI: 10.1109/TGRS.2018.2833882]
Du P J, Xia J S, Xue Z H, Tan K, Su H J and Bao R. 2016. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20(2): 236-256
杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊. 2016. 高光谱遥感影像分类研究进展. 遥感学报, 20(2): 236-256 [DOI: 10.11834/jrs.20165022]
Ergul U and Bilgin G. 2020. MCK-ELM: multiple composite kernel extreme learning machine for hyperspectral images. Neural Computing and Applications, 32(11): 6809-6819[DOI: 10.1007/s00521-019-04044-9]
Fauvel M, Tarabalka Y, Benediktsson J A, Chanussot J and Tilton J C. 2013. Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 101(3): 652-675[DOI: 10.1109/JPROC.2012.2197589]
Feng J, Wu X D, Chen JT, Zhang X R, Tang X and Li D. 2019. Joint multilayer spatial-spectral classification of hyperspectral images based on CNN and convlstm//2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE: 588-591[DOI:10.1109/IGARSS.2019.8897819http://dx.doi.org/10.1109/IGARSS.2019.8897819]
Fu W, Li S T, Fang L Y, Kang X D and Benediktsson J A. 2016. Hyperspectral image classification via shape-adaptive joint sparse representation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2): 556-567[DOI: 10.1109/JSTARS.2015.2477364]
Gan L, Xia J S, Du P J and Chanussot J. 2018a. Multiple feature kernel sparse representation classifier for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 56(9): 5343-5356[DOI: 10.1109/TGRS.2018.2814781]
Gan L, Xia J S, Du P J and ChanussotJ. 2018b. Class-oriented weighted kernel sparse representation with region-level kernel for hyperspectral imagery classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(4): 1118-1130[DOI: 10.1109/JSTARS.2017.2757475]
Gao F, Wang Q, Dong J Y and Xu Q Z. 2018. Spectral and spatial classification of hyperspectral images based on random multi-graphs. Remote Sensing, 10(8): #1271[DOI: 10.3390/rs10081271]
Ghamisi P, Höfle B and Zhu X X. 2017. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6): 3011-3024[DOI: 10.1109/JSTARS.2016.2634863]
Gu Y F, Chanussot J, Jia X P and Benediktsson J A. 2017b. Multiple kernel learning for hyperspectral image classification: a review. IEEE Transactions on Geoscience and Remote Sensing, 55(11): 6547-6565[DOI: 10.1109/TGRS.2017.2729882]
Gu Y F, Wang C, You D, Zhang Y H, Wang S Z and Zhang Y. 2012. Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2852-2865[DOI: 10.1109/TGRS.2011.2176341]
Gu Y F and Wang Q W. 2017a. Discriminative graph-based fusion of HSI and LiDAR data for urban area classification. IEEE Geoscience and Remote Sensing Letters, 14(6): 906-910[DOI: 10.1109/LGRS.2017.2687519]
Guo H, Liu J J, Xiao Z Y and Xiao L. 2020. Deep CNN-based hyperspectral image classification using discriminative multiple spatial-spectral feature fusion. Remote Sensing Letters, 11(9): 827-836[DOI: 10.1080/2150704X.2020.1779374]
Guo Z H, Zhang L and Zhang D. 2010. A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6): 1657-1663[DOI: 10.1109/TIP.2010.2044957]
Han M X, Cong R M, Li X Y, Fu H Z and Lei J J. 2020. Joint spatial-spectral hyperspectral image classification based on convolutional neural network. Pattern Recognition Letters, 130: 38-45[DOI: 10.1016/j.patrec.2018.10.003]
Hao S Y, Wang L G, Bruzzone L and Wang Q M. 2016. Spatial-dictionary for collaborative representation classification of hyperspectral images. Multimedia Tools and Applications, 75(15): 9241-9254[DOI: 10.1007/s11042-015-3098-z]
Harikumar V, Gajjar P P, Joshi M V and Raval M S. 2014. Multiresolution image fusion: use of compressive sensing and graph cuts. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5): 1771-1780[DOI: 10.1109/JSTARS.2013.2287891]
He M Y, Chang W J and Mei S H. 2013. Advance in feature mining from hyperspectral remote sensing data. Spacecraft Recovery and Remote Sensing, 34(1): 1-12
何明一, 畅文娟, 梅少辉. 2013. 高光谱遥感数据特征挖掘技术研究进展. 航天返回与遥感, 34(1): 1-12 [DOI: 10.3969/j.issn.1009-8518.2013.01.001]
He M Y, Li B and Chen H H. 2017. Multi-scale 3D deep convolutional neural network for hyperspectral image classification//Proceedings of 2017 IEEE International Conference on Image Processing (ICIP). Beijing, China: IEEE: 3904-3908[DOI:10.1109/ICIP.2017.8297014http://dx.doi.org/10.1109/ICIP.2017.8297014]
He X, Chen Y S and Lin Z H. 2021. Spatial-spectral transformer for hyperspectral image classification. Remote Sensing, 13(3): #498[DOI: 10.3390/rs13030498]
He X F and Niyogi P. 2003. Locality preserving projections//Proceedings of the 16th International Conference on Neural Information Processing System. Bangkok, Thailand: MIT Press: 153-160
Hinton G E and Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507[DOI: 10.1126/science.1127647]
Hong D F, Gao L R, Yao J, Zhang B, Plaza A and Chanussot J. 2020. Graph convolutional networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, #3015157[DOI: 10.1109/TGRS.2020.3015157]
Hu W, Huang Y Y, Wei L, Zhang F and Li H C. 2015. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015: #258619[DOI: 10.1155/2015/258619]
Hu X and Lu Q K. 2020. Hyperspectral image classification algorithm based on saliency profile. Acta Optica Sinica, 40(16): #1611001
胡轩, 卢其楷. 2020. 基于显著性剖面的高光谱图像分类算法. 光学学报, 40(16): #1611001 [DOI: 10.3788/AOS202040.1611001]
Huang H, Chen M L, Wang L H and Li Z Y. 2019. Using spatial-spectral regularized hypergraph embedding for hyperspectral image classification. Acta Geodaetica et Cartographica Sinica, 48(6): 676-687
黄鸿, 陈美利, 王丽华, 李政英. 2019. 空-谱协同正则化稀疏超图嵌入的高光谱图像分类. 测绘学报, 48(6): 676-687 [DOI: 10.11947/j.AGCS.2019.20180469]
Huang H, Li Z Y and Pan Y S. 2019. Multi-feature manifold discriminant analysis for hyperspectral image classification. Remote Sensing, 11(6): #651[DOI: 10.3390/rs11060651]
Huang R L, Li Z, Ghamisi P, Hong D F, Xia G Y and Liu Q S. 2020b. Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Transactions on Geoscience and Remote Sensing, 58(7): 4939-4950[DOI: 10.1109/TGRS.2020.2969024]
Huang W, Huang Y, Wang H, Liu Y and Shim H J. 2020a. Local binary patterns and superpixel-based multiple kernels for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 4550-4563[DOI: 10.1109/JSTARS.2020.3014492]
Huang X and Zhang L P. 2008. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Transactions on Geoscienceand Remote Sensing, 46(12): 4173-4185[DOI: 10.1109/TGRS.2008.2002577]
Huo L Z and Tang P. 2011. Spectral and spatial classification of hyperspectral data using SVMs and Gabor texture//2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, Canada: IEEE: 1708-1711[DOI:10.1109/IGARSS.2011.6049564http://dx.doi.org/10.1109/IGARSS.2011.6049564]
Iyer G, Chanussot J and Bertozzi A L. 2021. A graph-based approach for data fusion and segmentation of multimodal images. IEEE Transactions on Geoscience and Remote Sensing, 59(5): 4419-4429[DOI: 10.1109/TGRS.2020.2971395]
Jia S, Deng B, Zhu J S, Jia X P and Li Q Q. 2018a. Local binary pattern-based hyperspectral image classification with superpixel guidance. IEEE Transactions on Geoscience and Remote Sensing, 56(2): 749-759[DOI: 10.1109/TGRS.2017.2754511]
Jia S, HuJ, Xie Y, Shen L L, Jia X Pand Li Q Q. 2016. Gabor cube selection based multitask joint sparse representation for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 54(6): 3174-3187[DOI: 10.1109/TGRS.2015.2513082]
Jia S, Hu J, Zhu J S, Jia X P and Li Q Q. 2017. Three-dimensional local binary patterns for hyperspectral imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 55(4): 2399-2413[DOI: 10.1109/TGRS.2016.2642951]
Jia S, Lin Z J, Deng B, Zhu J S and Li Q Q. 2020. Cascade superpixel regularized Gabor feature fusion for hyperspectral image classification. IEEE Transactions on Neural Networks and Learning Systems, 31(5): 1638-1652[DOI: 10.1109/TNNLS.2019.2921564]
Jia S, Wu K L, Zhu J S and Jia X P. 2019. Spectral-spatial Gabor surface feature fusion approach for hyperspectral imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 1142-1154[DOI: 10.1109/TGRS.2018.2864983]
Jia S, Xie H M and Deng X L. 2018b. Extended morphological profile-based Gabor wavelets for hyperspectral image classification//Proceedings of the 24th International Conference on Pattern Recognition (ICPR). Beijing, China: IEEE: 782-787[DOI:10.1109/ICPR.2018.8546092http://dx.doi.org/10.1109/ICPR.2018.8546092]
Jiang J J, Chen C, Yu Y, Jiang X W and Ma J Y. 2017. Spatial-aware collaborative representation for hyperspectral remote sensing image classification. IEEE Geoscience and Remote Sensing Letters, 14(3): 404-408[DOI: 10.1109/LGRS.2016.2645708]
Kahraman S, Xu Y, Chanussot J and Tangel A. 2019. LiDAR data-aided hypergraph regularized multi-modal unmixing//2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Yokohama, Japan: IEEE: 696-699[DOI:10.1109/IGARSS.2019.8900312http://dx.doi.org/10.1109/IGARSS.2019.8900312]
Kang X D, Li S T and Benediktsson J A. 2014. Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2666-2677[DOI: 10.1109/TGRS.2013.2264508]
Kotwal K and Chaudhuri S. 2010. Visualization of hyperspectral images using bilateral filtering. IEEE Transactions on Geoscience and Remote Sensing, 48(5): 2308-2316[DOI: 10.1109/TGRS.2009.2037950]
Lee D D and Seung H S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755): 788-791[DOI: 10.1038/44565]
Lee J H, Heo A, Choi W C, Kim S H and Park D J. 2011. Visualization of hyperspectral images using bilateral filtering with spectral angles//Proceedings of SPIE, Signal Processing, Sensor Fusion, and Target Recognition XX. Orlando, USA: SPIE: #80501X[DOI:10.1117/12.883867http://dx.doi.org/10.1117/12.883867]
Li J, Huang X, Gamba P, Bioucas-Dias J M, Zhang L P, Benediktsson J A and Plaza A. 2015a. Multiple feature learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(3): 1592-1606[DOI: 10.1109/TGRS.2014.2345739]
Li J, Marpu P R, Plaza A, Bioucas-Dias J M and Benediktsson J A. 2013a. Generalized composite kernel framework for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 51(9): 4816-4829[DOI: 10.1109/TGRS.2012.2230268]
Li J Y, Zhang H Y, Huang Y C and Zhang L P. 2014b. Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Transactions on Geoscience and Remote Sensing, 52(6): 3707-3719[DOI: 10.1109/TGRS.2013.2274875]
Li J Y, Zhang H Y and Zhang L P. 2014a. Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform. IEEE Geoscience and Remote Sensing Letters, 11(8): 1409-1413[DOI: 10.1109/LGRS.2013.2294241]
Li J Y, Zhang H Y and Zhang L P. 2015b. Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(10): 5338-5351[DOI: 10.1109/TGRS.2015.2421638]
Li S Z. 2009. Markov Random Field Modeling in Image Analysis. 3rd ed. London: Springer[DOI: 10.1007/978-1-84800-279-1]
Li W, Chen C, Su H J and Du Q. 2015c. Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 53(7): 3681-3693[DOI: 10.1109/TGRS.2014.2381602]
Li W and Du Q. 2014a. Gabor-filtering-based nearest regularized subspace for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4): 1012-1022[DOI: 10.1109/JSTARS.2013.2295313].
Li W and Du Q. 2014b. Joint within-class collaborative representation for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2200-2208[DOI: 10.1109/JSTARS.2014.2306956]
Li W and Du Q. 2016. Laplacian regularized collaborative graph for discriminant analysis of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(12): 7066-7076[DOI: 10.1109/TGRS.2016.2594848]
Li W, Du Q and Xiong M M. 2015d. Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 12(1): 48-52[DOI: 10.1109/LGRS.2014.2325978]
Li W, Prasad S and Fowler J E. 2013b. Noise-adjusted subspace discriminant analysis for hyperspectral imagery classification. IEEE Geoscience and Remote Sensing Letters, 10(6): 1374-1378[DOI: 10.1109/LGRS.2013.2242042]
Li W, Prasad S and Fowler J. E. 2014c. Hyperspectral image classification using Gaussian mixture models and Markov random fields. IEEE Geoscience and Remote Sensing Letters, 11(1): 153-157[DOI: 10.1109/LGRS.2013.2250905]
Li W, Prasad S, Fowler J E and Bruce L M. 2012. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Transactions on Geoscience and Remote Sensing, 50(4): 1185-1198[DOI: 10.1109/TGRS.2011.2165957]
Li W, Tramel E W, Prasad S and Fowler J E. 2014d. Nearest regularized subspace for hyperspectral classification. IEEE Transactions on Geoscience and Remote Sensing, 52(1): 477-489[DOI: 10.1109/TGRS.2013.2241773]
Li W, Wu G D, Zhang F and Du Q. 2017. Hyperspectral image classification using deep pixel-pair features. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 844-853[DOI: 10.1109/TGRS.2016.2616355]
Li Y S, Tan Y H, Deng J J, Wen Q and Tian J W. 2015e. Cauchy graph embedding optimization for built-up areas detection from high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5): 2078-2096[DOI: 10.1109/JSTARS.2015.2394504]
Liang J L, Deng Y F and Zeng D. 2020. A deep neural network combined CNN and GCN for remote sensing scene classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 4325-4338[DOI: 10.1109/JSTARS.2020.3011333]
Liao W Z, Dalla Mura M, Chanusso J and Pižurica A. 2016. Fusion of spectral and spatial information for classification of hyperspectral remote-sensed imagery by local graph. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2): 583-594[DOI: 10.1109/JSTARS.2015.2498664]
Lin L L, Chen C L and Xu T J. 2020. Spatial-spectral hyperspectral image classification based on information measurement and CNN. EURASIP Journal on Wireless Communications and Networking, 2020(1): #59[DOI: 10.1186/s13638-020-01666-9]
Lin L L and Song X Y. 2017. Using CNN to classify hyperspectral data based on spatial-spectral information//Proceedings of the 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Kaohsiung, China: Springer: 61-68[DOI:10.1007/978-3-319-50212-0_8http://dx.doi.org/10.1007/978-3-319-50212-0_8]
Liu B, Gao K L, Yu A Z, Guo W Y, Wang R R and Zuo X B. 2020a. Semisupervised graph convolutional network for hyperspectral image classification. Journal of Applied Remote Sensing, 14(2): #026516[DOI: 10.1117/1.JRS.14.026516]
Liu B, Yu X C, Zhang P Q, Tan X, Yu A Z and Xue Z X. 2017. A semi-supervised convolutional neural network for hyperspectral image classification. Remote Sensing Letters, 8(9): 839-848[DOI: 10.1080/2150704X.2017.1331053]
Liu B, Yu X C, Zhang P Q, Yu A Z, Fu Q Y and Wei X P. 2018b. Supervised deep feature extraction for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 1909-1921[DOI: 10.1109/TGRS.2017.2769673]
Liu L, Huang W and Wang C. 2018a. Hyperspectral image classification with kernel-based least-squares support vector machines in sum space. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(4): 1144-1157[DOI: 10.1109/JSTARS.2017.2768541]
Liu L, Lao S Y, Fieguth P W, Guo Y L, Wang X G and Pietikäinen M. 2016. Median robust extended local binary pattern for texture classification. IEEE Transactions on Image Processing, 25(3): 1368-1381[DOI: 10.1109/TIP.2016.2522378]
Liu M Z, Cao F X, Yang Z J, Hong X B and Huang Y Z. 2020b. Hyperspectral image denoising and classification using multi-scale weighted EMAPs and extreme learning machine. Electronics, 9(12): #2137[DOI: 10.3390/electronics9122137]
Liu Q C, Xiao L, Yang J X and Wei Z H. 2020c. CNN-enhanced graph convolutional network with pixel and superpixel level feature fusion for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, Early Access: 1-15[DOI: 10.1109/TGRS.2020.3037361]
Liu Y, Gao L R, Xiao C C, Qu Y, Zheng K and Marinoni A. 2020d. Hyperspectral image classification based on a shuffled group convolutional neural network with transfer learning. Remote Sensing, 12(11): #1780[DOI: 10.3390/rs12111780]
Luo R B, Liao W Z, Zhang H Y, Zhang L P, Scheunders P, Pi Y G and Philips W. 2017. Fusion of hyperspectral and LiDAR data for classification of cloud-shadow mixed remote sensed scene. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8): 3768-3781[DOI: 10.1109/JSTARS.2017.2684085]
Ma L, Crawford M M and Tian J W. 2010. Local manifold learning-basedk-nearest-neighbor for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 48(11): 4099-4109[DOI: 10.1109/TGRS.2010.2055876]
Ma X R, Wang H Y and Geng J. 2016. Spectral-spatial classification of hyperspectral image based on deep auto-encoder. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9): 4073-4085[DOI: 10.1109/JSTARS.2016.2517204]
Marconcini M, Camps-Valls G and Bruzzone L. 2009. A composite semisupervised SVM for classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 6(2): 234-238[DOI: 10.1109/LGRS.2008.2009324]
Martinez A M and Kak A C. 2001. PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2): 228-233[DOI: 10.1109/34.908974]
Mei S H, Ji J Y, Hou J H, Li X and Du Q. 2017. Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 55(8): 4520-4533[DOI: 10.1109/TGRS.2017.2693346]
Mohan A and Venkatesan M. 2020. HybridCNN based hyperspectral image classification using multiscale spatiospectral features. Infrared Physics and Technology, 108: #103326[DOI: 10.1016/j.infrared.2020.103326]
Mou L C, Ghamisi P and Zhu X X. 2018. Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(1): 391-406[DOI: 10.1109/TGRS.2017.2748160]
Mou L C, Lu X Q, Li X L and Zhu X X. 2020. Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(12): 8246-8257[DOI:10.1109/TGRS.2020.2973363http://dx.doi.org/10.1109/TGRS.2020.2973363]
Mura M D, Benediktsson J A, Waske B and Bruzzone L. 2010a. Morphological attribute profiles for the analysis of very high resolution images. IEEE Transactions on Geoscience and Remote Sensing, 48(10): 3747-3762[DOI: 10.1109/TGRS.2010.2048116]
Mura M D, Benediktsson J A, Waske B and Bruzzone L. 2010b. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. International Journal of Remote Sensing, 31(22): 5975-5991[DOI: 10.1080/01431161.2010.512425]
Ojala T, Pietikainen M and Maenpaa T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7): 971-987[DOI: 10.1109/TPAMI.2002.1017623]
Peng H H and Rao R. 2009. Hyperspectral image enhancement with vector bilateral filtering//Proceedings of the 16th IEEE International Conference on Image Processing (ICIP). Cairo, Egypt: IEEE: 3713-3716[DOI:10.1109/ICIP.2009.5414250http://dx.doi.org/10.1109/ICIP.2009.5414250]
Peng J T, Jiang X, Chen N and Fu H J. 2019. Local adaptive joint sparse representation for hyperspectral image classification. Neurocomputing, 334: 239-248[DOI: 10.1016/j.neucom.2019.01.034]
Peng J T, Zhou Y C and Chen C L P. 2015. Region-kernel-based support vector machines for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(9): 4810-4824[DOI: 10.1109/TGRS.2015.2410991]
Perkins S J, Harvey N R, Brumby S P and Lacker K. 2001. Support vector machines for broad-area feature classification in remotely sensed images//Proceedings of SPIE, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery Ⅶ. Orlando, United States: SPIE: 286-295[DOI:10.1117/12.437019http://dx.doi.org/10.1117/12.437019]
Pesaresi M and Benediktsson J A. 2001. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(2): 309-320[DOI: 10.1109/36.905239]
Plaza A, Plaza J and Martin G. 2009. Incorporation of spatial constraints into spectral mixture analysis of remotely sensed hyperspectral data//Proceedings of 2009 IEEE International Workshop on Machine Learning for Signal Processing. Grenoble, France: IEEE: 1-6[DOI:10.1109/MLSP.2009.5306202http://dx.doi.org/10.1109/MLSP.2009.5306202]
Prasad S and Bruce L M. 2008. Limitations of principal components analysis for hyperspectral target recognition. IEEE Geoscience and Remote Sensing Letters, 5(4): 625-629[DOI: 10.1109/LGRS.2008.2001282]
Qiao T, Yang Z J, Ren J C, Peter Y, Zhao H M, Sun G Y, Marshall S and Benediktsson J A. 2018. Joint bilateral filtering and spectral similarity-based sparse representation: a generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recognition, 77: 316-328[DOI: 10.1016/j.patcog.2017.10.008]
Qin A Y, Shang Z W, Tian J Y, Wang Y L, Zhang T P and Tang Y Y. 2019. Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 16(2): 241-245[DOI: 10.1109/LGRS.2018.2869563]
Qing C M, Ruan J W, Xu X M, Ren J C and Zabalza J. 2019. Spatial-spectral classification of hyperspectral images: a deep learning framework with Markov random fields based modelling. IET Image Processing, 13(2): 235-245[DOI: 10.1049/iet-ipr.2018.5727]
Rellier G, Descombes X, Falzon F and Zerubia J. 2004. Texture feature analysis using a Gauss-Markov model in hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 42(7): 1543-1551[DOI:10.1109/TGRS.2004.830170http://dx.doi.org/10.1109/TGRS.2004.830170]
Romero A, Gatta C and Camps-Valls G. 2016. Unsupervised deep feature extraction for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1349-1362[DOI:10.1109/TGRS.2015.2478379http://dx.doi.org/10.1109/TGRS.2015.2478379]
Scarselli F, Gori M, Tsoi A C, Hagenbuchner M and Monfardini G. 2009. The graph neuralnetwork model. IEEE Transactions on Neural Networks, 20(1): 61-80[DOI: 10.1109/TNN.2008.2005605]
Schindler K. 2012. An overview and comparison of smooth labeling methods for land-cover classification. IEEE Transactions on Geoscienceand Remote Sensing, 50(11): 4534-4545[DOI: 10.1109/TGRS.2012.2192741]
Sha A S, Wang B, Wu X F, Zhang L M, Hu B and Zhang J Q. 2019. Semi-supervised classification for hyperspectral images using edge-conditioned graph convolutional networks//2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Yokohama, Japan: IEEE: 2690-2693[DOI:10.1109/IGARSS.2019.8898688http://dx.doi.org/10.1109/IGARSS.2019.8898688]
Shahraki F F and Prasad S. 2018. Graph convolutional neural networks for hyperspectral data classification//Proceedings of 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim, USA: IEEE: 968-972[DOI:10.1109/GlobalSIP.2018.8645969http://dx.doi.org/10.1109/GlobalSIP.2018.8645969]
Shen L L and Jia S. 2011. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Transactions on Geoscienceand Remote Sensing, 49(12): 5039-5046[DOI: 10.1109/TGRS.2011.2157166]
Song B Q, Li J, Dalla Mura M, Li P J, Plaza A, Bioucas-Dias J M, Atli Benediktsson J and Chanussot J. 2014. Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE Transactions on Geoscience and Remote Sensing, 52(8): 5122-5136[DOI: 10.1109/TGRS.2013.2286953]
Su H J, Yu Y, Wu Z Y and Du Q. 2020. Random subspace-based k-nearest class collaborative representation for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, (99): #3029578[DOI: 10.1109/TGRS.2020.3029578]
Su H J, Zhao B, Du Q, Du P J and Xue Z H. 2018. Multifeature dictionary learning for collaborative representation classification of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 2467-2484[DOI: 10.1109/TGRS.2017.2781805]
Sugiyama M. 2007. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, 8(1): 1027-1061
Sun H, Ren J, Zhao H, Yan Y, Zabalza J and Marshall S. 2019. Superpixel based feature specific sparse representation for spectral-spatial classification of hyperspectral images. Remote Sensing, 11(5): #536[DOI: 10.3390/rs11050536]
Sun L, Wu Z B, Liu J J, Xiao L and Wei Z H. 2015. Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 53(3): 1490-1503[DOI: 10.1109/TGRS.2014.2344442]
Sun Y B, Wang S J, Liu Q S, Hang R L and Liu G C. 2017. Hypergraph embedding for spatial-spectral joint feature extraction in hyperspectral images. Remote Sensing, 9(5): #506[DOI: 10.3390/rs9050506]
Tang H J, Li Y S, Han X, Huang Q H and Xie W X. 2020. A spatial-spectral prototypical network for hyperspectral remote sensing image. IEEE Geoscience and Remote Sensing Letters, 17(1): 167-171[DOI: 10.1109/LGRS.2019.2916083]
Tarabalka Y, Chanussot J and Benediktsson J A. 2010a. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 43(7): 2367-2379[DOI: 10.1016/j.patcog.2010.01.016]
Tarabalka Y, Fauvel M, Chanussot J and Benediktsson J A. 2010b. SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 7(4): 736-740[DOI: 10.1109/LGRS.2010.2047711]
Tikhonov A N and Arsenin V Y. 1997. Solutions of Ill-Posed Problems. New York: Halsted Press: 30[DOI: 10.2307/2006360]
Tomasi C and Manduchi R. 1998. Bilateral filtering for gray and color images//Proceedings of the 6th IEEE International Conference on Computer Vision. Bombay, India: IEEE: 839-846 [DOI:10.1109/ICCV.1998.710815http://dx.doi.org/10.1109/ICCV.1998.710815]
Tong F, Tong H J, Jiang J J and Zhang Y. 2017. Multiscale union regions adaptive sparse representation for hyperspectral image classification. Remote Sensing, 9(9): #872 [DOI: 10.3390/rs9090872]
Tropp J A and Gilbert A C. 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12): 4655-4666 [DOI: 10.1109/TIT.2007.909108]
Tu B, Kuang W L, Zhao G Z, He D B, Liao Z L and Ma W W. 2019. Hyperspectral image classification by combining local binary pattern and joint sparse representation. International Journal of Remote Sensing, 40(24): 9484-9500 [DOI: 10.1080/01431161.2019.1633699]
Tu B, Zhang X F, Kang X D, Zhang G Y, Wang J P and Wu J H. 2018. Hyperspectral image classification via fusing correlation coefficient and joint sparse representation. IEEE Geoscience and Remote Sensing Letters, 15(3): 340-344 [DOI: 10.1109/LGRS.2017.2787338]
Tuia D, Camps-Valls G, Matasci G and Kanevski M. 2010. Learning relevant image features with multiple-kernel classification. IEEE Transactions on Geoscience and Remote Sensing, 48(10): 3780-3791 [DOI: 10.1109/TGRS.2010.2049496]
Valero S, Salembier P and Chanussot J. 2010. Comparison of merging orders and pruning strategies for binary partition tree in hyperspectral data//Proceedings of 2010 IEEE International Conference on Image Processing. Hong Kong, China: IEEE: 2565-2568 [DOI: 10.1109/ICIP.2010.5652595]
Valero S, Salembier P and Chanussot J. 2011a. Hyperspectral image segmentation using binary partition trees//Proceedings of the 18th IEEE International Conference on Image Processing. Brussels, Belgium: IEEE: 1273-1276 [DOI:10.1109/ICIP.2011.6115666http://dx.doi.org/10.1109/ICIP.2011.6115666]
Valero S, Salembier P and Chanussot J. 2013. Object recognition in urban hyperspectral images using binary partition tree representation//Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS. Melbourne, Australia: IEEE: 4098-4101 [DOI: 10.1109/IGARSS.2013.6723734http://dx.doi.org/10.1109/IGARSS.2013.6723734]
Valero S, Salembier P, Chanussot J and Cuadras C M. 2011b. Improved binary partition tree construction for hyperspectral images: application to object detection//2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, Canada: IEEE: 2515-2518 [DOI:10.1109/IGARSS.2011.6049723http://dx.doi.org/10.1109/IGARSS.2011.6049723]
Veganzones M A, Tochon G, Dalla-Mura M, Plaza A J and Chanussot J. 2014. Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation. IEEE Transactions on Image Processing, 23(8): 3574-3589 [DOI: 10.1109/TIP.2014.2329767]
Veganzones M A, Tochon G, Mura M D, Plaza A J and Chanussot J. 2013. Hyperspectral image segmentation using a new spectral mixture-based binary partition tree representation//Proceedings of 2013 IEEE International Conference on Image Processing. Melbourne, Australia: IEEE: 245-249 [DOI:10.1109/ICIP.2013.6738051http://dx.doi.org/10.1109/ICIP.2013.6738051]
Wang L G, Hao S Y, Wang Q M and Wang Y. 2014. Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS Journal of Photogrammetry and Remote Sensing, 97: 123-137 [DOI: 10.1016/j.isprsjprs.2014.08.016]
Wang Y, Song H W and Zhang Y. 2016. Spectral-spatial classification of hyperspectral images using joint bilateral filter and graph cut based model. Remote Sensing, 8(9): #748 [DOI: 10.3390/rs8090748]
Wright J, Yang A Y, Ganesh A, Sastry S S and Ma Y. 2009. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2): 210-227 [DOI: 10.1109/TPAMI.2008.79]
Wu J F, Jiang Z G, Zhang H P, Cai B W and Luo P H. 2017. Hyperspectral remote sensing image classification based on semi-supervised conditional random field. Journal of Remote Sensing, 21(4): 588-603
吴俊峰, 姜志国, 张浩鹏, 蔡博文, 罗鹏浩. 2017. 半监督条件随机场的高光谱遥感图像分类. 遥感学报, 21(4): 588-603 [DOI: 10.11834/jrs.20176121]
Xia J S, Chanussot J, Du P J and He X Y. 2016. Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples. IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1519-1531 [DOI: 10.1109/TGRS.2015.2481938]
Xia J S, Liao W Z and Du P J. 2020. Hyperspectral and LiDAR classification with semisupervised graph fusion. IEEE Geoscience and Remote Sensing Letters, 17(4): 666-670 [DOI: 10.1109/LGRS.2019.2928009]
Xia J S, Mura M D, Chanussot J, Du P J and He X Y. 2015. Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles. IEEE Transactions on Geoscience and Remote Sensing, 53(9): 4768-4786 [DOI: 10.1109/TGRS.2015.2409195]
Xia J S, Yokoya N and Iwasaki A. 2017. A novel ensemble classifier of hyperspectral and LiDAR data using morphological features//Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, USA: IEEE: 6185-6189 [DOI:10.1109/ICASSP.2017.7953345http://dx.doi.org/10.1109/ICASSP.2017.7953345]
Xia J S, Yokoya N and Iwasaki A. 2018. Fusion of hyperspectral and LiDAR data with a novel ensemble classifier. IEEE Geoscience and Remote Sensing Letters, 15(6): 957-961 [DOI: 10.1109/LGRS.2018.2816958]
Xie L, Li G Y, Xiao M, Peng L and Chen Q C. 2017. Hyperspectral image classification using discrete space model and support vector machines. IEEE Geoscience and Remote Sensing Letters, 14(3): 374-378 [DOI: 10.1109/LGRS.2016.2643686]
Xiong M M, Ran Q, Li W, Zou J Y and Du Q. 2015. Hyperspectral image classification using weighted joint collaborative representation. IEEE Geoscience and Remote Sensing Letters, 12(6): 1209-1213 [DOI: 10.1109/LGRS.2015.2388703]
Xu L L and Li J. 2014. Bayesian classification of hyperspectral imagery based on probabilistic sparse representation and Markov random field. IEEE Geoscience and Remote Sensing Letters, 11(4): 823-827 [DOI: 10.1109/LGRS.2013.2279395]
Xu X D, Li W, Ran Q, Du Q, Gao L R and Zhang B. 2018a. Multisource remote sensing data classification based on convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 56(2): 937-949 [DOI: 10.1109/TGRS.2017.2756851]
Xu Y, Du Q, Li W and Younan N. 2018b. Gabor-filtering-based probabilistic collaborative representation for hyperspectral image classification//2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Valencia, Spain: IEEE: 5081-5084 [DOI:10.1109/IGARSS.2018.8517805http://dx.doi.org/10.1109/IGARSS.2018.8517805]
Yang J H and Qian J X. 2018. A weighted multiple-feature fusion classifier for hyperspectral images with limited training samples. European Journal of Remote Sensing, 51(1): 1006-1021 [DOI: 10.1080/22797254.2018.1529543]
Yang J H, Wang L G and Qian J X. 2016. A new residual fusion classification method for hyperspectral images. International Journal of Remote Sensing, 37(4): 745-769 [DOI: 10.1080/01431161.2015.1137649]
Yang L X, Yang S Y, Jin P L and Zhang R. 2014. Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geoscience and Remote Sensing Letters, 11(3): 651-655 [DOI: 10.1109/LGRS.2013.2273792]
Yang P, Tong L, Qian B, Gao Z, Yu J and Xiao C B. 2021. Hyperspectral image classification with spectral and spatial graph using inductive representation learning network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 791-800 [DOI: 10.1109/JSTARS.2020.3042959]
Ye Z, Bai L and Tan L. 2017a. Hyperspectral image classification based on Gabor features and decision fusion//Proceedings of the 2nd International Conference on Image, Vision and Computing (ICIVC). Chengdu, China: IEEE: 478-482 [DOI:10.1109/ICIVC.2017.7984602http://dx.doi.org/10.1109/ICIVC.2017.7984602]
Ye Z, Fowler J E and Bai L. 2017b. Spatial-spectral hyperspectral classification using local binary patterns and Markov random fields. Journal of Applied Remote Sensing, 11(3): #035002 [DOI: 10.1117/1.JRS.11.035002]
Ye Z, He M Y, Fowler J E and Du Q. 2014a. Hyperspectral image classification based on spectra derivative features and locality preserving analysis//Proceedings of 2014 IEEE China Summit and International Conference on Signal and Information Processing. Xi′an, China: IEEE: 138-142 [DOI:10.1109/ChinaSIP.2014.6889218http://dx.doi.org/10.1109/ChinaSIP.2014.6889218]
Ye Z, Prasad S, Li W, Fowler J E and He M Y. 2014b. Classification based on 3-D DWT and decision fusion for hyperspectral image analysis. IEEE Geoscience and Remote Sensing Letters, 11(1): 173-177 [DOI: 10.1109/LGRS.2013.2251316]
You Y N, Chen T L, Wang Z Y and Shen Y. 2020. L2-GCN: layer-wise and learned efficient training of graph convolutional networks//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 2124-2132 [DOI:10.1109/CVPR42600.2020.00220http://dx.doi.org/10.1109/CVPR42600.2020.00220]
Yu H Y, Gao L R, Li J, Li S S, Zhang B and Benediktsson J A. 2016. Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields. Remote Sensing, 8(4): #355 [DOI: 10.3390/rs8040355]
Zhai H, Zhang H Y, Zhang L P and Li P X. 2019. Total variation regularized collaborative representation clustering with a locally adaptive dictionary for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(1): 166-180 [DOI: 10.1109/TGRS.2018.2852708]
Zhang H K, Li Y, Jiang Y N, Wang P, Shen Q and Shen C H. 2019. Hyperspectral classification based on lightweight 3-D-CNN with transfer learning. IEEE Transactions on Geoscience and Remote Sensing, 57(8): 5813-5828 [DOI: 10.1109/TGRS.2019.2902568]
Zhang H Y, Li J Y, Huang Y C and Zhang L P. 2014. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2056-2065 [DOI: 10.1109/JSTARS.2013.2264720]
Zhang L, Yang M and Feng X C. 2011. Sparse representation or collaborative representation: which helps face recognition? //Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE: 471-478 [DOI:10.1109/ICCV.2011.6126277http://dx.doi.org/10.1109/ICCV.2011.6126277]
Zhang L, Zhou W D, Chang P C, Liu J, Wang T and Li F Z. 2012a. Kernel spars representation-based classifier. IEEE Transactions on Signal Processing, 60(4): 1684-1695 [10.1109/TSP. 2011.2179539]
Zhang L F, Zhang L P, Tao D C and Huang X. 2012b. On combining multiple features for hyperspectral remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 50(3): 879-893 [DOI:10.1109/TGRS.2011.2162339http://dx.doi.org/10.1109/TGRS.2011.2162339]
Zhang L P, Zhang L F and Du B. 2016. Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2): 22-40 [DOI: 10.1109/MGRS.2016.2540798]
Zhang M M, Li W and Du Q. 2018. Diverse region-based CNN for hyperspectral image classification. IEEE Transactions on Image Processing, 27(6): 2623-2634 [DOI:10.1109/TIP.2018.2809606http://dx.doi.org/10.1109/TIP.2018.2809606]
Zhang M M, Li W, Du Q, Gao L R and Zhang B. 2020. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Transactions on Cybernetics, 50(1): 100-111 [DOI: 10.1109/TCYB.2018.2864670]
Zhang Y Z, Xu M M, Wang X H and Wang K Q. 2019. Hyperspectral image classification based on hierarchical fusion of residual networks. Spectroscopy and Spectral Analysis, 39(11): 3305-3507
张怡卓, 徐苗苗, 王小虎, 王克奇. 2019. 残差网络分层融合的高光谱地物分类. 光谱学与光谱分析, 39(11): 3305-3507 [DOI: 10.3964/j.issn.1000-0593(2019)11-3501-07]
Zhang Z Q and Wang W Y. 2009. A modified bilateral filtering algorithm. Journal of Image and Graphics, 14(3): 443-447
张志强, 王万玉. 2009. 一种改进的双边滤波算法. 中国图象图形学报, 14(3): 443-447 [DOI: 10.11834/jig.20090310]
Zhao C H, Wan X Q and Yan Y M. 2017. Spectral-spatial classification of hyperspectral images based on joint bilateral filter and stacked sparse autoencoder//Proceedings of the 1st International Conference on Electronics Instrumentation and Information Systems (EIIS). Harbin, China: IEEE: 1-5 [DOI:10.1109/EIIS.2017.8298563http://dx.doi.org/10.1109/EIIS.2017.8298563]
Zhao X D, Tao R, Li W, Li H C, Du Q, Liao W Z and Philips W. 2020. Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture. IEEE Transactions on Geoscience and Remote Sensing, 58(10): 7355-7370 [DOI: 10.1109/TGRS.2020.2982064]
Zhao Z K. 2016. Research on the Hyperspectral Image Classification Algorithms Combining with the Selection of Spatial Neighborhood. Nanjing: Nanjing Normal University
赵振凯. 2016. 结合近邻选择的高光谱图像分类算法研究. 南京: 南京师范大学[DOI:10.7666/d.Y3132290]
Zhi L, Yu X C and Fu Q Y. 2018. Hyperspectral imagery spatial-spectral classification combining local binary patterns. Journal of Geomatics Science and Technology, 35(1): 65-69, 76
职露, 余旭初, 付琼莹. 2018. 联合局部二值模式的高光谱影像空—谱分类方法. 测绘科学技术学报, 35(1): 65-69, 76 [DOI: 10.3969/j.issn.1673-6338.2018.01.013]
Zhou Y C, Peng J T and Chen C L P. 2015. Extreme learning machine with composite kernels for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 2351-2360 [DOI: 10.1109/JSTARS.2014.2359965]
Zhu J S, Hu J, Jia S, Jia X P and Li Q Q. 2018. Multiple 3-D feature fusion framework for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 1873-1886 [DOI: 10.1109/TGRS.2017.2769113]
Zou J Y, Li W and Du Q. 2015. Sparse representation-based nearest neighbor classifiers for hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 12(12): 2418-2422 [DOI: 10.1109/LGRS.2015.2481181]
相关作者
相关机构