环视鱼眼图像处理深度学习研究进展
Research progress of fisheye image processing based on deep learning
- 2021年26卷第12期 页码:2778-2799
纸质出版日期: 2021-12-16 ,
录用日期: 2021-01-13
DOI: 10.11834/jig.200714
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-12-16 ,
录用日期: 2021-01-13
移动端阅览
包俊, 刘宏哲, 褚文博. 环视鱼眼图像处理深度学习研究进展[J]. 中国图象图形学报, 2021,26(12):2778-2799.
Jun Bao, Hongzhe Liu, Wenbo Chu. Research progress of fisheye image processing based on deep learning[J]. Journal of Image and Graphics, 2021,26(12):2778-2799.
视觉环境感知在自动驾驶汽车发展中起着关键作用,在智能后视镜、倒车雷达、360°全景、行车记录仪、碰撞预警、红绿灯识别、车道偏移、并线辅助和自动泊车等领域也有着广泛运用。传统的环境信息获取方式是窄角针孔摄像头,视野有限有盲区,解决这个问题的方法是环境信息感知使用鱼眼镜头,广角视图能够提供整个180°的半球视图,理论上仅需两个摄像头即可覆盖360°,为视觉感知提供更多信息。处理环视图像目前主要有两种途径:一是对图像先纠正,去失真,缺点是图像去失真会损害图像质量,并导致信息丢失;二是直接对形变的鱼眼图像进行建模,但目前还没有效果比较好的建模方法。此外,环视鱼眼图像数据集的缺乏也是制约相关研究的一大难题。针对上述挑战,本文总结了环视鱼眼图像的相关研究,包括环视鱼眼图像的校正处理、环视鱼眼图像中的目标检测、环视鱼眼图像中的语义分割、伪环视鱼眼图像数据集生成方法和其他鱼眼图像建模方法等,结合自动驾驶汽车的环境感知应用背景,分析了这些模型的效率和这些处理方法的优劣,并对目前公开的环视鱼眼图像通用数据集进行了详细介绍,对环视鱼眼图像中待解决的问题与未来研究方向做出预测和展望。
The four core technologies of automatic driving have evolved environment perception
precise positioning
path planning. and line control execution. Perfect planning must establish a deep understanding of the surrounding environment for environmental perception
especially the dynamic environment. Visual environment perception has played a key role in the development of autonomous vehicles. It has been widely used in intelligent rearview mirror
reversing radar
360° panorama
driving recorder
collision warning
traffic light recognition
lane departure
line-parallel assistance
automatic parking and etc. The traditional way to obtain environmental information is the narrow-angle pinhole camera
which has limited field of vision and blind area. Multiple cameras are often needed to be covered around the car body
which not only increases the cost
but also increases the information processing time. Fisheye lens perception can be an effective way to use for environmental information. The large field of view (FOV) can provide the entire hemisphere view of 180°. Theoretically
The capability to cover 360° to avoid visual blindness
reduce the occlusion of visual objects
provide more information for visual perception and greatly reduce the processing time with only two cameras. Based on deep learning
processing surrounded image has been mainly processed in two ways. First
the surrounded fisheye image is transformed into ordinary normal image based on the image correction and distortion. The corrected image has been processed via classical image processing algorithm. The disadvantage is that image distortion can damage image quality
especially the image edges
lead to important visual information missing
the closer the image edge
the more loss of information. Second
the distorted fisheye image has been modeled and processed directly. The complexity of the fisheye image geometric process (model) cannot make the algorithm to migrate to the surrounded fisheye image very well
which is determined by the imaging characteristics of ordinary image and fisheye image
there is no surround fisheye image modeling model with better effect. Finally
there is no representative public dataset to carry out unified evaluation of the vision algorithm
and there is also a lack of a large number of data for model training. The related research directions of the fisheye image including the correction processing of the fisheye image have been summarized. Subdivided into the fisheye image correction method based on calibration has been conducted and the fisheye image correction method based on the projection transformation model has been demonstrated; the target detection in the fisheye image has been mainly introduced to pedestrian detection as well. The city road environment semantic segmentation
pseudo fisheye image dataset generation method has mainly been introduced based on the semantic segmentation of fisheye images. The other fisheye image modeling methods have been used to list the approximate proportion of these research directions and analyze the application background and real-time characteristics of the environment of automatic driving vehicle. In addition
the general datasets of the fisheye image has included the size of these datasets
publishing time
annotation category and etc. The experimental results of object detection methods and semantic segmentation methods in the fisheye image have been compared and analyzed. The evaluation dataset of fisheye image
the construction of algorithm model of fisheye image and the efficiency of the model issues have been discussed. The fisheye image processing has been benefited from the development of weak supervised and unsupervised learning.
自动驾驶环视鱼眼图像图像校正目标检测语义分割鱼眼图像数据集研究综述
automatic drivesurround fisheye imagesimage correctionobject detectionsemantic segmentationfisheye image datasetresearch overview
Arsenali B, Viswanath P and Novosel J. 2019. RotInvMTL: rotation invariant MultiNet on fisheye images for autonomous driving applications//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul, Korea (South): IEEE: 2373-2382 [DOI: 10.1109/ICCVW.2019.00291http://dx.doi.org/10.1109/ICCVW.2019.00291]
Baek J, Chelu I V, Iordache L, Paunescu V, Ryu H, Ghiuta A, Petreanu A, Soh Y, Leica A and Jeon B. 2018. Scene understanding networks for autonomous driving based on around view monitoring system//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 1074-10747 [DOI: 10.1109/CVPRW.2018.00142http://dx.doi.org/10.1109/CVPRW.2018.00142]
Beyer L, Zhai X H, Oliver A and Kolesnikov A. 2019. S4L: self-supervised semi-supervised learning//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 1476-1485 [DOI: 10.1109/ICCV.2019.00156http://dx.doi.org/10.1109/ICCV.2019.00156]
Chao C H, Hsu P L, Lee H Y and Wang Y C F. 2020. Self-supervised deep learning for fisheye image rectification//Proceedings of 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Barcelona, Spain: IEEE: 2248-2252 [DOI: 10.1109/ICASSP40776.2020.9054191http://dx.doi.org/10.1109/ICASSP40776.2020.9054191]
Chen H M and Chen X Y. 1989. Fish eye lens optical design. Journal of Beijing Institute of Technology, 9(3): 35-42
陈晃明, 陈向颖. 1989. 鱼眼镜头光学设计. 北京理工大学学报, 9(3): 35-42
Chen L C, Papandreou G, Kokkinos I, Murphy K and Yuille A L. 2018. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834-848 [DOI: 10.1109/TPAMI.2017.2699184]
Cheng Y, Wang D, Zhou P and Zhang T. 2018. Model compression and acceleration for deep neural networks: the principles, progress, and challenges. IEEE Signal Processing Magazine,35(1): 126-136 [DOI: 10.1109/MSP.2017.2765695]
Dai J F, Li Y, He K M and Sun J. 2016. R-FCN: object detection via region-based fully convolutional networks[EB/OL]. [2020-08-11].https://arxiv.org/pdf/1605.06409.pdfhttps://arxiv.org/pdf/1605.06409.pdf
Dai J F, Qi H Z, Xiong Y W, Li Y, Zhang G D, Hu H and Wei Y C. 2017. Deformable convolutional networks//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 764-773 [DOI: 10.1109/ICCV.2017.89http://dx.doi.org/10.1109/ICCV.2017.89]
Demirel B, Cinbis R G and Ikizler-Cinbis N. 2018. Zero-shot object detection by hybrid region embedding[EB/OL]. [2020-08-11].https://arxiv.org/pdf/1805.06157.pdfhttps://arxiv.org/pdf/1805.06157.pdf
Demiröz B E, AriÏ, Eroğlu O, Salah A A and Akarun L. 2012. Feature-based tracking on a multi-omnidirectional camera dataset//The 5th International Symposium on Communications, Control and Signal Processing. Rome, Italy: IEEE: 1-5 [DOI: 10.1109/ISCCSP.2012.6217867http://dx.doi.org/10.1109/ISCCSP.2012.6217867]
Deng L Y, Yang M, Li H, Li T Y, Hu B and Wang C X. 2020. Restricted deformable convolution-based road scene semantic segmentation using surround view cameras. IEEE Transactions on Intelligent Transportation Systems, 21(10): 4350-4362 [DOI: 10.1109/TITS.2019.2939832]
Deng L Y, Yang M, Qian Y Q, Wang C X and Wang B. 2017. CNN based semantic segmentation for urban traffic scenes using fisheye camera//2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA: IEEE: 231-236 [DOI: 10.1109/IVS.2017.7995725http://dx.doi.org/10.1109/IVS.2017.7995725]
Deng L Y, Yang M, Wang C X and Wang B. 2018. Surround view cameras based instance segmentation method for autonomous vehicles. Journal of Huazhong University of Science and Technology (Natural Science Edition), 46(12): 24-29
邓琉元, 杨明, 王春香, 王冰. 2018. 基于环视相机的无人驾驶汽车实例分割方法. 华中科技大学学报(自然科学版), 46(12): 24-29) [DOI: 10.13245/j.hust.181205]
Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, van der Smagt P, Cremers D and Brox T. 2015. FlowNet: learning optical flow with convolutional networks//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE: 2758-2766 [DOI: 10.1109/ICCV.2015.316http://dx.doi.org/10.1109/ICCV.2015.316]
Duan Z H, Tezcan M O, Nakamura H, Ishwar P and Konrad J. 2020. RAPiD: rotation-aware people detection in overhead fisheye images//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, USA: IEEE: 2700-2709 [DOI: 10.1109/CVPRW50498.2020.00326http://dx.doi.org/10.1109/CVPRW50498.2020.00326]
Everingham M, Gool L V, Williams C K I, Winn J and Zisserman A. 2010. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2): 303-338 [DOI: 10.1007/s11263-009-0275-4]
Feng W J, Zhang B F and Cao Z L. 2011. Omni-directional vision parameter calibration and rectification based on fish-eye lens. Journal of Tianjin University, 44(5): 417-424
冯为嘉, 张宝峰, 曹作良. 2011. 基于鱼眼镜头的全方位视觉参数标定与畸变矫正. 天津大学学报, 44(5): 417-424) [DOI: 10.3969/j.issn.0493-2137.2011.05.008]
Fremont V, Bui M T, Boukerroui D and Letort P. 2016. Vision-based people detection system for heavy machine applications. Sensors, 16(1): #128 [DOI: 10.3390/s16010128]
Frossard P and Khasanova R. 2017. Graph-based classification of omnidirectional images//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy: IEEE: 860-869 [DOI: 10.1109/ICCVW.2017.106http://dx.doi.org/10.1109/ICCVW.2017.106]
Fu J L, Alvar S R, Bajic I and Vaughan R. 2019b. FDDB-360: face detection in 360-degree fisheye images//Proceedings of 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). San Jose, USA: IEEE: 15-19 [DOI: 10.1109/MIPR.2019.00011http://dx.doi.org/10.1109/MIPR.2019.00011]
Fu J L, Bajić I V and Vaughan R G. 2019a. Datasets for face and object detection in fisheye images. Data in Brief, 27: #104752 [DOI: 10.1016/j.dib.2019.104752]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2020. Generative adversarial networks. Communications of the ACM, 63(11): 139-144 [DOI: 10.1145/3422622]
Haltakov V, Belzner H and Ilic S. 2012. Scene understanding from a moving camera for object detection and free space estimation//2012 IEEE Intelligent Vehicles Symposium. Madrid, Spain: IEEE: 105-110 [DOI: 10.1109/IVS.2012.6232237http://dx.doi.org/10.1109/IVS.2012.6232237]
Hartley R and Kang S B. 2007. Parameter-free radial distortion correction with center of distortion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8): 1309-1321 [DOI: 10.1109/TPAMI.2007.1147.]
Havard W N, Besacier L and Rosec O. 2017. SPEECH-COCO: 600k visually grounded spoken captions aligned to MSCOCO dataset[EB/OL]. [2020-08-11].https://arxiv.org/pdf/1707.08435.pdfhttps://arxiv.org/pdf/1707.08435.pdf
He K M, Gkioxari G, Dollár P and Girshick R. 2017. Mask R-CNN//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2980-2988 [DOI: 10.1109/ICCV.2017.322http://dx.doi.org/10.1109/ICCV.2017.322]
Howard A G, Zhu M H, Chen B, Kalenichenko D, Wang W J, Weyand T, Andreetto M and Adam H. 2017. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2020-8-11].https://arxiv.org/pdf/1704.04861.pdfhttps://arxiv.org/pdf/1704.04861.pdf
Jaderberg M, Simonyan K, Zisserman A and Kavukcuoglu K. 2015. Spatial transformer networks//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press: 2017-2025
Jeon Y and Kim J. 2017. Active convolution: learning the shape of convolution for image classification//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 1846-1854 [DOI: 10.1109/CVPR.2017.200http://dx.doi.org/10.1109/CVPR.2017.200]
Jiang H Y, Wang Y J and Kang J Y. 2021. A survey of object detection models and its optimization methods. Acta Automatica Sinica, 47(6): 1232-1255
蒋弘毅, 王永娟, 康锦煜. 2021. 目标检测模型及其优化方法综述. 自动化学报, 47(6): 1232-1255) [DOI: 10.16383/j.aas.c190756]
Kannala J and Brandt S S. 2006. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8): 1335-1340 [DOI: 10.1109/TPAMI.2006.153]
Karlinsky L, Shtok J, Harary S, Schwartz E, Aides A, Feris R, Giryes R and Bronstein A M. 2018. RepMet: representative-based metric learning for classification and one-shot object detection[EB/OL]. [2020-08-11].https://arxiv.org/pdf/1806.04728.pdfhttps://arxiv.org/pdf/1806.04728.pdf
Kolesnikov A, Zhai X H and Beyer L. 2019. Revisiting self-supervised visual representation learning//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 1920-1929 [DOI: 10.1109/CVPR.2019.00202http://dx.doi.org/10.1109/CVPR.2019.00202]
Kong T, Sun F and Yao A. 2017. RON: Reverse Connection with Objectness Prior Networks for Object Detection//Proceeding of 2017 IEEE Coference on Computer Vision and Pattern Recogition(CVPR): 5244-5252. [DOI: 10.1109/CVPR.2017.557http://dx.doi.org/10.1109/CVPR.2017.557]
Krasin I, Duerig T, Alldrin N, Ferrari V, Abu-El-Haija S, Kuznetsova A, Rom H, Uijlings J, Popov S, Veit A, Belongie S, Gomes V, Gupta A, Sun C, Chechik G, Cai D, Feng Z, Narayanan D and Murphy K. 2017. OpenImages: a public dataset for large-scale multi-label and multi-class image classification[EB/OL]. [2020-08-11].https://github.com/openimageshttps://github.com/openimages
Lee M, Kim H and Paik J. 2019. Correction of barrel distortion in fisheye lens images using image-based estimation of distortion parameters. IEEE Access, 7: 45723-45733 [DOI: 10.1109/access.2019.2908451]
Li T W, Tong G J, Tang H Y, Li B Q and Chen B. 2020. FisheyeDet: a self-study and contour-based object detector in fisheye images. IEEE Access, 8: 71739-71751 [DOI: 10.1109/ACCESS.2020.2987868]
Li X Y, Zhang B, Sander P V and Liao J. 2019. Blind geometric distortion correction on images through deep learning//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 4850-4859 [DOI: 10.1109/CVPR.2019.00499http://dx.doi.org/10.1109/CVPR.2019.00499]
Liao S Z, Gao P H, Su Y and Wang D P. 2000. A geometric rectification method for lens camera. Journal of Image and Graphics, 5(7): 593-596
廖士中, 高培焕, 苏艺, 王大鹏. 2000. 一种光学镜头摄像机图象几何畸变的修正方法. 中国图象图形学报, 5(7): 593-596) [DOI: 10.11834/jig.20000711]
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016. SSD: single shot MultiBox detector//Proceedings of European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 21-37 [DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Luan J. 2018. Research on Vehicle Around-View Monitor System Based on Fish-Eye Cameras. Jilin: Jilin University
栾婧. 2018. 基于鱼眼摄像头的汽车环视技术研究. 吉林: 吉林大学
Luo L. 2017. Basic Course of Photography. 3rd. ed. Beijing: China Radio Film and TV Press
罗琳. 2017. 摄影基础教程(第三版). 北京: 中国广播影视出版社
Lyu L J and Wu X W. 2017. Design of initial structure of fisheye lens. Acta Optica Sinica, 37(2): 97-106
吕丽军, 吴学伟. 2017. 鱼眼镜头初始结构的设计. 光学学报, 37(2): 97-106) [DOI: 10.3788/AOS201737.0208001]
Nguyen V T, Nguyen T B and Chung S T. 2016. ConvNets and AGMM based real-time human detection under fisheye camera for embedded surveillance//Proceedings of 2016 International Conference on Information and Communication Technology Convergence (ICTC). Jeju, Korea(South): IEEE: 840-845 [DOI: 10.1109/ICTC.2016.7763311http://dx.doi.org/10.1109/ICTC.2016.7763311]
Poddar D, Nagori S, Mathew M, Maji D and Garud H. 2019. Deep learning based parking spot detection and classification in fish-eye images//Proceedings of 2019 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). Bangalore, India: IEEE: 1-5 [DOI: 10.1109/CONECCT47791.2019.9012933http://dx.doi.org/10.1109/CONECCT47791.2019.9012933]
Qian Y Q, Yang M, Wang C X and Wang B. 2018. Pedestrian feature generation in fish-eye images via adversary//Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia: IEEE: 2007-2012 [DOI: 10.1109/ICRA.2018.8460565http://dx.doi.org/10.1109/ICRA.2018.8460565]
Qian Y Q, Yang M, Zhao X, Wang C X and Wang B. 2020. Oriented spatial transformer network for pedestrian detection using fish-eye camera. IEEE Transactions on Multimedia, 22(2): 421-431 [DOI: 10.1109/TMM.2019.2929949]
Rahman S, Khan S and Porikli F. 2018. Zero-shot object detection: learning to simultaneously recognize and localize novel concepts//Proceedings of Asian Conference on Computer Vision. Perth, Australia: Springer: 547-563 [DOI: 10.1007/978-3-030-20887-5_34http://dx.doi.org/10.1007/978-3-030-20887-5_34]
Redmon J and Farhadi A. 2018. Yolov3: An incremental improvement[EB/OL]. [2020-09-25].https://arxiv.org/pdf/1804.02767.pdfhttps://arxiv.org/pdf/1804.02767.pdf
Ren M Y, Triantafillou E, Ravi S, Snell J, Swersky K, Tenenbaum J B, Larochelle H and Zemel R S. 2018. Meta-learning for semi-supervised few-shot classification[EB/OL]. [2020-08-11].https://arxiv.org/pdf/1803.00676.pdfhttps://arxiv.org/pdf/1803.00676.pdf
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Romera E,Álvarez J M, Bergasa L M and Arroyo R. 2017. Efficient ConvNet for real-time semantic segmentation//2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA: IEEE: 1789-1794 [DOI: 10.1109/IVS.2017.7995966http://dx.doi.org/10.1109/IVS.2017.7995966]
Rong J P, Huang S Y, Shang Z Y and Ying X H. 2016. Radial lens distortion correction using convolutional neural networks trained with synthesized images//Proceedings of Asian Conference on Computer Vision. Taipei, China: Springer: 35-49 [DOI: 10.1007/978-3-319-54187-7_3http://dx.doi.org/10.1007/978-3-319-54187-7_3]
Sáez A, Bergasa L M, Romeral E, López E, Barea R and Sanz R. 2018. CNN-based fisheye image real-time semantic segmentation//2018 IEEE Intelligent Vehicles Symposium (IV). Changshu, China: IEEE: 1039-1044 [DOI: 10.1109/IVS.2018.8500456http://dx.doi.org/10.1109/IVS.2018.8500456]
Shervin M, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N and Terzopoulos D. 2020. Image segmentation using deep learning: a survey[EB/OL]. [2020-08-11].https://arxiv.org/pdf/2001.05566.pdfhttps://arxiv.org/pdf/2001.05566.pdf
Siam M, Elkerdawy S, Jagersand M and Yogamani S. 2017. Deep semantic segmentation for automated driving: taxonomy, roadmap and challenges//Proceedings of the 20th IEEE International Conference on Intelligent Transportation Systems (ITSC). Yokohama, Japan: IEEE: 1-8 [DOI: 10.1109/ITSC.2017.8317714http://dx.doi.org/10.1109/ITSC.2017.8317714]
Su Y C and Grauman K. 2018. Flat2 sphere: learning spherical convolution for fast features from 360°imagery[EB/OL]. [2020-08-12].https://arxiv.org/pdf/1708.00919v1.pdfhttps://arxiv.org/pdf/1708.00919v1.pdf
Tamura M, Horiguchi S and Murakami T. 2019. Omnidirectional pedestrian detection by rotation invariant training//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE: 1989-1998 [DOI: 10.1109/WACV.2019.00216http://dx.doi.org/10.1109/WACV.2019.00216]
Tateno K, Navab N and Tombari F. 2018. Distortion-aware convolutional filters for dense prediction in panoramic images//Proceedings of European Conference on Computer Vision. Munich, Germany: Springer: 732-750 [DOI: 10.1007/978-3-030-01270-0_43http://dx.doi.org/10.1007/978-3-030-01270-0_43]
van Tuan N, Nguyen T B and Chung S T. 2016. ConvNets and AGMM based real-time human detection under fisheye camera for embedded surveillance//Proceedings of 2016 International Conference on Information and Communication Technology Convergence (ICTC). Jeju, Korea (South): IEEE: 840-845 [DOI: 10.1109/ICTC.2016.7763311http://dx.doi.org/10.1109/ICTC.2016.7763311]
Wang C X, Zhang H R, Yang M, Wang X D, Ye L and Guo C Z. 2014. Automatic parking based on a bird's eye view vision system. Advances in Mechanical Engineering, 6: #847406 [DOI: 10.1155/2014/847406]
Wang J H, Shi F H, Zhang J and Liu Y C. 2008. A new calibration model of camera lens distortion. Pattern Recognition, 41(2): 607-615 [DOI: 10.1016/j.patcog.2007.06.012]
Wang T P, Hsieh Y Y, Wong F W and Chen Y F. 2019. Mask-RCNN based people detection using a top-view fisheye camera//Proceedings of 2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI). Kaohsiung, China: IEEE: 1-4 [DOI: 10.1109/TAAI48200.2019.8959887http://dx.doi.org/10.1109/TAAI48200.2019.8959887]
Wang T P and Liao C H. 2019. People detection in downward-viewing fisheye camera networks using fuzzy integral//Proceedings of 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). New Orleans, USA: IEEE: 1-5 [DOI: 10.1109/FUZZ-IEEE.2019.8859007http://dx.doi.org/10.1109/FUZZ-IEEE.2019.8859007]
Wang X F, Feng W J, Liu Q J, Zhang B F and Cao Z L. 2010. Calibration research on fish-eye lens//Proceedings of 2010 IEEE International Conference on Information and Automation. Harbin, China: IEEE: 385-390 [DOI: 10.1109/ICINFA.2010.5512175http://dx.doi.org/10.1109/ICINFA.2010.5512175]
Wang X J, Bai H Y, Wu F L and Ye X L. 2018. Fisheye lens distortion correction method based on improved spherical perspective projection. Journal of Graphics, 39(1): 43-49
王向军, 白皓月, 吴凡璐, 叶秀玲. 2018. 基于改进球面透视投影的鱼眼图像畸变校正方法. 图学学报, 39(1): 43-49) [DOI: 10.11996/JG.j.2095-302X.2018010043]
Wei Y, Pan X Y, Qin H W, Ouyang W L and Yan J J. 2018. Quantization mimic: towards very tiny CNN for object detection[EB/OL]. [2020-08-12].http://openaccess.thecvf.com/content_ECCV_2018/papers/Yi_Wei_Quantization_Mimic_Towards_ECCV_2018_paper.pdfhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Yi_Wei_Quantization_Mimic_Towards_ECCV_2018_paper.pdf
Xue Z C, Xue N, Xia G S and Shen W M. 2019. Learning to calibrate straight lines for fisheye image rectification//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 1643-1651 [DOI: 10.1109/CVPR.2019.00174http://dx.doi.org/10.1109/CVPR.2019.00174]
Yin X Q, Wang X C, Yu J, Zhang M J, Fua P and Tao D C. 2018. FishEyeRecNet: a multi-context collaborative deep network for fisheye image rectification//Proceedings of European Conference on Computer Vision. Munich, Germany: Springer: 475-490 [DOI: 10.1007/978-3-030-01249-6_29http://dx.doi.org/10.1007/978-3-030-01249-6_29]
Yogamani S, Hughes C, Horgan J, Sistu J, Chennupati S, Uricar M, Milz S, Simon M, Amende K, Witt C, Rashed H, Nayak S, Mansoor S, Varley P, Perrotton X, Odea D and Pérez P. 2019. WoodScape: a multi-task, multi-camera fisheye dataset for autonomous driving//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 9307-9317 [DOI: 10.1109/ICCV.2019.00940http://dx.doi.org/10.1109/ICCV.2019.00940]
Zhang S F, Wen L Y, Bian X, Lei Z and Li S Z. 2018. Single-shot refinement neural network for object detection//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 4203-4212 [DOI: 10.1109/CVPR.2018.00442http://dx.doi.org/10.1109/CVPR.2018.00442]
Zhang Z, He T, Zhang H, Zhang Z Y, Xie J Y, Li M and Services A W. 2019. Bag of freebies for training object detection neural networks[EB/OL]. [2020-08-12].https://arxiv.org/pdf/1902.04103.pdfhttps://arxiv.org/pdf/1902.04103.pdf
Zhao H S, Shi J P, Qi X J, Wang X G and Jia J Y. 2017. Pyramid scene parsing network//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 6230-6239 [DOI: 10.1109/CVPR.2017.660http://dx.doi.org/10.1109/CVPR.2017.660]
Zhao Y Q, Rao Y, Dong S P and Zhang J Y. 2020. Survey on deep learning object detection. Journal of Image and Graphics, 25(4): 629-654
赵永强, 饶元, 董世鹏, 张君毅. 2020. 深度学习目标检测方法综述. 中国图象图形学报, 25(4): 629-654) [DOI: 10.11834/jig.190307]
Zhou X Y, Gong W, Fu W L and Du F T. 2017. Application of deep learning in object detection//Proceedings of the 16th IEEE/ACIS International Conference on Computer and Information Science. Wuhan, China: IEEE: 631-634 [DOI: 10.1109/ICIS.2017.7960069http://dx.doi.org/10.1109/ICIS.2017.7960069]
Zhu J, Zhu J C, Wan X D and Xu C. 2018. Downside hemisphere object detection and localization of MAV by fisheye camera//Proceedings of the 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). Singapore, Singapore: IEEE: 532-537 [DOI: 10.1109/ICARCV.2018.8581129http://dx.doi.org/10.1109/ICARCV.2018.8581129]
Zhu X Z, Hu H, Lin S and Dai J F. 2019. Deformable ConvNets v2: more deformable, better results//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 9300-9308 [DOI: 10.1109/CVPR.2019.00953http://dx.doi.org/10.1109/CVPR.2019.00953]
相关作者
相关机构