图像分类的深度卷积神经网络模型综述
Overview of deep convolutional neural networks for image classification
- 2021年26卷第10期 页码:2305-2325
纸质出版日期: 2021-10-16 ,
录用日期: 2021-09-28
DOI: 10.11834/jig.200302
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-10-16 ,
录用日期: 2021-09-28
移动端阅览
张珂, 冯晓晗, 郭玉荣, 苏昱坤, 赵凯, 赵振兵, 马占宇, 丁巧林. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021,26(10):2305-2325.
Ke Zhang, Xiaohan Feng, Yurong Guo, Yukun Su, Kai Zhao, Zhenbing Zhao, Zhanyu Ma, Qiaolin Ding. Overview of deep convolutional neural networks for image classification[J]. Journal of Image and Graphics, 2021,26(10):2305-2325.
图像分类是计算机视觉中的一项重要任务,传统的图像分类方法具有一定的局限性。随着人工智能技术的发展,深度学习技术越来越成熟,利用深度卷积神经网络对图像进行分类成为研究热点,图像分类的深度卷积神经网络结构越来越多样,其性能远远好于传统的图像分类方法。本文立足于图像分类的深度卷积神经网络模型结构,根据模型发展和模型优化的历程,将深度卷积神经网络分为经典深度卷积神经网络模型、注意力机制深度卷积神经网络模型、轻量级深度卷积神经网络模型和神经网络架构搜索模型等4类,并对各类深度卷积神经网络模型结构的构造方法和特点进行了全面综述,对各类分类模型的性能进行了对比与分析。虽然深度卷积神经网络模型的结构设计越来越精妙,模型优化的方法越来越强大,图像分类准确率在不断刷新的同时,模型的参数量也在逐渐降低,训练和推理速度不断加快。然而深度卷积神经网络模型仍有一定的局限性,本文给出了存在的问题和未来可能的研究方向,即深度卷积神经网络模型主要以有监督学习方式进行图像分类,受到数据集质量和规模的限制,无监督式学习和半监督学习方式的深度卷积神经网络模型将是未来的重点研究方向之一;深度卷积神经网络模型的速度和资源消耗仍不尽人意,应用于移动式设备具有一定的挑战性;模型的优化方法以及衡量模型优劣的度量方法有待深入研究;人工设计深度卷积神经网络结构耗时耗力,神经架构搜索方法将是未来深度卷积神经网络模型设计的发展方向。
Image classification(IC) is one of important tasks in support of computer vision. Traditional image classification methods have limitations on the aspect of computer vision. Deep learning technology has become more mature than before based on deep convolutional neural network(DCNN) with the development of artificial intelligence(AI) recently. The performance of image classification has been upgraded based on the maturation of the deep convolutional neural network model.This research has mainly focused on a comprehensive overview of image classification in DCNN via the deep convolutional neural network model structure of image classification. Firstly
the modeling methodology has been analyzed and summarized. The DCNN analysis has been formulated into four categories listed below: 1)classic deep convolutional neural networks; 2)deep convolutional neural networks based on the attention mechanism; 3) lightweight networks; 4) the neural architecture search method. DCNN has high optimization capability using convolution to extract effective features of the images and learn feature expression from a large number of samples automatically. DCNN achieves better performance on image classification due to the effective features based on the deeper DCNN research and development. DCNN has been encounting lots of difficulities such as overfitting
vanishing gradient and huge model parameters.Hence
DCNN has become more and more difficult to optimize. The researchers in the context of IC have illustrated different DCNN models for different problems. Researchers have been making the network deeper that before via AlexNet. Subsequently
the classified analyses such as network in network(NIN)
Overfeat
ZFNet
Visual Geometry Group(VGGNet)
GoogLeNet have been persisted on.The problem of vanishing gradient has been more intensified via the deepening of the network.The optimization of the network becomes more complicated. Researchers have proposed residual network(ResNet) to ease gradient vanishing to improve the performance of image classification greatly. To further improve the performance of ResNet
researchers have issued a series of ResNet variants which can be divided into three categories in terms of different solutions via ResNet variants based on very deep ResNet optimization
ResNet variants based on increasing width and the new dimensions in ResNet variants. The ResNet has been attributed to the use of shortcut connections maximization. Densely connected convolutional network (DenseNet) have been demonstrated and the information flow in DenseNet between each layer has been maximized. To further promote the information flow between layers
the DenseNet variants have been illustrated via DPN(dual path network) and CliqueNet. DCNN based on the attention mechanism has focused on the regions of interest based on the classic DCNN models and channel attention mechanism
spatial attention mechanism and layer attention mechanism can be categorized. DCNN need higher accuracy and a small amount of parameters and fast model calculation speed. The researchers have proposed the lightweight networks such as the ShuffleNet series and MobileNet series. The NAS(neural architecture search) methods using neural networks to automatically design neural networks have been conerned. The NAS methods can be divided into three categories: design search space
model optimization and others. Secondly
The image classification datasets have been commonly presented in common including MNIST(modified NIST(MNIST)) dataset
ImageNet dataset
CIFAR dataset and SVHN(street view house number(SVHN)) dataset. The comparative performance and analysis of experimental results of various models were conducted as well.The accuracy
parameter and FLOPs(floating point operations) analyses to measure the results of classification have been mentioned. The capability of model optimization has been upgraded gradually via the accuracy improvement of image classification
the decreasing amount of parameters of the model and increasing speed of training and inference. Finally
the DCNN model has been constrained some factors. The DCNN model has been mainly used to supervise deep learning for image classification in constraint of the quality and scale of the datasets.The speed and resource consuming of the DCNN model have been upgraded in mobile devices.The measurment and optimization in analyzing the advantages and disadvantages of the DCNN model need to be studied further.The neural architecture search method will be the development direction of future deep convolutional neural network model designs. The DCNN models of image classification have been reviewed and the experimental results of the DCNNs have been demonstrated.
深度学习图像分类(IC)深度卷积神经网络(DCNN)模型结构模型优化
deep learningimage classification(IC)deep convolutional neural networks(DCNN)model structuremodel optimization
Abdi M and Nahavandi S. 2017. Multi-residual networks: improving the speed and accuracy of residual networks[EB/OL]. [2020-05-22].https://arxiv.org/pdf/1609.05672.pdfhttps://arxiv.org/pdf/1609.05672.pdf
Bello I, Zoph B, Vasudevan V and Le Q V. 2017. Neural optimizer search with reinforcement learning//Proceedings of the 34th International Conference on Machine Learning (ICML). Sydney, Australia: [s. n.]: 459-468
Cao Y, Xu J R, Lin S, Wei F Y and Hu H. 2019. GCNet: non-local networks meet squeeze-excitation networks and beyond//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE: 1971-1980[DOI: 10.1109/ICCVW.2019.00246http://dx.doi.org/10.1109/ICCVW.2019.00246]
Chen Y P, Li J N, Xiao H X, Jin X J, Yan S C and Feng J S. 2017. Dual path networks//Advances in Neural Information Processing Systems 30. Long Beach, USA: [s. n.]: 4467-4475
Chollet F. 2017. Xception: deep learning with depthwise separable convolutions//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 1800-1807[DOI: 10.1109/CVPR.2017.195http://dx.doi.org/10.1109/CVPR.2017.195]
Cubuk E D, Zoph B, ManéD, Vasudevan V and Le Q V. 2019. AutoAugment: learning augmentation strategies from data//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 113-123[DOI: 10.1109/CVPR.2019.00020http://dx.doi.org/10.1109/CVPR.2019.00020]
Deng J, Dong W, Socher R, Li L J, Li K and Li F F. 2009. ImageNet: a large-scale hierarchical image database//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, USA: IEEE: 248-255[DOI: 10.1109/CVPR.2009.5206848http://dx.doi.org/10.1109/CVPR.2009.5206848]
Gao S H, Chen M M, Zhao K, Zhang X Y, Yang M H and Torr P. 2021. Res2Net: a new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(2): 652-662[DOI: 10.1109/TPAMI.2019.2938758]
Gao Z L, Xie J T, Wang Q L and Li P H. 2019. Global second-order pooling convolutional networks//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 3024-3033[DOI: 10.1109/CVPR.2019.00314http://dx.doi.org/10.1109/CVPR.2019.00314]
Ghiasi G, Lin T Y and Le Q V. 2019. NAS-FPN: learning scalable feature pyramid architecture for object detection//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 7036-7045[DOI: 10.1109/CVPR.2019.00720http://dx.doi.org/10.1109/CVPR.2019.00720]
Gu J X, Wang Z H, Kuen J, Ma L Y, Shahroudy A, Shuai B, Liu T, Wang X X, Wang G, Cai J F and Chen T. 2018. Recent advances in convolutional neural networks. Pattern Recognition, 77: 354-377[DOI: 10.1016/j.patcog.2017.10.013]
Guo Y R, Zhang K, Wang X S, Yuan J S, Zhao Z B and Ma Z Y. 2020. Image classification method based on end-to-end dual feature reweight DenseNet. Journal of Image and Graphics, 25(3): 486-497
郭玉荣, 张珂, 王新胜, 苑津莎, 赵振兵, 马占宇. 2020. 端到端双通道特征重标定DenseNet图像分类. 2020. 中国图象图形学报, 25(3): 486-497 [DOI: 10.11834/jig.190290]
Han D, Kim J and Kim J. 2017. Deep pyramidal residualnetworks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 6307-6315[DOI: 10.1109/CVPR.2017.668http://dx.doi.org/10.1109/CVPR.2017.668]
He K M, Zhang X Y, Ren S Q and Sun J. 2015. Delving deep into rectifiers: Surpassing human level performance on imagenet classification//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE: 1026-1034[DOI: 10.1109/ICCV.2015.123http://dx.doi.org/10.1109/ICCV.2015.123]
He K M, Zhang X Y, Ren S Q and Sun J. 2016a. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 770-778[DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
He K M, Zhang X Y, Ren S Q and Sun J. 2016b. Identity mappings in deep residual networks//Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer: 630-645[DOI: 10.1007/978-3-319-46493-0_38http://dx.doi.org/10.1007/978-3-319-46493-0_38]
Howard A, Sandler M, Chen B, Wang W J, Chen L C, Tan M X, Chu G, Vasudevan V, Zhu Y K, Pang R M, Adam H and Le Q. 2019. Searching for MobileNetV3//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE: 1314-1324[DOI: 10.1109/ICCV.2019.00140http://dx.doi.org/10.1109/ICCV.2019.00140]
Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, Andreetto Mand Adam H. 2017. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2020-05-22].https://arxiv.org/pdf/1704.04861.pdfhttps://arxiv.org/pdf/1704.04861.pdf
Hu J, Shen L and Sun G. 2018. Squeeze-and-excitation networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City, USA: IEEE: 7132-7141[DOI: 10.1109/CVPR.2018.00745http://dx.doi.org/10.1109/CVPR.2018.00745]
Huang G, Liu S C, van der Maaten L and Weinberger K Q. 2018. CondenseNet: an efficient DenseNet using learned group convolutions//Proceedings of 2018 Conference on computer vision and pattern recognition (CVPR). Salt Lake City, USA: IEEE: 2752-2761[DOI: 10.1109/cvpr.2018.00291http://dx.doi.org/10.1109/cvpr.2018.00291]
Huang G, Liu Z, van der Maaten L and Weinberger K Q. 2017. Densely connected convolutional networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 2261-2269[DOI: 10.1109/CVPR.2017.243http://dx.doi.org/10.1109/CVPR.2017.243]
Huang G, Sun Y, Liu Z, Sedra D and Weinberger K Q. 2016. Deep networks with stochastic depth//Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer: 646-661[DOI: 10.1007/978-3-319-46493-0_39http://dx.doi.org/10.1007/978-3-319-46493-0_39]
Iandola F N, Han S, Moskewicz M W, Ashraf K, Dally W J and Keutzer K. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB model size[EB/OL]. [2020-05-22].http://arxiv.org/pdf/1602.07360.pdfhttp://arxiv.org/pdf/1602.07360.pdf
Ioffe S and Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift//Proceedings of the 32nd International Conference on Machine Learning (ICML). Lille, France: [s. n.]: 448-456
Khan A, Sohail A, Zahoora U and Qureshi A S. 2019. A survey of the recent architectures of deep convolutional neural networks[EB/OL]. [2020-08-10].https://arxiv.org/pdf/1901.06032.pdfhttps://arxiv.org/pdf/1901.06032.pdf
Krizhevsky A. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report TR-2009, University of Toronto, Toronto
Krizhevsky A, Sutskever I and Hinton G E. 2012. Imagenet classification with deep convolutional neural networks//Proceedings of the 26th Conference on Neural Information Processing Systems (NIPS). Lake Tahoe, USA: [s. n.]: 1106-1114
Larsson G, Maire M and Shakhnarovich G. 2017. FractalNet: ultra-deep neural networks without residuals//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: [s. n.]
LeCun Y, Bengio Y and Hinton G. 2015. Deep learning. Nature, 521(7553): 436-444[DOI: 10.1038/nature14539]
LeCun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of IEEE, 86(11): 2278-2324[DOI: 10.1109/5.726791]
Li X, Wang W H, Hu X L and Yang J. 2019. Selective kernel networks//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 510-519[DOI: 10.1109/CVPR.2019.00060http://dx.doi.org/10.1109/CVPR.2019.00060]
Lin J D, Wu X Y, Chai Y and Yin H P. 2020. Structure optimization of convolutional neural networks: a survey. Acta Automatica Sinica, 46(1): 24-37
林景栋, 吴欣怡, 柴毅, 尹宏鹏. 2020. 卷积神经网络结构优化综述. 自动化学报, 46(1): 24-37 [DOI: 10.16383/j.aas.c180275]
Lin M, Chen Q and Yan S C. 2013. Network in network[EB/OL]. [2020-05-22].https://arxiv.org/pdf/1312.4400.pdfhttps://arxiv.org/pdf/1312.4400.pdf
Liu C X, Zoph B, Neumann M, Shlens J, Hua W, Li L J, Li F F, Yuille A, Huang J and Murphy K. 2018. Progressive neural architecture search//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer: 19-35[DOI: 10.1007/978-3-030-01246-5_2http://dx.doi.org/10.1007/978-3-030-01246-5_2]
Liu H X, Simonyan K and Yang Y M. 2019. DARTS: differentiable architecture search//Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: [s. n.]
Ma N N, Zhang X Y, Zheng H T and Sun J. 2018. ShuffleNet V2: practical guidelines for efficient CNN architecture design//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer: 122-138[DOI: 10.1007/978-3-030-01264-9_8http://dx.doi.org/10.1007/978-3-030-01264-9_8]
Moniz J and Pal C. 2016. Convolutional residual memory networks[EB/OL]. [2020-05-22].https://arxiv.org/pdf/1606.05262v1.pdfhttps://arxiv.org/pdf/1606.05262v1.pdf
Netzer Y, Wang T, Coates A, Bissacco A, Wu B and Ng A Y. 2011. Reading digits in natural images with unsupervised feature learning. NIPS Workshop on Deep Learning and Unsupervised Feature Learning. Granada: [s. n.]: 12-17
Pham H, Guan M Y, Zoph B, Le Q V and Dean J. 2018. Efficient neural architecture search via parameter sharing//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: [s. n.]: 4092-4101
Radosavovic I, Kosaraju R P, Girshick R, He K M and Dollár P. 2020. Designing network design spaces//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 10425-10433[DOI: 10.1109/CVPR42600.2020.01044http://dx.doi.org/10.1109/CVPR42600.2020.01044]
Ramachandran P, Zoph B and Le Q V. 2017. Searching for activation functions//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada: [s. n.]
Real E, Aggarwal A, Huang Y P and Le Q V. 2019. Regularized evolution for image classifier architecture search//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 31st Innovative Applications of Artificial Intelligence Conference, 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Honolulu, USA: AAAI Press: 4780-4789
Sandler M, Howard A, Zhu M L, Zhmoginov A and Chen L C. 2019. MobileNetV2: inverted residuals and linear bottlenecks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 4510-4520[DOI: 10.1109/CVPR.2018.00474http://dx.doi.org/10.1109/CVPR.2018.00474]
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R and LeCun Y. 2014. OverFeat: integrated recognition, localization and detection using convolutional networks//Proceedings of the 2nd International Conference on Learning Representations. Banff, Canada: [s. n.]
Shen F L, Gan R and Zeng G. 2016. Weighted residuals for very deep networks//Proceedings of the 3rd International Conference on Systems and Informatics (ICSAI). Shanghai, China: IEEE: 936-941[DOI: 10.1109/ICSAI.2016.7811085http://dx.doi.org/10.1109/ICSAI.2016.7811085]
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition//Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: [s. n.]
Singh S, Hoiem D and Forsyth D A. 2016. Swapout: learning an ensemble of deep architectures//Advances in Neural Information Processing Systems 29. Barcelona, Spain: [s. n.]: 28-36
Srivastava R K, Greff K and Schmidhuber J. 2015. Highway networks[EB/OL]. [2020-5-22].http://arxiv.org/pdf/1505.00387.pdfhttp://arxiv.org/pdf/1505.00387.pdf
Sun J D and Zhao S. 2009. Image Low-Level Feature Extraction and Retrieval Technology. Beijing: Electronic Industry Press
孙君顶, 赵珊. 2009. 图像低层特征提取与检索技术. 北京: 电子工业出版社
Szegedy C, Ioffe S, Vanhoucke V and Alemi A A. 2016b. Inception-v4, Inception-ResNet and the impact of residual connections on learning//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI: 4278-4284
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE: 1-9[DOI: 10.1109/CVPR.2015.7298594http://dx.doi.org/10.1109/CVPR.2015.7298594]
Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z. 2016a. Rethinking the Inception Architecture for Computer Vision//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 2818-2826[DOI: 10.1109/CVPR.2016.308http://dx.doi.org/10.1109/CVPR.2016.308]
Tan M X, Chen B, Pang R M, Vasudevan V, Sandler M, Howard A and Le Q V. 2019a. MnasNet: platform-aware neural architecture search for mobile//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE: 2820-2828[DOI: 10.1109/CVPR.2019.00293http://dx.doi.org/10.1109/CVPR.2019.00293]
Tan M X and Le Q V. 2019b. EfficientNet: rethinking model scaling for convolutional neural networks//Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: [s. n.]: 6105-6114
Targ S, Almeida D and Lyman K. 2016. Resnet in Resnet: generalizing residual architectures[EB/OL]. [2020-05-22]https://arxiv.org/pdf/1603.08029.pdfhttps://arxiv.org/pdf/1603.08029.pdf
Veit A, Wilber M J and Belongie S. 2016. Residual networks behave like ensembles of relatively shallow networks//Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS). Barcelona, Spain: ACM: 550-558[DOI: 10.5555/3157096.3157158http://dx.doi.org/10.5555/3157096.3157158]
Wang F, Jiang M Q, Qian C, Yang S, Li C, Zhang H G, Wang X G and Tang X O. 2017. Residual attention network for image classification//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 6450-6458[DOI: 10.1109/CVPR.2017.683http://dx.doi.org/10.1109/CVPR.2017.683]
Wang X L, Girshick R, Gupta A and He K M. 2018. Non-local neural networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 7794-7803[DOI: 10.1109/CVPR.2018.00813http://dx.doi.org/10.1109/CVPR.2018.00813]
Woo S, Park J, Lee J Y and Kweon I S. 2018. CBAM: convolutional block attention module//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer: 3-19[DOI: 10.1007/978-3-030-01234-2_1http://dx.doi.org/10.1007/978-3-030-01234-2_1]
Xie S N, Girshick R, Dollár P, Tu Z W and He K M. 2017. Aggregated residual transformations for deep neural networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 5897-5995[DOI: 10.1109/CVPR.2017.634http://dx.doi.org/10.1109/CVPR.2017.634]
Yamada Y, Iwamura M and Kise K. 2016. Deep pyramidal residual networks with separated stochastic depth[EB/OL]. [2020-05-22].https://arxiv.org/pdf/1612.01230.pdfhttps://arxiv.org/pdf/1612.01230.pdf
Yang T J, Howard A, Chen B, Zhang X, Go A, Sandler M, Sze V and Adam H. 2018b. NetAdapt: platform-aware neural network adaptation for mobile applications//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer: 289-304[DOI: 10.1007/978-3-030-01249-6_18http://dx.doi.org/10.1007/978-3-030-01249-6_18]
Yang Y B, Zhong Z S, Shen T C and Lin Z C. 2018a. Convolutional neural networks with alternately updated clique//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 2413-2422[DOI: 10.1109/CVPR.2018.00256http://dx.doi.org/10.1109/CVPR.2018.00256]
Zagoruyko S and Komodakis N. 2016. Wide residual networks//Proceedings of the British Machine Vision Conference (BMVC). York, UK: BMVA Press: 87.1-12[DOI: 10.5244/C.30.87http://dx.doi.org/10.5244/C.30.87]
Zeiler M D and Fergus R. 2014. Visualizing and understanding convolutional networks//Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland: Springer: 818-833[DOI: 10.1007/978-3-319-10590-1_53http://dx.doi.org/10.1007/978-3-319-10590-1_53]
Zhang H, Wu C R, Zhang Z Y, Zhu Y, Lin H B, Zhang Z, Sun Y, He T, Mueller J, Manmatha R, Liu M and Smola A. 2020. ResNeSt: split-attention networks[EB/OL]. [2020-05-22].https://arxiv.org/pdf/2004.08955.pdfhttps://arxiv.org/pdf/2004.08955.pdf
Zhang K, Guo L R, Gao C and Zhao Z B. 2019a. Pyramidal RoR for image classification. Cluster Computing, 22(2): 5115-5125[DOI: 10.1007/s10586-017-1443-x]
Zhang K, Guo Y R, Wang X S, Yuan J S and Ding Q L. 2019b. Multiple feature reweight DenseNet for image classification. IEEE Access, 7: 9872-9880[DOI: 10.1109/ACCESS.2018.2890127]
Zhang K, Guo Y R, Wang X S, Yuan J S, Ma Z Y and Zhao Z B. 2019c. Channel-wise and feature-points reweights densenet for image classification//Proceedings of 2019 IEEE International Conference on Image Processing (ICIP). Taipei, China: IEEE: 410-414[DOI: 10.1109/ICIP.2019.8802982http://dx.doi.org/10.1109/ICIP.2019.8802982]
Zhang K, Sun M, Han T X, Yuan X F, Guo L R and Liu T. 2018a. Residual networks of residual networks: multilevel residual networks. IEEE Transactions on Circuits and Systems for Video Technology, 28(6): 1303-1314[DOI: 10.1109/TCSVT.2017.2654543]
Zhang S, Gong Y H and Wang J J. 2019. The development of deep convolution neural network and its applications on computer vision. Chinese Journalof Computers, 42(3): 453-482
张顺, 龚怡宏, 王进军. 2019. 深度卷积神经网络的发展及其在计算机视觉领域的应用. 计算机学报, 42(3): 453-482 [DOI: 10.11897/SP.J.1016.2019.00453]
Zhang X C, Li Z Z, Loy C C and Lin D H. 2017. PolyNet: a pursuit of structural diversity in very deep networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE: 3900-3908[DOI: 10.1109/CVPR.2017.415http://dx.doi.org/10.1109/CVPR.2017.415]
Zhang X Y, Zhou X Y, Lin M X and Sun J. 2018b. ShuffleNet: an extremely efficient convolutional neural network for mobile devices//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 6848-6856[DOI: 10.1109/CVPR.2018.00716http://dx.doi.org/10.1109/CVPR.2018.00716]
Zoph B and Le Q V. 2016. Neural architecture search with reinforcement learning//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: [s. n.]
Zoph B, Cubuk E D, Ghiasi G, Lin T Y, Shlens J and Le Q V. 2019. Learning data augmentation strategies for object detection//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 566-583[DOI: 10.1007/978-3-030-58583-9_34http://dx.doi.org/10.1007/978-3-030-58583-9_34]
Zoph B, Vasudevan V, Shlens J and Le Q V. 2018. Learning transferable architectures for scalable image recognition//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE: 8697-9710[DOI: 10.1109/CVPR.2018.00907http://dx.doi.org/10.1109/CVPR.2018.00907]
相关作者
相关机构