遥感边缘智能技术研究进展及挑战
Progress and challenges of remote sensing edge intelligence technology
- 2020年25卷第9期 页码:1719-1738
纸质出版日期: 2020-09-16 ,
录用日期: 2020-07-15
DOI: 10.11834/jig.200288
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2020-09-16 ,
录用日期: 2020-07-15
移动端阅览
孙显, 梁伟, 刁文辉, 曹志颖, 冯瑛超, 王冰, 付琨. 遥感边缘智能技术研究进展及挑战[J]. 中国图象图形学报, 2020,25(9):1719-1738.
Xian Sun, Wei Liang, Wenhui Diao, Zhiying Cao, Yingchao Feng, Bing Wang, Kun Fu. Progress and challenges of remote sensing edge intelligence technology[J]. Journal of Image and Graphics, 2020,25(9):1719-1738.
随着航空航天、遥感和通信等技术的快速发展,5G等高效通信技术的革新,遥感边缘智能(edge intelligence)成为当下备受关注的研究课题。遥感边缘智能技术通过将遥感数据处理与分析技术前置实现,在近数据源的位置进行高效地遥感信息分析和决策,在卫星在轨处理解译、无人机动态实时跟踪、大规模城市环境重建和无人驾驶识别规划等应用场景中起着至关重要的作用。本文对边缘智能在遥感数据解译中的研究现状进行了归纳总结,介绍了目前遥感智能算法模型在边缘设备进行部署应用中面临的主要问题,即数据样本的限制、计算资源的限制以及灾难性遗忘问题等。针对问题具体阐述了解决思路和主要技术途径,包括小样本情况下的泛化学习方法,详细介绍了样本生成和知识复用两种解决思路;轻量化模型的设计与训练,分析了模型剪枝和量化等方法以及基于知识蒸馏的训练框架;面向多任务的持续学习方法,对比了样本数据重现和模型结构扩展两种原理。同时,还结合了典型的遥感边缘智能应用,对代表性算法的优势和不足进行了深层剖析。最后介绍了遥感边缘智能面临的挑战,以及未来技术的主要发展方向。
Remote sensing edge intelligence technology has become an important research topic due to the rapid development of aerospace
remote sensing
and communication as well as the innovation of 5G and other efficient communication technologies. Remote sensing edge intelligence technology aims to achieve the front of intelligent application and perform efficient information analysis and decision making at a location close to the data source. This technology can be effectively used in satellite on-orbit processing and interpretation
unmanned aerial vehicle(UAV) dynamic real-time tracking
large-scale urban environment reconstruction
automatic driving recognition planning
and other scenarios to saving a considerable amount of transmission bandwidth
processing time
and resource consumption and achieve fast
accurate
and compact design of intelligent technology algorithm. We summarize the research status of edge intelligence in remote sensing in this study. First
we discuss the problems faced by the current remote sensing field in deployment of applications on edge devices
namely
1) limitation of number of samples: compared with visual scene images
remote sensing data continue to be a problem of small samples. Remote sensing scenes contain a large number of complex backgrounds and target categories
but the actual number of effective samples is relatively small. Newly emerged and modified targets typically face serious problems of uneven distribution of categories. 2) Limitation of computing resources: coverage area of remote sensing images that can generally reach several or even hundreds of kilometers and data size of a single image that can reach up to several hundred GBs require a large amount of storage space for edge devices. In addition
the increasing complexity of deep learning models increases the requirements for computing power resources. Therefore
remote sensing edge intelligence must solve the contradiction between model complexity and power consumption on edge devices. 3) Catastrophic forgetting: new tasks and categories continue to emerge in the analysis of remote sensing data. Existing algorithms have poor generalization ability for continuous input data. Hence
continuous learning must also be solved to maintain high accuracy and high performance of algorithms. We then introduce solutions and primary technical approaches to related problems
including generalized learning in the case of small samples
design and training strategy of the lightweight model
and continuous learning for multitasks. 1) Generalized learning in the case of small samples: we summarize existing solutions into two categories
namely
combine characteristics of remote sensing images to expand the sample intelligently and meet data requirements of the model training as well as introduce priority knowledge from the perspective of knowledge reuse through different learning strategies
such as transfer learning
meta- learning
and metric learning
to assist the model in learning new categories and reduce the model's need for remote sensing data. 2) Design and training strategy of the lightweight model: the former introduces convolution calculation unit design
artificial network design
automatic design
model pruning and quantification methods
while the latter compares training frameworks based on knowledge distillation and traditional training methods. 3) Continuous learning for multitasks: the first category is based on the reproduction of sample data. The model plays back stored samples while learning new tasks by storing samples of previous tasks or applying a generated model to generate pseudo samples to balance the training data of different tasks and reduce the problem of catastrophic forgetting. The second category is based on the method of model structure expansion. The model is divided into subsets dedicated to each task by constraining parameter update strategies or isolating model parameters. The method of model structure expansion improves the task adaptability of the model and avoids catastrophic forgetting without relying on historical data. Furthermore
combined with typical applications of remote sensing edge intelligence technology
we analyze the advantages and disadvantages of representative algorithms. Finally
we discuss challenges faced by remote sensing edge intelligence technology and future directions of this study. Further research is required in remote sensing edge intelligence technology to improve its depth and breadth of application.
遥感数据边缘智能小样本学习模型轻量化持续学习
remote sensing dataedge intelligencefew-shot learninglightweight modelcontinuous learning
Alajaji D and Alhichri H. 2020. Few shot scene classification in remote sensing using meta-agnostic machine//Proceedings of the 6th Conference on Data Science and Machine Learning Applications. Riyadh, Saudi Arabia: IEEE: 77-80[DOI:10.1109/cdma47397.2020.00019http://dx.doi.org/10.1109/cdma47397.2020.00019]
Aljundi R, Chakravarty P and Tuytelaars T. 2017. Expert gate: lifelong learning with a network of experts//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 3366-3375[DOI:10.1109/CVPR.2017.753http://dx.doi.org/10.1109/CVPR.2017.753]
Bruzzone L and Prieto D F. 1999. An incremental-learning neural network for the classification of remote-sensing images. Pattern Recognition Letters, 20(11-13):1241-1248[DOI:10.1016/S0167-8655(99)00091-4]
Cao Z Y, Fu K, Lu X D, Diao W H, Sun H, Yan M L, Yu H F and Sun X. 2019. End-to-end DSM fusion networks for semantic segmentation in high-resolution aerial images. IEEE Geoscience and Remote Sensing Letters, 16(11):1766-1770[DOI:10.1109/LGRS.2019.2907009]
Chen Z, Zhang T and Ouyang C. 2018. End-to-end airplane detection using transfer learning in remote sensing images. Remote Sensing, 10(1):#139[DOI:10.3390/rs10010139]
Chollet F. 2017. Xception: deep learning with depthwise separable convolutions//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 1800-1807[DOI:10.1109/CVPR.2017.195http://dx.doi.org/10.1109/CVPR.2017.195]
Deng J, Dong W, Socher R, Li L J, Li K and Li F F. 2009. ImageNet: a large-scale hierarchical image database//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE: 248-255[DOI:10.1109/cvpr.2009.5206848http://dx.doi.org/10.1109/cvpr.2009.5206848]
Fernando C, Banarse D, Blundell C, Zwols Y, Ha D, Rusu AA, Pritzel A and Wierstra D. 2017. Pathnet: evolution channels gradient descent in super neural networks[EB/OL].[2020-02-04].https://arxiv.org/pdf/1701.08734.pdfhttps://arxiv.org/pdf/1701.08734.pdf
Finn C, Abbeel P and Levine S. 2017. Model-agnostic meta-learning for fast adaptation of deep networks//Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR.org: 1126-1135
Gao X, Sun X, Yan M L, Sun H, Fu K, Zhang Y and Ge Z P. 2018. Road extraction from remote sensing images by multiple feature pyramid network//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE: 6907-6910[DOI:10.1109/IGARSS.2018.8519093http://dx.doi.org/10.1109/IGARSS.2018.8519093]
Guo Y W, Yao A B and Chen Y R. 2016. Dynamic network surgery for efficient DNNs//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: ACM: 1381-1395
Hassibi B and Stork D G. 1993. Second order derivatives for network pruning: optimal brain surgeon//Advances in Neural Information Processing Systems. San Francisco: ACM: 164-171
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 770-778[DOI:10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
He Y H, Zhang X Y and Sun J. 2017. Channel pruning for accelerating very deep neural networks//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE: 1398-1406[DOI:10.1109/ICCV.2017.155http://dx.doi.org/10.1109/ICCV.2017.155]
Hinton G E, Vinyals O and Dean J. 2015. Distilling the knowledge in a neural network[EB/OL].[2020-02-04].https://arxiv.org/pdf/1503.02531.pdfhttps://arxiv.org/pdf/1503.02531.pdf
Howard A, Sandler M, Chu G, Chen L C, Chen B, Tan M X, Wang W J, Zhu Y K, Pang R M, Vasudevan V, Le Q V and Adam H. 2019. Searching for MobileNetV3[EB/OL].[2020-02-04].https://arxiv.org/pdf/1905.02244.pdfhttps://arxiv.org/pdf/1905.02244.pdf
Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, Andreetto M and Adam H. 2017. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-02-04].https://arxiv.org/pdf/1704.04861.pdfhttps://arxiv.org/pdf/1704.04861.pdf
Huang G, Liu Z, Van Der Maaten L and Weinberger K Q. 2017a. Densely connected convolutional networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 2261-2269[DOI:10.1109/CVPR.2017.243http://dx.doi.org/10.1109/CVPR.2017.243]
Huang Z L, Pan Z X and Lei B. 2017b. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sensing, 9(9):#907[DOI:10.3390/rs9090907]
Hubara I, Courbariaux M and Soudry D. 2016. Binarized neural networks//Proceedings of 2016 Conference on Neural Information Processing Systems. Barcelona: NIPS: # 6573
Iandola F N, Han S, Moskewicz M W, Ashraf K, Dally W J and Keutzer K. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size[EB/OL].[2020-02-04].https://arxiv.org/pdf/1602.07360.pdfhttps://arxiv.org/pdf/1602.07360.pdf
Jacob B, Kligys S, Chen B, Zhu M L, Tang M, Howard A, Adam H and Kalenichenko D. 2018. Quantization and training of neural networks for efficient integer-arithmetic-only inference//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 2704-2713[DOI:10.1109/cvpr.2018.00286http://dx.doi.org/10.1109/cvpr.2018.00286]
Ji M, Liu L F and Buchroithner M. 2018. Identifying collapsed buildings using post-earthquake satellite imagery and convolutional neural networks:a case study of the 2010 Haiti earthquake. Remote Sensing, 10(11):#1689[DOI:10.3390/rs10111689]
Ji S W, Xu W, Yang M and Yu K. 2013.3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):221-231[DOI:10.1109/tpami.2012.59]
Kaya M and Bilge H Ş. 2019. Deep metric learning:a survey. Symmetry, 11(9):1066[DOI:10.3390/sym11091066]
Kemker R, Salvaggio C and Kanan C. 2018. Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 145:60-77[DOI:10.1016/j.isprsjprs.2018.04.014]
Kim J, Park S and Kwak N. 2018. Paraphrasing complex network: network compression via factor transfer//Proceedings of the 32nd Conference on Neural Information Processing Systems. Montréal: NIPS: #7541
Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu A A, Milan K, Quan J, Ramalho T, Grabska-Barwinska A, Hassabis D, Clopath C, Kumaran D and Hadsell R. 2017. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences of the United States of America, 114(13):3521-3526[DOI:10.1073/pnas.1611835114]
Kong F J, Huang B H, Bradbury K and Malof J M. 2020. The synthinel-1 dataset: a collection of high resolution synthetic overhead imagery for building segmentation//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass Village, CO: IEEE: 1803-1812[DOI:10.1109/wacv45572.2020.9093339http://dx.doi.org/10.1109/wacv45572.2020.9093339]
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook: ACM: 1097-1105
Kurnaz M N, Dokur Z and Ölmez T. 2005. Segmentation of remote-sensing images by incremental neural network. Pattern Recognition Letters, 26(8):1096-1104[DOI:10.1016/j.patrec.2004.10.004]
Kusk A, Abulaitijiang A and Dall J. 2016. Synthetic SAR image generation using sensor, terrain and target models//Proceedings of the 11th EUSAR European Conference on Synthetic Aperture Radar. Hamburg: VDE: 405-409
LeCun Y, Denker J S and Solla S A. 1989. Optimal brain damage//Proceedings of the 2nd International Conference on Neural Information Processing Systems. Cambridge: ACM: 598-605
LeCun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324[DOI:10.1109/5.726791]
Li D W, Wang X L and Kong D G. 2017. DeepRebirth: accelerating deep neural network execution on mobile devices[EB/OL].[2020-02-04].https://arxiv.org/pdf/1708.04728.pdfhttps://arxiv.org/pdf/1708.04728.pdf
Li H F, Jiang H, Gu X, Peng J, Li W B, Hong L and Tao C. 2020. CLRS:continual learning benchmark for remote sensing image scene classification. Sensors, 20(4):#1226[DOI:10.3390/s20041226]
Li L, Zhang S B and Wu J. 2019. Efficient object detection framework and hardware architecture for remote sensing images. Remote Sensing, 11(20):#2376[DOI:10.3390/rs11202376]
Li Z Z and Hoiem D. 2018. Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12):2935-2947[DOI:10.1109/TPAMI.2017.2773081]
Lin X F, Zhao C and Pan W. 2017. Towards accurate binary convolutional neural network//Proceedingsof the 31st Conference on Neural Information Processing Systems. Long Beach: NIPS: #6638
Liu B, Yu X C, Yu A Z, Zhang P Q, Wan G and Wang R R. 2019. Deep few-shot learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(4):2290-2304[DOI:10.1109/tgrs.2018.2872830]
Liu Z, Li J G, Shen Z Q, Huang G, Yan S M and Zhang C S. 2017. Learning efficient convolutional networks through network slimming//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE: 2755-2763[DOI:10.1109/ICCV.2017.298http://dx.doi.org/10.1109/ICCV.2017.298]
Luo C and Ma L. 2018. Manifold regularized distribution adaptation for classification of remote sensing images. IEEE Access, 6:4697-4708[DOI:10.1109/access.2018.2789932]
Luo J H, Wu J X and Lin W Y. 2017. ThiNet: a filter level pruning method for deep neural network compression//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE: 2068-5076[DOI:10.1109/ICCV.2017.541http://dx.doi.org/10.1109/ICCV.2017.541]
Ma D A, Tang P and Zhao L J. 2019. SiftingGAN:generating and sifting labeled samples to improve the remote sensing image scene classification baseline in vitro. IEEE Geoscience and Remote Sensing Letters, 16(7):1046-1050[DOI:10.1109/lgrs.2018.2890413]
Ma H J, Liu Y L, Ren Y H and Yu J X. 2020. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3. Remote Sensing, 12(1):#44[DOI:10.3390/rs12010044]
Ma N N, Zhang X Y, Zheng H T and Sun J. 2018. ShuffleNet V2: practical guidelines for efficient CNN architecture design//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer: 122-138[DOI:10.1007/978-3-030-01264-9_8http://dx.doi.org/10.1007/978-3-030-01264-9_8]
Mallya A, Davis D and Lazebnik S. 2018. Piggyback: adapting a single network to multipletasks by learning to mask weights//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer: 67-82[DOI:10.1007/978-3-030-01225-0_5http://dx.doi.org/10.1007/978-3-030-01225-0_5]
Malmgren-Hansen D, Kusk A, Dall J, Nielsen A A, Engholm R and Skriver H. 2017. Improving SAR automatic target recognition models with transfer learning from simulated data. IEEE Geoscience and Remote Sensing Letters, 14(9):1484-1488[DOI:10.1109/lgrs.2017.2717486]
Mao H Z, Han S, Pool J, Li W S, Liu X Y, Wang Y, and Dally W J. 2017. Exploring the regularity of sparse structure in convolutional neural networks[EB/OL].[2020-02-04].https://arxiv.org/pdf/1705.08922.pdfhttps://arxiv.org/pdf/1705.08922.pdf
Marmanis D, Datcu M, Esch T and Stilla U. 2016. Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geoscience and Remote Sensing Letters, 13(1):105-109[DOI:10.1109/lgrs.2015.2499239]
Pan S J and Yang Q. 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359[DOI:10.1109/tkde.2009.191]
Parikh D and Polikar R. 2007. An ensemble-based incremental learning approach to data fusion. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(2):437-450[DOI:10.1109/TSMCB.2006.883873]
Rao M B, Tang P and Zhang Z. 2019. Spatial-spectral relation network for hyperspectral image classification with limited training samples. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12):5086-5100[DOI:10.1109/jstars.2019.2957047]
Rastegari M, Ordonez V, Redmon J and Farhadi A. 2016. XNOR-Net: imageNet classification using binary convolutional neural networks//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer: 525-542[DOI:10.1007/978-3-319-46493-0_32http://dx.doi.org/10.1007/978-3-319-46493-0_32]
Rebuffi S A, Kolesnikov A, Sperl G and Lampert C H. 2017. ICaRL: incremental classifier and representation learning//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 2001-2010[DOI:10.1109/CVPR.2017.587http://dx.doi.org/10.1109/CVPR.2017.587]
Romero A, Ballas N, Kahou S E, Chassang A, Gatta C and Bengio Y. 2015. FitNets:hints for thin deep nets[EB/OL].[2020-02-04].https://arxiv.org/pdf/1412.6550.pdfhttps://arxiv.org/pdf/1412.6550.pdf
Rostami M, Kolouri S, Eaton E and Kim K. 2019. Deep transfer learning for few-shot SAR image classification. Remote Sensing, 11(11):#1374[DOI:10.3390/rs11111374]
Rueda F M, Grzeszick R and Fink G A. 2017. Neuron pruning for compressing deep networks using maxout architectures//Proceedings of the 39th German Conference on Pattern Recognition. Cham: Springer: 177-188[DOI:10.1007/978-3-319-66709-6_15http://dx.doi.org/10.1007/978-3-319-66709-6_15]
Rusu A A, Rabinowitz N C, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R and Hadsell R. 2016. Progressive neural networks[EB/OL].[2020-02-04].https://arxiv.org/pdf/1606.04671.pdfhttps://arxiv.org/pdf/1606.04671.pdf
Sandler M, Howard A, Zhu M L, Zhmoginov A and Chen L C. 2018. MobileNetV2: inverted residuals and linear bottlenecks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 4510-4520[DOI:10.1109/CVPR.2018.00474http://dx.doi.org/10.1109/CVPR.2018.00474]
Shen Z Q, He Z K and Xue X Y. 2019. Meal: multi-model ensemble via adversarial learning//Proceedings of 2019 AAAI Conference on Artificial Intelligence. Honolulu, Hawaii: AAAI: 4886-4893[DOI:10.1609/aaai.v33i01.33014886http://dx.doi.org/10.1609/aaai.v33i01.33014886]
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-02-04].https://arxiv.org/pdf/1409.1556.pdfhttps://arxiv.org/pdf/1409.1556.pdf
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE: 1-9[DOI:10.1109/CVPR.2015.7298594http://dx.doi.org/10.1109/CVPR.2015.7298594]
Tan M X, Chen B, Pang R M, Vasudevan V, Sandler M, Howard A and Le Q V. 2018. MnasNet: platform-aware neural architecture search for mobile[EB/OL].[2020-02-04].https://arxiv.org/pdf/1807.11626.pdfhttps://arxiv.org/pdf/1807.11626.pdf
Tang H J, Li Y S, Han X, Huang Q H and Xie W X. 2020. A spatial-spectral prototypical network for hyperspectral remote sensing image. IEEE Geoscience and Remote Sensing Letters, 17(1):167-171[DOI:10.1109/lgrs.2019.2916083]
Tasar O, Tarabalka Y and Alliez P. 2019a. Continual learning for dense labeling of satellite images//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE: 4943-4946[DOI:10.1109/IGARSS.2019.8898615http://dx.doi.org/10.1109/IGARSS.2019.8898615]
Tasar O, Tarabalka Y and Alliez P. 2019b. Incremental learning for semantic segmentation of large-scale remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9):3524-3537[DOI:10.1109/JSTARS.2019.2925416]
Valada A, Mohan R and Burgard W. 2020. Self-supervised model adaptation for multimodal semantic segmentation. International Journal of Computer Vision, 128(5):1239-1285[DOI:10.1007/s11263-019-01188-y]
Vilalta R and Drissi Y. 2002. A perspective view and survey of meta-learning. Artificial Intelligence Review, 18(2):77-95[DOI:10.1023/A:1019956318069]
Wang P J, Sun X, Diao W H and Fu K. 2020a. FMSSD:feature-merged single-shot detection for multiscale objects in large-scale remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 58(5):3377-3390[DOI:10.1109/TGRS.2019.2954328]
Wang S S, Wang M and Wang G Y. 2019a. Deep neural network pruning based two-stage remote sensing image object detection. Journal of Northeastern University (Natural Science), 40(2):174-179
王生生, 王萌, 王光耀. 2019a.基于深度神经网络剪枝的两阶段遥感图像目标检测.东北大学学报(自然科学版), 40(2):174-179)[DOI:10.12068/j.issn.1005-3026.2019.02.005]
Wang Y H, Chen C, Ding M and Li J Y. 2019b. Real-time dense semantic labeling with dual-path framework for high-resolution remote sensing image. Remote Sensing, 11(24):#3020[DOI:10.3390/rs11243020]
Wang Y L, Gu J, Zhao L J, Zhang Y and Wang H Q. 2020b. Target detection based on simulated image domain migration. IEEE Access, 8:79724-79733[DOI:10.1109/access.2020.2989458]
Wang Z C, Du L, Mao J S, Liu B and Yang D W. 2019c. SAR target detection based on SSD with data augmentation and transfer learning. IEEE Geoscience and Remote Sensing Letters, 16(1):150-154[DOI:10.1109/lgrs.2018.2867242]
Xiang Y, Fu Y, Ji P and Huang H. 2019. Incremental learning using conditional adversarial networks//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE: 6619-6628[DOI:10.1109/ICCV.2019.00672http://dx.doi.org/10.1109/ICCV.2019.00672]
Xu S H, Mu X D, Zhang X M and Chai D. 2017. Unsupervised remote sensing domain adaptation method with adversarial network and auxiliary task. Acta Geodaetica et Cartographica Sinica, 46(12):1969-1977
许夙晖, 慕晓冬, 张雄美, 柴栋. 2017.结合对抗网络与辅助任务的遥感影像无监督域适应方法.测绘学报, 46(12):1969-1977)[DOI:10.11947/j.AGCS.2017.20170291]
Yan Y M, Tan Z C and Su N. 2019. A data augmentation strategy based on simulated samples for ship detection in rgb remote sensing images. ISPRS International Journal of Geo-Information, 8(6):#276[DOI:10.3390/ijgi8060276]
Yan Z Y, Yan M L, Sun H, Fu K, Hong J, Sun J, Zhang Y and Sun X. 2018. Cloud and cloud shadow detection using multilevel feature fused segmentation network. IEEE Geoscience and Remote Sensing Letters, 15(10):1600-1604[DOI:10.1109/LGRS.2018.2846802]
Yang X, Nan X T and Song B. 2020. D2N4:a discriminative deep nearest neighbor neural network for few-shot space target recognition. IEEE Transactions on Geoscience and Remote Sensing, 58(5):3667-3676[DOI:10.1109/tgrs.2019.2959838]
Yu X R, Wu X M, Luo C B and Ren P. 2017. Deep learning in remote sensing scene classification:a data augmentation enhanced convolutional neural network framework. GIScience and Remote Sensing, 54(5):741-758[DOI:10.1080/15481603.2017.1323377]
Zagoruyko S and Komodakis N. 2016. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL].[2020-02-04].https://arxiv.org/pdf/1612.03928.pdfhttps://arxiv.org/pdf/1612.03928.pdf
Zhai M, Liu H P and Sun F C. 2019. Lifelong learning for scene recognition in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 16(9):1472-1476[DOI:10.1109/lgrs.2019.2897652]
Zhan Y, Hu D, Wang Y T and Yu X C. 2018. Semisupervised hyperspectral image classification based on generative adversarial networks. IEEE Geoscience and Remote Sensing Letters, 15(2):212-216[DOI:10.1109/lgrs.2017.2780890]
Zhang J, Chen L, Wang C, Zhuo L, Tian Q and Liang X. 2017. Road recognition from remote sensing imagery using incremental learning. IEEE Transactions on Intelligent Transportation Systems, 18(11):2993-3005[DOI:10.1109/TITS.2017.2665658]
Zhang T F, Sun X, Zhang Y, Yan M L, Wang Y L, Wang Z R and Fu K. 2019a. A training-free, one-shot detection framework for geospatial objects in remote sensing images//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE: 1414-1417[DOI:10.1109/igarss.2019.8898679http://dx.doi.org/10.1109/igarss.2019.8898679]
Zhang T W, Zhang X L, Shi J and Wei S J. 2019b. Depthwise separable convolution neural network for high-speed SAR ship detection. Remote Sensing, 11(21):#2483[DOI:10.3390/rs11212483]
Zhang X Y, Zhou X Y, Lin M X and Sun J. 2018a. ShuffleNet: an extremely efficient convolutional neural network for mobile devices//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 6848-6856[DOI:10.1109/cvpr.2018.00716http://dx.doi.org/10.1109/cvpr.2018.00716]
Zhang Y H, Sun H, Zuo J W, Wang H Q, Xu G L and Sun X. 2018b. Aircraft type recognition in remote sensing images based on feature learning with conditional generative adversarial networks. Remote Sensing, 10(7):#1123[DOI:10.3390/rs10071123]
Zhou X and Prasad S. 2018. Deep feature alignment neural networks for domain adaptation of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 56(10):5863-5872[DOI:10.1109/tgrs.2018.2827308]
Zhou Z, Chen X, Li E, Zeng L K, Luo K and Zhang J S. 2019. Edge intelligence:paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8):1738-1762[DOI:10.1109/JPROC.2019.2918951]
Zhu C, Han S and Mao H. 2017a. Trained ternary quantization[EB/OL].[2020-02-04].https://arxiv.org/pdf/1612.01064.pdfhttps://arxiv.org/pdf/1612.01064.pdf
Zhu J Y, Park T, Isola P and Efros A A. 2017b. Unpaired image-to-image translation using cycle-consistent adversarial networks//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE: 2242-2251[DOI:10.1109/iccv.2017.244http://dx.doi.org/10.1109/iccv.2017.244]
Zhu L, Chen Y S, Ghamisi P and Benediktsson J A. 2018. Generative adversarial networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(9):5046-5063[DOI:10.1109/tgrs.2018.2805286]
Zoph B, Vasudevan V, Shlens J and Le Q V. 2018. Learning transferable architectures for scalable image recognition//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 8697-8710[DOI:10.1109/cvpr.2018.00907http://dx.doi.org/10.1109/cvpr.2018.00907]
相关作者
相关机构