中国遥感软件研制进展与发展方向——以像素专家PIE为例
Research progress and development direction of Chinese remote sensing software: taking PIE as an example
- 2021年26卷第5期 页码:1169-1178
纸质出版日期: 2021-05-16 ,
录用日期: 2020-08-31
DOI: 10.11834/jig.200125
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-05-16 ,
录用日期: 2020-08-31
移动端阅览
刘东升, 廖通逵, 孙焕英, 任芳. 中国遥感软件研制进展与发展方向——以像素专家PIE为例[J]. 中国图象图形学报, 2021,26(5):1169-1178.
Dongsheng Liu, Tongkui Liao, Huanying Sun, Fang Ren. Research progress and development direction of Chinese remote sensing software: taking PIE as an example[J]. Journal of Image and Graphics, 2021,26(5):1169-1178.
随着航天航空遥感技术的飞速发展,立体式、多层次、多视角、全方位和全天候对地观测的时代已然到来。如何激活数据价值,更好地服务行业应用,满足快速增长的遥感应用需求,成为遥感企业面临的迫切课题。遥感图像处理软件作为遥感数据与行业应用的桥梁,在遥感产业化过程中发挥着不可替代的作用。本文概述了国内外遥感卫星数据和遥感软件发展历程,通过中国国产遥感图像处理软件——像素专家(pixel information expert,PIE)阐述了国产遥感软件的研制进展、典型应用和未来技术发展方向。PIE软件具有多源遥感载荷全方位支持、全谱段要素信息智能提取、多行业全业务链深度融合、海量遥感数据快速处理和自主产权程序完全可控等5大核心能力。未来将加强与大数据、云计算和人工智能等技术前沿领域的交叉融合,提升遥感数据分析处理、知识挖掘与决策支持能力,实现遥感数据的按需获取快速传输和专题信息聚焦服务。
More and more satellites have been launched or will be launched soon. Thus
remote sensing is no longer far away. With the rapid development of aerospace and aviation remote sensing technology
a new era of three-dimensional
multi-level
multi-angle
omni-directional
and all-weather earth observation has arrived. How to activate the value of data and better serve industry applications so as to meet the rapidly growing demand for remote sensing applications has become an urgent issue for remote sensing companies. As a bridge between remote sensing data and industry applications
remote sensing image processing software plays an irreplaceable role in the process of remote sensing industrialization. With the implementation of major strategic projects such as "China's High-Resolution Earth Observation System" (high-score special project) and "National Medium-term to Long-term Civilian Space Infrastructure Development Plan (2015-2025)"
domestic high-score remote sensing data is becoming more abundant. Whether these valuable data can play its value and how much value it can play depends on the conversion process from high-scoring remote sensing data to effective information and application services. The value of remote sensing data requires excellent remote sensing image processing software for mining and analysis. At the same time
vigorously developing independent and controllable remote sensing image processing software has increasingly become an urgent requirement to ensure national information security
implement the strategy of aerospace power
enhance technological innovation
and serve social development. Through the research and analysis of the development process of remote sensing satellite data and remote sensing software in China and abroad
the domestic remote sensing software has experienced three stages of development: the budding period
the catch-up period
and the independent innovation period. The remote sensing image processing software pixel information expert (PIE) is taken as an example to illustrate the development progress
typical applications
and future technological development directions of domestic remote sensing software. PIE
a domestically made remote sensing image processing software
was independently developed by PIESAT Information Technology Co.
Ltd. (
http://www.piesat.cn/
http://www.piesat.cn/
). While opening the application of cloud service platform
PIE has evolved from a single general-purpose software plug-in architecture to 3S integration
multi-platform
and multi-load cluster processing; from pure satellite remote sensing image processing to aerospace integrated platform; and from optical load to application mode of optics
radar
and hyperspectral full spectrum. PIE6.0 has developed from a general remote sensing image processing software to PIE-Basic remote sensing image processing software
PIE-Ortho satellite image surveying and mapping processing software
PIE-SAR radar image data processing software
PIE-Hyp hyperspectral image data processing software
PIE-UAV unmanned aerial vehicle image data processing software
PIE-SIAS scale set image analysis software
PIE-AI remote sensing image intelligent processing software
PIE-Map geographic information system software
and many other "families". PIE6.0 has five core capabilities: comprehensive support for multi-source remote sensing loads
intelligent extraction of full-spectrum element information
deep integration of multi-industry and full-business chains
rapid processing of massive remote sensing data
and complete control of independent property rights programs. In order to meet the ever-increasing demand for remote sensing applications
we should build an intelligent
high-performance
and practical remote sensing image processing system; provide a wider
more refined
and more in-depth special service; and gradually develop and improve market mechanisms to establish sustainable development of remote sensing industry capabilities. Domestic remote sensing software continues to develop key technologies
such as remote sensing spatiotemporal big data storage management
intelligent synthesis
incremental cascading update
cleaning analysis and mining
and information security
to improve remote sensing data analysis and processing and knowledge mining and decision support capabilities and to build shared data and codes. The open platform of methods promotes multi-source heterogeneous data sharing and interoperability. In the future
domestic remote sensing software will closely follow industry applications and public needs
advanced technology integration and collaboration
remote sensing on-orbit intelligent real-time processing
and one-stop refined remote sensing cloud services. PIE will continue to increase the contribution rate of science and technology; promote the modernization of remote sensing application capabilities; strengthen the cross-integration of remote sensing applications with big data
cloud computing
artificial intelligence
and other cutting-edge technologies; continue to improve remote sensing data analysis and processing
knowledge discovery
and decision support capabilities; and realize the on-demand acquisition of remote sensing data
the rapid transmission of data
and the focused services of thematic information
so that multi-source remote sensing data can truly become a powerful weapon to promote resource investigation
environmental monitoring
emergency rescue
and so on.
国产遥感软件像素专家(PIE)发展方向云服务平台人工智能大数据
domestic remote sensing softwarepixel information expert (PIE)direction of developmentcloud service platformartificial intelligencebig data
Chen C, Li W, Gao L R, Li H C and Plaza J. 2018. Special issue on advances in real-time image processing for remote sensing. Journal of Real-Time Image Processing, 15(3): 435-438[DOI:10.1007/s11554-018-0831-7]
China Association for Geospatial Information Society (CAGIS). 2019. China Geospatial Information Industry Report (2019). Beijing: Surveying and Mapping Publishing House
中国地理信息产业协会. 2019. 中国地理信息产业发展报告(2019). 北京: 测绘出版社
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27[DOI:10.1016/j.rse.2017.06.031]
Guo H D. 2018. A project on big earth data science engineering. Bulletin of the Chinese Academy of Sciences, 33(8): 818-824
郭华东. 2018. 地球大数据科学工程. 中国科学院院刊, 33(8): 818-824 [DOI:10.16418/j.issn.1000-3045.2018.08.008]
Guo R Z, Hu F and Tang X M. 2018. Research on internationalization development strategy of high resolution satellite remote sensing industry. China Soft Science, (11): 1-9
郭仁忠, 胡芬, 唐新明. 2018. 高分辨率卫星遥感产业国际化发展思路研究. 中国软科学, (11): 1-9 [DOI:10.3969/j.issn.1002-9753.2018.11.001]
He G J, Wang L Z, Ma Y, Zhang Z M, Wang G Z, Peng Y, Long T F and Zhang X M. 2015. Processing of earth observation big data: challenges and countermeasures. Chinese Science Bulletin, 60(5/6): 470-478
何国金, 王力哲, 马艳, 张兆明, 王桂周, 彭燕, 龙腾飞, 张晓美. 2015. 对地观测大数据处理: 挑战与思考. 科学通报, 60(5/6): 470-478 [DOI:10.1360/N972014-00907]
Hu F and Gao X M. 2019. Development trend analysis of remote sensing small satellite for surveying and mapping application. Science of Surveying and Mapping, 44(1): 132-138, 150
胡芬, 高小明. 2019. 面向测绘应用的遥感小卫星发展趋势分析. 测绘科学, 44(1): 132-138, 150 [DOI:10.16251/j.cnki.1009-2307.2019.01.023]
Jiang X W, Lin M S and Zhang Y G. 2016. Progress and prospect of Chinese ocean satellites. Journal of Remote Sensing, 20(5): 1185-1198
蒋兴伟, 林明森, 张有广. 2016. 中国海洋卫星及应用进展. 遥感学报, 20(5): 1185-1198 [DOI:10.11834/jrs.20166153]
Li D R, Zhang L P and Xia G S. 2014. Automatic analysis and mining of remote sensing big data. Acta Geodaetica et Cartographica Sinica, 43(12): 1211-1216
李德仁, 张良培, 夏桂松. 2014. 遥感大数据自动分析与数据挖掘. 测绘学报, 43(12): 1211-1216 [DOI:10.13485/j.cnki.11-2089.2014.0187]
Liao T K, Ren F and Wang X H. 2018. PIE5.0: new generation remote sensing image processing software of China. Satellite Application, (11): 66-67
廖通逵, 任芳, 王小华. 2018. 新一代国产遥感图像处理软件PIE5.0. 卫星应用, (11): 66-67 [DOI:10.3969/j.issn.1674-9030.2018.11.016]
Lu N M and Gu S Y. 2016. Review and prospect on the development of meteorological satellites. Journal of Remote Sensing, 20(5): 832-841
卢乃锰, 谷松岩. 2016. 气象卫星发展回顾与展望. 遥感学报, 20(5): 832-841 [DOI:10.11834/jrs.20166194]
Ma L, Liu Y, Zhang X L, Ye Y X, Yin G F and Johnson B A. 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152: 166-177[DOI:10.1016/j.isprsjprs.2019.04.015]
Ministry of Natural Resources. 2018. Outline of natural resources science and technology innovation development plan[EB/OL]. [2020-03-20].http://gi.mnr.gov.cn/201811/t20181113_2358751.htmlhttp://gi.mnr.gov.cn/201811/t20181113_2358751.html
自然资源部. 2018. 自然资源科技创新发展规划纲要[EB/OL]. [2020-03-20].http://gi.mnr.gov.cn/201811/t20181113_2358751.htmlhttp://gi.mnr.gov.cn/201811/t20181113_2358751.html
Shan J. 2017. Remote sensing: from trained professionals togeneral public. Acta Geodaetica et Cartographica Sinica, 46(10): 1434-1446
单杰. 2017. 从专业遥感到大众遥感. 测绘学报, 46(10): 1434-1446 [DOI:10.11947/j.AGCS.2017.20170361]
Tong Q X, Meng Q Y and Yang H. 2018. Development and prospect of the remote sensing technology. City and Disaster Reduction, (6): 2-11
童庆禧, 孟庆岩, 杨杭. 2018. 遥感技术发展历程与未来展望. 城市与减灾, (6): 2-11 [DOI:10.3969/j.issn.1671-0495.2018.06.003]
Tong X D. 2016. Development of China high-resolution earth observation system. Journal of Remote Sensing, 20(5): 775-780
童旭东. 2016. 中国高分辨率对地观测系统重大专项建设进展. 遥感学报, 20(5): 775-780 [DOI:10.11834/jrs.20166302]
Wang J N. 2016. The cloud platform of earth remote sensing information changes and application: status and future development. Science and Technology for Development, 12(5): 644-646
王晋年. 2016. 地球遥感信息变化应用云平台的现状与展望. 科技促进发展, 12(5): 644-646 [DOI:10.11842/chips.2016.05.020]
Wang M and Yang F. 2019. Intelligent remote sensing satellite and remote sensing image real-time service. Acta Geodaetica et Cartographica Sinica, 48(12): 1586-1594
王密, 杨芳. 2019. 智能遥感卫星与遥感影像实时服务. 测绘学报, 48(12): 1586-1594 [DOI:0.11947/j.AGCS.2019.20190454]
Zhang B. 2011. Intelligent remote sensing satellite system. Journal of Remote Sensing, 15(3): 415-431
张兵. 2011. 智能遥感卫星系统. 遥感学报, 15(3): 415-431 [DOI:10.11834/jrs.20110354]
Zhang J F, Hu X H, Zhang H, Wang R and Li H C. 2016. Intelligence analysis and application for satellite imagery of big data. Big Data Research, 2(5): #2016053
张金芳, 胡晓惠, 张慧, 王瑞, 李海昌. 2016. 卫星影像大数据情报分析与应用. 大数据, 2(5): #2016053 [DOI:10.11959/j.issn.2096-0271.2016053]
Zhao Z M, Gao L R, Chen D, Yue A Z, Chen J B, Liu D S, Yang J and Meng Y, 2019. Development of satellite remote sensing and image processing platform. Journal of Image and Graphics, 24(12): 2098-2110
赵忠明, 高连如, 陈东, 岳安志, 陈静波, 刘东升, 杨健, 孟瑜. 2019. 卫星遥感及图像处理平台发展. 中国图象图形学报, 24(12): 2098-2110 [DOI:10.11834/jig.190450]
Zhong Y F, Ma A L, Ong Y S, Zhu Z X and Zhang L P. 2018. Computational intelligence in optical remote sensing image processing. Applied Soft Computing, 64: 75-93[DOI:10.1016/j.asoc.2017.11.045]
Zhu J Z, Shi Q, Chen F E, Shi X D, Dong Z M and Qin Q Q. 2016. Research status and development trends of remote sensing big data. Journal of Image and Graphics, 21(11): 1425-1439
朱建章, 石强, 陈凤娥, 史晓丹, 董泽民, 秦前清. 2016. 遥感大数据研究现状与发展趋势. 中国图象图形学报, 21(11): 1425-1439 [DOI:10.11834/jig.20161102]
相关作者
相关机构