视频车辆黑烟检测算法研究进展
Video black smoke detection methods for vehicles: a survey
- 2021年26卷第2期 页码:316-333
纸质出版日期: 2021-02-16 ,
录用日期: 2020-05-23
DOI: 10.11834/jig.190668
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2021-02-16 ,
录用日期: 2020-05-23
移动端阅览
张天琪, 杨伟东, 张姣姣, 彭凯. 视频车辆黑烟检测算法研究进展[J]. 中国图象图形学报, 2021,26(2):316-333.
Tianqi Zhang, Weidong Yang, Jiaojiao Zhang, Kai Peng. Video black smoke detection methods for vehicles: a survey[J]. Journal of Image and Graphics, 2021,26(2):316-333.
黑烟车辆逐渐成为城市的主要污染源之一,针对黑烟的视频车辆检测方法具有效果好、成本低、应用面广和不妨碍交通等优点,但是仍存在误检率高、新方法可解释性差的缺陷。为了总结归纳视频黑烟检测算法的研究进展,本文对2016—2019年公开发表的文献进行总结。视频黑烟检测框架按顺序可以分为监控视频预处理、疑似黑烟区域选取、黑烟特征选取、分类识别和算法性能分析几部分,而且此顺序可以根据实际情况微调。本文介绍了视频黑烟检测框架,从层次的角度分析了疑似黑烟区域提取和黑烟特征选取。疑似黑烟区域提取方法由低到高依次分为图像级提取、目标级提取、像素级提取和纯黑烟重构等4个层次,提取方法的精细度与稳定性逐步上升,而且高层次方法一般可以应用在低层次方法的结果上。黑烟特征按基于学习的非线性映射次数划分为底层特征、中层特征和高层特征等3个层次,分界点是1次和3次。随着层次的提高,特征表达力就会越强,但二者之间并不是严格的线性关系。然后从可解释性的角度重点介绍了高层特征。另外,本文从有、无深度学习的角度归纳了特征提取算法,之后从传统方法与深度方法两方面归纳了常见的分类识别方法。最后介绍了主流算法评价指标。针对视频黑烟检测算法的几个特点,对其未来发展方向进行了总结归纳。
Smoke-emitting vehicles have gradually become one of the major pollution sources in cities. Algorithms that detect smoke-emitting vehicles from videos have good effects
low cost
and extensive applications. They also do not obstruct traffic. However
they still suffer from high false detection rates and poor interpretability. To fully reflect the research progress of these algorithms
this paper provides a comprehensive summary of articles published from 2016 to 2019. A video black smoke detection framework can be divided into surveillance video preprocessing
suspected smoke area extraction
smoke feature selection
classification
and analysis of algorithm performance. This order can be fine-tuned in accordance with the actual situation. This paper introduces and summarizes video smoke detection frameworks and analyzes the extraction of suspected smoky areas and the selection of smoke features from a hierarchical perspective. The method for extracting suspected smoky areas can be divided into four levels (from low to high): image-level extraction
object-level extraction
pixel-level extraction
and pure smoke reconstruction. The accuracy and stability of an extraction method gradually increases
and high-level methods can generally be applied to the results of low-level methods. Smoke features can be divided into three levels: bottom-
middle-
and high-level features. They are divided in accordance with the number of times of learning-based nonlinear projection
and demarcation points are once and three times. The expression of features becomes stronger and the false detection rate of black smoke decreases as level increases; however
the first two are not strictly linear. Then
the high-level features are generalized from the perspective of interpretability. In addition
this paper summarizes feature extraction methods from the perspective of the presence or absence of deep learning
and then classifies methods into traditional and deep learning. Lastly
the evaluation indexes of algorithms are introduced. At present
video smoke detection algorithms face three challenges: extracting features with increased expressiveness
improving generalization and interpretability
and estimating black smoke concentration. Considering these challenges
this paper provides suggestions on the future development direction of video smoke detection algorithms. First
the level of features should be rationally increased while ensuring expression and computational efficiency to improve feature fusion methods. Second
a deep neural network structure that considers generalization and interpretability should be designed in accordance with the space and motion characteristics of smoke. Further research should be conducted on how to fully alleviate the problems of insufficient number of smoky image training samples and uneven distribution. Third
an adaptive calibration algorithm should be designed to compare the extracted smoky gray level with the Lingerman standard black level.
黑烟车辆检测特征提取烟雾识别深度学习可解释性综述
smoky vehicle detectionfeature extractionsmoke classificationinterpretability of deep learningreview
Appana D K, Islam R, Khan S A and Kim J M. 2017. A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems. Information Sciences, 418-419: 91-101[DOI: 10.1016/j.ins.2017.08.001]
Cai S D and Yang F. 2011. Color image segmentation based on HSV space and rough-set theory. Optoelectronic Technology, 31(1): 5-9
蔡式东, 杨芳. 2011.一种基于HSV空间和粗糙集的彩色图像分割方法.光电子技术, 31(1): 5-9)[DOI: 10.19453/j.cnki.1005-488x.2011.01.002]
Chen J Z, Wang Z J, Chen H H and Zuo L Y. 2016. Dynamic smoke detection using cascaded convolutional neural network for surveillance videos. Journal of University of Electronic Science and Technology of China, 45(6): 992-996
陈俊周, 汪子杰, 陈洪瀚, 左林翼. 2016.基于级联卷积神经网络的视频动态烟雾检测.电子科技大学学报, 45(6): 992-996)[DOI: 10.3969/j.issn.1001-0548.2016.06.020]
Cheng S H, Ma J Y and Zhang S J. 2019. Smoke detection and trend prediction method based on Deeplabv3+ and generative adversarial network. Journal of Electronic Imaging, 28(3): #033006[DOI: 10.1117/1.JEI.28.3.033006]
Cruz H, Eckert M, Meneses J and Martínez JF. 2016. Efficient forest fire detection index for application in unmanned aerial systems (UASs). Sensors, 16(6): #893[DOI: 10.3390/s16060893]
Dimitropoulos K, Barmpoutis P and Grammalidis N. 2017. Higher order linear dynamical systems for smoke detection in video surveillance applications. IEEE Transactions on Circuits and Systems for Video Technology, 27(5): 1143-1154[DOI: 10.1109/TCSVT.2016.2527340http://dx.doi.org/10.1109/TCSVT.2016.2527340]
Filonenko A, Hernández D C and Jo K H. 2018. Fast smoke detection for video surveillance using CUDA. IEEE Transactions on Industrial Informatics, 14(2): 725-733[DOI: 10.1109/TⅡ.2017.2757457http://dx.doi.org/10.1109/TⅡ.2017.2757457]
Filonenko A, Kurnianggoro L and Jo K H. 2017. Comparative study of modern convolutional neural networks for smoke detection on image data//Proceedings of the 10th International Conference on Human System Interactions (HSI). Ulsan, South Korea: IEEE: 64-68[DOI: 10.1109/HSI.2017.8004998http://dx.doi.org/10.1109/HSI.2017.8004998]
Frizzi S, Kaabi R, Bouchouicha M, Ginoux J M, Moreau E and Fnaiech F. 2016. Convolutional neural network for video fire and smoke detection//Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society. Florence, Italy: IEEE: 877-882[DOI: 10.1109/IECON.2016.7793196http://dx.doi.org/10.1109/IECON.2016.7793196]
Gao Y and Cheng P L. 2019. Forest fire smoke detection based on visual smoke root and diffusion model. Fire Technology, 55(5): 1801-1826[DOI: 10.1007/s10694-019-00831-x]
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y. 2014. Generative adversarial nets//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: ACM: 2672-2680
Gu K, Xia Z F, Qiao J F and Lin W S. 2020. Deep dual-channel neural network for image-based smoke detection. IEEE Transactions on Multimedia, 22(2): 311-323[DOI: 10.1109/TMM.2019.2929009http://dx.doi.org/10.1109/TMM.2019.2929009]
Guenther P L, Stedman D H, Bishop G A, Beaton S P, Bean J H and Quine R W. 1995. A hydrocarbon detector for the remote sensing of vehicle exhaust emissions. Review of Scientific Instruments, 66(4): 3024-3029[DOI: 10.1063/1.1146498]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 770-778[DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Hinton G E and Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507[DOI: 10.1126/science.1127647]
Hu J, Shen L, Albanie S, Sun G and Wu E. Squeeze-and-Excitation Networks. 2020. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(8): 2011-2023[DOI: 10.1109/TPAMI.2019.2913372http://dx.doi.org/10.1109/TPAMI.2019.2913372]
Hu Y, Wang H Q and Ma Z F. 2016. Adaptive smoke image segmentation algorithm based on improved Gaussian mixture model. Journal of Computer-Aided Design and Computer Graphics, 28(7): 1138-1145
Huang Z H, Hao C X, Wang J F and Xie Q. 2017. Analysis of vehicle contaminants emission in China. Environmental Protection, 45(13): 42-47
黄志辉, 郝春晓, 王军方, 谢琼. 2017.机动车污染物排放量分析——《中国机动车环境管理年报(2017)》第Ⅱ部分.环境保护, 45(13): 42-47)[DOI: 10.14026/j.cnki.0253-9705.2017.13.009]
Jia Y, Yuan J, Wang J J, Fang J, Zhang Q X and Zhang Y M. 2016. A saliency-based method for early smoke detection in video sequences. Fire Technology, 52(5): 1271-1292[DOI: 10.1007/s10694-014-0453-y]
Jian W L, Wu K Z, Yu Z R and Chen L J. 2018. Smoke regions extraction based on two steps segmentation and motion detection in early fire//Proceedings of the SPIE 10609, MIPPR 2017: Pattern Recognition and Computer Vision. Xiangyang, China: SPIE: #1060919[DOI: 10.1117/12.2285697http://dx.doi.org/10.1117/12.2285697]
Kaabi R, Sayadi M, Bouchouicha M, Fnaiech F, Moreau E and Ginoux J M. 2018. Early smoke detection of forest wildfire video using deep belief network//Proceedings of the 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). Sousse, Tunisia: IEEE: 1-6[DOI: 10.1109/ATSIP.2018.8364446http://dx.doi.org/10.1109/ATSIP.2018.8364446]
Krizhevsky A, Sutskever I and Hinton G E. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84-90[DOI: 10.1145/3065386]
LeCun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324[DOI: 10.1109/5.726791]
Li C, Tang L Y and Pan L W, 2018. Video smoke detection algorithm for wildland-urban Interface. Computer Engineering. 44(1):258-262.
李诚, 唐李洋, 潘李伟, 2018.城镇森林交界域视频烟雾检测算法.计算机工程, 44(1):258-262)[DOI:10.3969/j.issn.1000-3428.2018.01.043]
Li X Q, Chen Z X, Wu Q M J and Liu C Y. 2020. 3D parallel fully convolutional networks for real-time video wildfire smoke detection. IEEE Transactions on Circuits and Systems for Video Technology, 30(1): 89-103[DOI: 10.1109/TCSVT.2018.2889193]
Liang J P, Wen G J, Gan L, Wu D and Wang Y D. 2019. Measuring method for smoke emission of in-use diesel vehicles based on machine vision. Computer Measurement and Control, 27(4): 32-35, 45
梁荆璞, 文国军, 甘露, 吴丹, 王玉丹. 2019.基于机器视觉的在用柴油车烟度测量方法.计算机测量与控制, 27(4): 32-35, 45)[DOI: 10.16526/j.cnki.11-4762/tp.2019.04.008]
Lin G H, Zhang Y M, Xu G and Zhang Q X. 2019. Smoke detection on video sequences using 3D convolutional neural networks. Fire Technology, 55(5): 1827-1847[DOI: 10.1007/s10694-019-00832-w]
Lin G H, Zhang Y M, Zhang Q X, Jia Y, Xu G and Wang J J. 2017. Smoke detection in video sequences based on dynamic texture using volume local binary patterns. KSⅡ Transactions on Internet and Information Systems, 11(11): 5522-5536[DOI: 10.3837/tiis.2017.11.019]
Liu Z, Yang X P, Liu Y and Qian Z H. 2019. Smoke-detection framework for high-definition video using fused spatial-and frequency-domain features. IEEE Access, 7: 89687-89701[DOI: 10.1109/ACCESS.2019.2926571]
Lu J W, Liong V E, Zhou X Z and Zhou J. 2015. Learning compact binary face descriptor for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(10): 2041-2056[DOI: 10.1109/TPAMI.2015.2408359http://dx.doi.org/10.1109/TPAMI.2015.2408359]
Luo S, Zhang X, Hu J, Wang M C and Zhang X Q. 2019. Smoke detection by trajectories in condensed images for early fire warning. Journal of Image and Graphics, 24(10): 1648-1657
罗胜, 张翔, 胡杰, 王慕抽, 张笑钦. 2019.时间压缩轨迹特征识别的火灾烟雾检测.中国图象图形学报, 24(10): 1648-1657)[DOI: 10.11834/jig.190217]
Luo Y M, Zhao L, Liu P Z and Huang D T. 2017. Fire smoke detection algorithm based on motion characteristic and convolutional neural networks. Multimedia Tools and Applications, 77(12): 15075-15092[DOI: 10.1007/s11042-017-5090-2]
Matlani P and Shrivastava M. 2019. Hybrid deep VGG-NET convolutional classifier for video smoke detection. CMES-Computer Modeling in Engineering and Sciences, 119(3): 427-458[DOI: 10.32604/cmes.2019.04985]
Muhammad K, Ahmad J and Baik S W. 2018a. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing, 288: 30-42[DOI: 10.1016/j.neucom.2017.04.083]
Muhammad K, Ahmad J, Mehmood I, Rho S and Baik S W. 2018b. Convolutional neural networks based fire detection in surveillance videos. IEEE Access, 6: 18174-18183[DOI: 10.1109/ACCESS.2018.2812835]
Nakagawa H and Watanabe K. 2015. Exhaust gas analyzing apparatus, exhaust gas analyzing system and method of operating the same. U.S., No. 9010171
Namozov A and Cho Y I. 2018. An efficient deep learning algorithm for fire and smoke detection with limited data. Advances in Electrical and Computer Engineering, 18(4): 121-128[DOI: 10.4316/AECE.2018.04015]
Narasimhan S G and Nayar S K. 2002. Vision and the atmosphere. International Journal of Computer Vision, 48(3): 233-254[DOI: 10.1023/a:1016328200723]
Ojala T, Pietikainen M and Maenpaa T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7): 971-987[DOI: 10.1109/TPAMI.2002.1017623http://dx.doi.org/10.1109/TPAMI.2002.1017623]
Peng Y S and Wang Y. 2019. Real-time forest smoke detection using hand-designed features and deep learning. Computers and Electronics in Agriculture, 167: #105029[DOI: 10.1016/j.compag.2019.105029http://dx.doi.org/10.1016/j.compag.2019.105029]
Pundir A S and Raman B. 2017. Deep belief network for smoke detection. Fire Technology, 53(6): 1943-1960[DOI: 10.1007/s10694-017-0665-zhttp://dx.doi.org/10.1007/s10694-017-0665-z]
Pundir A S and Raman B. 2019. Dual deep learning model for image based smoke detection. Fire Technology, 55(6): 2419-2442[DOI: 10.1007/s10694-019-00872-2]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149[DOI: 10.1109/TPAMI.2016.2577031]
Ropkins K, DeFries T H, Pope F, Green D C, Kemper J, Kishan S, Fuller G W, Li H, Sidebottom J, Crilley L R, Kramer L, Bloss W J and Stewart Hager J. 2017. Evaluation of EDAR vehicle emissions remote sensing technology. Science of the Total Environment, 609: 1464-1474[DOI: 10.1016/j.scitotenv.2017.07.137]
Shi J T, Yuan F N and Xia X. 2018. Video smoke detection: a literature survey. Journal of Image and Graphics, 23(3): 303-322
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-12-19]. https: //arxiv.org/pdf/1409.1556.pdf
Sun R, Chen X C and Chen B Y. 2018. Smoke detection for videos based on adaptive learning rate and linear fitting algorithm//Proceedings of 2018 Chinese Automation Congress. Xi'an, China: IEEE: 1948-1954[DOI: 10.1109/CAC.2018.8623369http://dx.doi.org/10.1109/CAC.2018.8623369]
Tao C Y, Zhang J and Wang P. 2017. Smoke detection based on deep convolutional neural networks//Proceedings of 2016 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration (ICⅡCⅡ). Wuhan, China: IEEE: 150-153[DOI: 10.1109/ICⅡCⅡ.2016.0045http://dx.doi.org/10.1109/ICⅡCⅡ.2016.0045]
Tao H J and Lu X B. 2018a. Smoky vehicle detection based on multi-scale block Tamura features. Signal, Image and Video Processing, 12(6): 1061-1068[DOI: 10.1007/s11760-018-1254-4]
Tao H J and Lu X B. 2018b. Smoky vehicle detection based on range filtering on three orthogonal planes and motion orientation histogram. IEEE Access, 6: 57180-57190[DOI: 10.1109/ACCESS.2018.2873757]
Tao H J and Lu X B. 2019. Smoke vehicle detection based on robust codebook model and robust volume local binary count patterns. Image and Vision Computing, 86: 17-27[DOI: 10.1016/j.imavis.2019.03.008]
Tian H D, Li W Q, Ogunbona P O and Wang L. 2018. Detection and separation of smoke from single image frames. IEEE Transactions on Image Processing, 27(3): 1164-1177[DOI: 10.1109/TIP.2017.2771499]
Tran D, Bourdev L, Fergus R, Torresani L and Paluri M. 2015. Learning spatiotemporal features with 3D convolutional networks//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE: 4489-4497[DOI: 10.1109/ICCV.2015.510http://dx.doi.org/10.1109/ICCV.2015.510]
Wang C X and Yu M. 2020. Research on image segmentation algorithm based on generalized gradient vector flow model. Journal of Hebei University of Technology, 49(1): 49-57
王晨霞, 于明. 2020.基于广义梯度矢量流模型图像分割算法的研究.河北工业大学学报, 49(1): 49-57)[DOI: 10.14081/j.cnki.hgdxb.2020.01.007]
Wang S D, He Y P, Yang H Y, Wang K X and Wang J. 2017. Video smoke detection using shape, color and dynamic features. Journal of Intelligent and Fuzzy Systems, 33(1): 305-313[DOI: 10.3233/JIFS-161605]
Wang W P, Mao W T, He J L and Dou Z. 2017. Smoke recognition based on deep transfer learning. Journal of Computer Applications, 37(11): 3176-3181, 3193
王文朋, 毛文涛, 何建樑, 窦智. 2017.基于深度迁移学习的烟雾识别方法.计算机应用, 37(11): 3176-3181, 3193)[DOI: 10.11772/j.issn.1001-9081.2017.11.3176]
Wang Y, Cheng J H, Liu T, Zhou Y Y and Xiong Y Y. 2019. A smoke detection method based on fusing multiple network models. Computer Engineering and Science, 41(10): 1771-1776
王洋, 程江华, 刘通, 周岳勇, 熊艳晔. 2019.一种多网络模型融合的烟雾检测方法.计算机工程与科学, 41(10): 1771-1776)[DOI: 10.3969/j.issn.1007-130X.2019.10.008]
Wang Z Y, Su Y T, Liu Y Y and Zhang W. 2019. Algorithm for segmentation of smoke using the improved DeeplabV3 network. Journal of XiDian University. 46(6):52-59
汪梓艺, 苏育挺, 刘艳艳, 张为, 2019.一种改进DeeplabV3网络的烟雾分割算法.西安电子科技大学学报, 46(6):52-59)[DOI:10.19665/j.issn1001-2400.2019.06.008]
Wei X, Wu S H and Wang Y L. 2019. Forest fire smoke detection model based on deep convolution long short-term memory network. Journal of Computer Applications, 39(10): 2883-2887
卫鑫, 武淑红, 王耀力. 2019.基于深度卷积长短期记忆网络的森林火灾烟雾检测模型.计算机应用, 39(10): 2883-2887)[DOI: 10.11772/j.issn.1001-9081.2019040707]
Wright J, Ma Y, Mairal J, Sapiro G, Huang T S and Yan S C. 2010. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6): 1031-1044[DOI: 10.1109/jproc.2010.2044470http://dx.doi.org/10.1109/jproc.2010.2044470]
Wu J, Ye F, Ma J L, Sun X P, Xu J and Cui Z M. 2008. The segmentation and visualization of human organs based on adaptive region growing method//Proceedings of the 8th IEEE International Conference on Computer and Information Technology Workshops. Sydney, Australia: IEEE: 439-443[DOI: 10.1109/CIT.2008.Workshops.24http://dx.doi.org/10.1109/CIT.2008.Workshops.24]
Wu X H, Lu X B and Leung H. 2018. A video based fire smoke detection using robust AdaBoost. Sensors, 18(11): #3780[DOI: 10.3390/s18113780]
Wu X H, Lu X B and Leung H. 2019. Video smoke separation and detection via sparse representation. Neurocomputing, 360: 61-74[DOI: 10.1016/j.neucom.2019.06.011]
Xia X. 2018. Research on local ferture learning and representation for single image smoke recognition. Nanchang: Jiangxi University of Finance and Economics
夏雪. 2018.单图烟雾识别中的局部特征学习与表示方法研究.南昌:江西财经大学
Xia X, Yuan F N, Zhang L, Yang L Z and Shi J T. 2019. From traditional methods to deep ones: review of visual smoke recognition, detection, and segmentation. Journal of Image and Graphics, 24(10): 1627-1647
夏雪, 袁非牛, 章琳, 杨龙箴, 史劲亭. 2019.从传统到深度:视觉烟雾识别、检测与分割.中国图象图形学报, 24(10): 1627-1647)[DOI: 10.11834/jig.190230]
Xu G, Zhang Q X, Liu D C, Lin G H, Wang J J and Zhang Y M. 2019a. Adversarial adaptation from synthesis to reality in fast detector for smoke detection. IEEE Access, 7: 29471-29483[DOI: 10.1109/ACCESS.2019.2902606]
Xu G, Zhang Y M, Zhang Q X, Lin G H and Wang J J. 2017. Deep domain adaptation based video smoke detection using synthetic smoke images. Fire Safety Journal, 93: 53-59[DOI: 10.1016/j.firesaf.2017.08.004]
Xu G, Zhang Y M, Zhang Q X, Lin G H, Wang Z, Jia Y and Wang J J. 2019b. Video smoke detection based on deep saliency network. Fire Safety Journal, 105: 277-285[DOI: 10.1016/j.firesaf.2019.03.004]
Yang L Z, Yuan F N, Yang S Y, Lei B J and Zhang X F, 2019. Continuous graph convolutional model for video smoke detection. Journal of Image and Graphics, 24(10):1658-1669
杨龙箴, 袁非牛, 杨寿渊, 雷帮军, 张相芬, 2019.连续图卷积视频烟雾检测模型.中国图象图形学报, 24(10): 1658-1669)[DOI:10.11834/jig.190232]
Ye S P, Bai Z C, Chen H F, Bohush R and Ablameyko S. 2017. An effective algorithm to detect both smoke and flame using color and wavelet analysis. Pattern Recognition and Image Analysis, 27(1): 131-138[DOI: 10.1134/S1054661817010138]
Yin M X, Lang C Y, Li Z, Feng S H and Wang T. 2018. Recurrent convolutional network for video-based smoke detection. Multimedia Tools and Applications, 78(1): 237-256[DOI: 10.1007/s11042-017-5561-5]
Yin Z J, Wan B Y, Yuan F N, Xia X and Shi J T. 2017. A deep normalization and convolutional neural network for image smoke detection. IEEE Access, 5: 18429-18438[DOI: 10.1109/ACCESS.2017.2747399]
Yuan F, Zhao X Y, Wang Y G and Zhao Z S, 2020. Smoke recognition algorithm based on lightweight convolutional neural network. 55(5): 1111-1116
袁飞, 赵绪言, 王一戈, 赵治晟, 2020.基于轻量级卷积神经网络的烟雾识别算法. 55(5): 1111-1116)[DOI: 10.3969/j.issn.0258-2724.20190777http://dx.doi.org/10.3969/j.issn.0258-2724.20190777]
Yuan F N, Li G, Xia X, Zhang L and Zhou Y. 2019a. Smoke recognition by combining aggregated Gabor kernels and local binary patterns. Journal of Chinese Computer Systems, 40(4): 827-833
袁非牛, 李钢, 夏雪, 章琳, 周宇. 2019a.采用聚合Gabor核和局部二元模式的烟雾识别方法.小型微型计算机系统, 40(4): 827-833
Yuan F N, Shi J T, Xia X, Fang Y M, Fang Z J and Mei T. 2016. High-order local ternary patterns with locality preserving projection for smoke detection and image classification. Information Sciences, 372: 225-240[DOI: 10.1016/j.ins.2016.08.040]
Yuan F N, Shi J T, Xia X, Huang Q H and Li X L. 2019a. Co-occurrence matching of local binary patterns for improving visual adaption and its application to smoke recognition. IET Computer Vision, 13(2): 178-187[DOI: 10.1049/iet-cvi.2018.5164]
Yuan F N, Shi J T, Xia X, Zhang L and Li S Y. 2019b. Encoding pairwise Hamming distances of local binary patterns for visual smoke recognition. Computer Vision and Image Understanding, 178: 43-53[DOI: 10.1016/j.cviu.2018.10.008]
Yuan F N, Tang T T, Xia X, Shi J T and Li S Y. 2019c. Dual-encoded features from both spatial and Curvelet domains for image smoke recognition. KSⅡ Transactions on Internet and Information Systems, 13(4): 2078-2093[DOI: 10.3837/tiis.2019.04.019]
Yuan F N, Xia X, Li G, Zhang L and Shi J T. 2019b. GaborNet for smoke recognition and texture classification. Journal of Image and Graphics, 24(2): 269-281
袁非牛, 夏雪, 李钢, 章琳, 史劲亭. 2019b.面向烟雾识别与纹理分类的Gabor网络.中国图象图形学报, 24(2): 269-281)[DOI: 10.11834/jig.180397]
Yuan F N, Xia X and Shi J T. 2019d. Holistic learning-based high-order feature descriptor for smoke recognition. International Journal of Wavelets, Multiresolution and Information Processing, 17(2): #1940005[DOI: 10.1142/S0219691319400058]
Yuan F N, Xia X, Shi J T, Li H D and Li G. 2017. Non-linear dimensionality reduction and Gaussian process based classification method for smoke detection. IEEE Access, 5: 6833-6841[DOI: 10.1109/ACCESS.2017.2697408]
Yuan F N, Xia X, Shi J T, Zhang L and Huang J F, 2018. Learning multi-scale and multi-order features from 3D local differences for visual smoke recognition. Information Sciences, 468:193-212.[DOI:10.1016/j.ins.2018.08.005]
Yuan F N, Zhang L, Wan B Y, Xia X and Shi J T. 2019e. Convolutional neural networks based on multi-scale additive merging layers for visual smoke recognition. Machine Vision and Applications, 30(2): 345-358[DOI: 10.1007/s00138-018-0990-3]
Yuan F N, Zhang L, Xia X, Wan B Y, Huang Q H and Li X L. 2019f. Deep smoke segmentation. Neurocomputing, 357: 248-260[DOI: 10.1016/j.neucom.2019.05.011]
Zhang N, Wang H Q and Hu Y. 2017. Smoke image segmentation algorithm based on rough set and region growing. Journal of Frontiers of Computer Science and Technology, 11(8): 1296-1304
张娜, 王慧琴, 胡燕. 2017.粗糙集与区域生长的烟雾图像分割算法研究.计算机科学与探索, 11(8): 1296-1304)[DOI: 10.3778/j.issn.1673-9418.1606018]
Zhang Q X, Lin G H, Zhang Y M, Xu G and Wang J J. 2018. Wildland forest fire smoke detection based on Faster R-CNN using synthetic smoke images. Procedia Engineering, 211: 441-446[DOI: 10.1016/j.proeng.2017.12.034http://dx.doi.org/10.1016/j.proeng.2017.12.034]
Zhao L, Luo Y M and Luo X Y. 2017. Based on dynamic background update and dark channel prior of fire smoke detection algorithm. Application Research of Computers, 34(3): 957-960
赵亮, 骆炎民, 骆翔宇. 2017.基于背景动态更新与暗通道先验的火灾烟雾检测算法.计算机应用研究, 34(3): 957-960)[DOI: 10.3969/j.issn.1001-3695.2017.03.074]
Zhao X C, Lin Y P and Heikkilä J. 2018. Dynamic texture recognition using volume local binary count patterns with an application to 2D face spoofing detection. IEEE Transactions on Multimedia, 20(3): 552-566[DOI: 10.1109/TMM.2017.2750415]
Zhou Z Q, Shi Y S, Gao Z F and Li S. 2016. Wildfire smoke detection based on local extremal region segmentation and surveillance. Fire Safety Journal, 85: 50-58[DOI: 10.1016/j.firesaf.2016.08.004]
相关作者
相关机构