多媒体信号处理的数学理论前沿进展
Advances in mathematical theory for multimedia signal processing
- 2020年25卷第1期 页码:1-18
收稿日期:2019-09-09,
修回日期:2019-09-16,
录用日期:2019-9-23,
纸质出版日期:2020-01-16
DOI: 10.11834/jig.190468
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2019-09-09,
修回日期:2019-09-16,
录用日期:2019-9-23,
纸质出版日期:2020-01-16
移动端阅览
深度学习模型广泛应用于多媒体信号处理领域,通过引入非线性能够极大地提升性能,但是其黑箱结构无法解析地给出最优点和优化条件。因此如何利用传统信号处理理论,基于变换/基映射模型逼近深度学习模型,解析优化问题,成为当前研究的前沿问题。本文从信号处理的基础理论出发,分析了当前针对高维非线性非规则结构方法的数学模型和理论边界,主要包括:结构化稀疏表示模型、基于框架理论的深度网络模型、多层卷积稀疏编码模型以及图信号处理理论。详细描述了基于组稀疏性和层次化稀疏性的表示模型和优化方法,分析基于半离散框架和卷积稀疏编码构建深度/多层网络模型,进一步在非欧氏空间上扩展形成图信号处理模型,并对国内外关于记忆网络的研究进展进行了比较。最后,展望了多媒体信号处理的理论模型发展,认为图信号处理通过解析谱图模型的数学性质,解释其中的关联性,为建立广义的大规模非规则多媒体信号处理模型提供理论基础,是未来研究的重要领域之一。
Deep learning models have been widely used in multimedia signal processing. They considerably improve the performance of signal processing tasks by introducing nonlinearities but lack analytical formulation of optimum and optimality conditions due to their black-box architectures. In recent years
analyzing the optimal formulation and approximating the deep learning models based on classical signal processing theory have been popular for multimedia
that is
transform/basis projection-based models. This paper presents and analyzes the mathematical models and their theoretical bounds for high-dimensional nonlinear and irregular structured methods based on the fundamental theories of signal processing. The main content includes structured sparse representation
frame-based deep networks
multilayer convolutional sparse coding
and graph signal processing. We begin with sparse representation models based on group and hierarchical sparsities with their optimization methods and subsequently analyze the deep/multilayer networks developed using semi-discrete frames and convolutional sparse coding. We also present graph signal processing models by extending classical signal processing to the non-Euclidean geometry. Recent advances in these topics achieved by domestic and foreign researchers are compared and discussed. Structured sparse representation introduces the mixed norms to formulate a group Lasso problem for structural information
which can be solved using proximal method or network flow optimization. Considering that structured sparse representation is still based on the linear projection onto dictionary atoms
frame-based deep networks are developed to extend the semi-discrete frames in multiscale geometric analysis. They inherit the scale and directional decomposition led by frame theory and introduce nonlinearities to guarantee deformation stability. Inspired by scattering networks
multilayer convolutional sparse coding introduces combined regularization into sparse representation to fit max pooling operation. Sparse representation of irregular multiscale structures can be achieved with the trained overcomplete dictionary in a recursive manner. Graph signal processing extends conventional signal processing into non-Euclidean spaces. When integrated with convolutional neural networks
graph neural networks learn complex relational networks and are desirable for data-driven large-scale high-dimensional irregular signal processing. This paper forecasts the future work of mathematical theories and models for multimedia signal processing. This research is useful for developing a generalized graph signal processing model for large-scale irregular multimedia signals by analyzing the mathematical properties and linkages of conventional signal processing and graph spectral model.
Aharon M, Elad M and Bruckstein A. 2006. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311-4322[DOI:10.1109/TSP.2006.881199]
Bach F R. 2007. Consistency of the group Lasso and multiple kernel learning. The Journal of Machine Learning Research, 9:1179-1225[DOI:10.1145/1390681.1390721]
Bach F. 2008. Exploring large feature spaces with hierarchical multiple kernel learning//Proceedings of the 21st International Conference on Neural Information Processing Systems. Vancouver BC, Canada: Curran Associates, Inc.: 105-112
Bach F, Jenatton R, Mairal J and Obozinski G. 2011. Optimization with sparsity-Inducing penalties. Foundations and Trends in Machine Learning, 4(1):1-106[DOI:10.1561/2200000015]
Bach F, Jenatton R, Mairal J and Obozinski G. 2012. Structured sparsity through convex optimization. Statistical Science, 27(4):450-468[DOI:10.1214/12-STS394]
Bao C H, Ji H, Quan Y H and Shen Z W. 2016. Dictionary learning for sparse coding:algorithms and convergence analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1356-1369[DOI:10.1109/TPAMI.2015.2487966]
Bao P, Xia W J, Yang K, Chen W Y, Chen M Y, Xi Y, Niu S Z, Zhou J L, Zhang H, Sun H Q, Wang Z Y and Zhang Y. 2019. Convolutional sparse coding for compressed sensing CT reconstruction. IEEE Transactions on Medical Imaging, 38(11):2607-2619[DOI:10.1109/tmi.2019.2906853]
Beck A and Teboulle M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202[DOI:10.1137/080716542]
Bengio S, Pereira F, Singer Y and Strelow D. 2009. Group sparse coding//Proceedings of the 22nd International Conference on Neural Information Processing Systems. Vancouver, BC, Canada: Curran Associates, Inc.: 82-89
Bianchi F M, Grattarola D, Alippi C and Livi L. 2019. Graph neural networks with convolutional ARMA filters[EB/OL].[2019-09-01] . https://arxiv.org/pdf/1901.01343.pdf https://arxiv.org/pdf/1901.01343.pdf
Blumensath T and Davies M E. 2008. Iterative thresholding for sparse approximations. Journal of Fourier Analysis and Applications, 14(5/6):629-654[DOI:10.1007/s00041-008-9035-z]
Boyd S. 2010. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122[DOI:10.1561/2200000016]
Bremer J C, Coifman R R, Maggioni M and Szlam A D. 2006. Diffusion wavelet packets. Applied and Computational Harmonic Analysis, 21(1):95-112[DOI:10.1016/j.acha.2006.04.005]
Bristow H, Eriksson A and Lucey S. 2013. Fast convolutional sparse coding//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE: 391-398[ DOI: 10.1109/CVPR.2013.57 http://dx.doi.org/10.1109/CVPR.2013.57 ]
Bruna J and Mallat S. 2013. Invariant scattering convolution networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1872-1886[DOI:10.1109/TPAMI.2012.230]
Bruna J, Zaremba W, Szlam A and LeCun Y. 2013. Spectral networks and locally connected networks on graphs[EB/OL].[2019-09-01] . https://arxiv.org/pdf/1312.6203.pdf https://arxiv.org/pdf/1312.6203.pdf
Candès E J. 1998. Ridgelets: Theory and Applications. Stanford: Stanford University
Candès E J and Donoho D L. 2000. Curvelets-a surprisingly effective nonadaptive representation for objects with edges//Cohen A, Rabut C and Schumaker L L, eds. Curves and Surfaces Fitting. Nashville, USA: Vanderbilt University Press: 1-10
Chalasani R, Principe J C and Ramakrishnan N. 2013. A fast proximal method for convolutional sparse coding//Proceedings of 2013 International Joint Conference on Neural Networks. Dallas, TX, USA: IEEE[ DOI: 10.1109/IJCNN.2013.6706854 http://dx.doi.org/10.1109/IJCNN.2013.6706854 ]
Chang H, Han J, Zhong C, Snijders A M and Mao J H. 2018. Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(5):1182-1194[DOI:10.1109/TPAMI.2017.2656884]
Chen B H, Li J, Ma B Y and Wei G. 2016. Convolutional sparse coding classification model for image classification//Proceedings of 2016 International Conference on Image Processing (ICIP). Phoenix, AZ, USA: IEEE: 1918-1922[ DOI: 10.1109/ICIP.2016.7532692 http://dx.doi.org/10.1109/ICIP.2016.7532692 ]
Chen J F, Zhu J and Song L. 2018. Stochastic training of graph convolutional networks with variance reduction//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Stockholm, Sweden: PMLR: 941-949
Chen S S, Donoho D L and Saunders M A. 1998. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33-61[DOI:10.1137/S1064827596304010]
Chen S H, Varma R, Sandryhaila A and Kovačević J. 2015. Discrete signal processing on graphs:sampling theory. IEEE Transactions on Signal Processing, 63(24):6510-6523[DOI:10.1109/TSP.2015.2469645]
Choudhury B, Swanson R, Heide F, Wetzstein G and Heidrich W. 2017. Consensus convolutional sparse coding//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 4280-4288[ DOI: 10.1109/ICCV.2017.459 http://dx.doi.org/10.1109/ICCV.2017.459 ]
Chun I Y and Fessler J A. 2018. Convolutional dictionary learning:acceleration and convergence. IEEE Transactions on Image Processing, 27(4):1697-1712[DOI:10.1109/TIP.2017.2761545]
Chung F. 1997. Spectral Graph Theory. Providence:American Mathematical Society
Cogliati A, Duan Z Y and Wohlberg B. 2015. Piano music transcription with fast convolutional sparse coding//Proceedings of the 25th International Workshop on Machine Learning for Signal Processing (MLSP). Boston, MA, USA: IEEE[ DOI: 10.1109/MLSP.2015.7324332 http://dx.doi.org/10.1109/MLSP.2015.7324332 ]
Coifman R R and Maggioni M. 2006. Diffusion wavelets. Applied and Computational Harmonic Analysis, 21(1):53-94[DOI:10.1016/j.acha.2006.04.004]
Dai H J, Li H, Tian T, Huang X, Wang L, Zhu J and Song L. 2018. Adversarial attack on graph structured data//Proceedings of the 35th International Conference on Machine Learning Stockholm, Swede: PMLR: 1115-1124
Defferrard M, Bresson X and Vandergheynst P. 2016. Convolutional neural networks on graphs with fast localized spectral filtering//Proceedings of the 30th Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc.: 3844-3852
Do M N and Vetterli M. 2005. The contourlet transform:an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14(12):2091-2106[DOI:10.1109/TIP.2005.859376]
Dong W S, Fu F Z, Shi G M, Cao X, Wu J J, Li G Y and Li X. 2016. Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Transactions on Image Processing, 25(5):2337-2352[DOI:10.1109/TIP.2016.2542360]
Dong W S, Shi G M, Ma Y and Li X. 2015. Image restoration via simultaneous sparse coding:where structured sparsity meets Gaussian scale mixture. International Journal of Computer Vision, 114(2/3):217-232[DOI:10.1007/s11263-015-0808-y]
Donoho D L. 1999. Wedgelets:nearly minimax estimation of edges. The Annals of Statistics, 27(3):859-897[DOI:10.1214/aos/1018031261]
Efron B, Hastie T, Johnstone I and Tibshirani R. 2004. Least angle regression. The Annals of Statistics, 32(2):407-499[DOI:10.1214/009053604000000067]
Engan K, Aase S O and Husoy J H. 1999. Method of optimal directions for frame design//Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Phoenix, AZ, USA: IEEE: 2443-2446[ DOI: 10.1109/ICASSP.1999.760624 http://dx.doi.org/10.1109/ICASSP.1999.760624 ]
Friedman J, Hastie T and Tibshirani R. 2010. A note on the group Lasso and a sparse group Lasso[EB/OL].[2019-09-01] . https://arxiv.org/pdf/1001.0736.pdf https://arxiv.org/pdf/1001.0736.pdf
Gao X and Xiong H K. 2016. A hybrid wavelet convolution network with sparse-coding for image super-resolution//Proceedings of 2016 International Conference on Image Processing (ICIP). Phoenix, AZ, USA: IEEE: 1439-1443[ DOI: 10.1109/ICIP.2016.7532596 http://dx.doi.org/10.1109/ICIP.2016.7532596 ]
Gomez A N, Ren M Y, Urtasun R and Grosse R B. 2017. The reversible residual network: backpropagation without storing activations//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, CA, USA: Curran Associates, Inc.: 2214-2224
Gramfort A and Kowalski M. 2009. Improving M/EEG source localizationwith an inter-condition sparse prior//Proceedings of 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Boston: IEEE[ DOI: 10.1109/ISBI.2009.5193003 http://dx.doi.org/10.1109/ISBI.2009.5193003 ]
Gu S H, Zuo W M, Xie Q, Meng D Y, Feng X C and Zhang L. 2015. Convolutional sparse coding for image super-resolution//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE: 1823-1831[ DOI: 10.1109/ICCV.2015.212 http://dx.doi.org/10.1109/ICCV.2015.212 ]
Hammond D K, Vandergheynst P and Gribonval R. 2011. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129-150[DOI:10.1016/j.acha.2010.04.005]
Heide F, Heidrich W and Wetzstein G. 2015. Fast and flexible convolutional sparse coding//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE: 5135-5143[ DOI: 10.1109/CVPR.2015.7299149 http://dx.doi.org/10.1109/CVPR.2015.7299149 ]
Henaff M, Bruna J and LeCun Y. 2015. Deep convolutional networks on graph-structured data[EB/OL].[2019-09-01]. https: //arxiv.org/pdf/1506.05163.pdf
Huang J Z and Zhang T. 2010. The benefit of group sparsity. The Annals of Statistics, 38(4):1978-2004[DOI:10.1214/09-AOS778]
Huang J Z, Zhang T and Metaxas D. 2011. Learning with structured sparsity. Journal of Machine Learning Research, 12(11):3371-3412[DOI:10.1145/1553374.1553429]
Huang Y W, Shao L and Frangi A F. 2017. Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE: 5787-5796[ DOI: 10.1109/CVPR.2017.613 http://dx.doi.org/10.1109/CVPR.2017.613 ]
Jacob L, Obozinski G and Vert J P. 2009. Group Lasso with overlap and graph Lasso//Proceedings of the 26th International Conference on Machine Learning. Montreal, QC, Canada: Omnipress: 433-440[ DOI: 10.1145/1553374.1553431 http://dx.doi.org/10.1145/1553374.1553431 ]
Jacobsen J H, Smeulders A W M and Oyallon E. 2018. i-RevNet: deep invertible networks//Proceedings of the 6th International Conference on Learning Representation. Vancouver, BC, Canada: [s.n.]: 1-11
Jas M, La Tour T D, Şimşekli U and Gramfort A. 2017. Learning the morphology of brain signals using alpha-stable convolutional sparse coding//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, CA, USA: Curran Associates, Inc.: 1099-1108
Jenatton R, Audibert J Y and Bach F. 2011a. Structured variable selection with sparsity-inducing norms. Journal of Machine Learning Research, 12(10):2777-2824
Jenatton R, Gramfort A, Michel V, Obozinski G, Eger E, Bach F and Thirion B. 2012. Multiscale mining of fMRI data with hierarchical structured sparsity. SIAM Journal on Imaging Sciences, 5(3):835-856[DOI:10.1137/110832380]
Jenatton R, Mairal J, Obozinski G and Bach F. 2011b. Proximal methods for hierarchical sparse coding. Journal of Machine Learning Research, 12(7):2297-2334
Jenatton R, Obozinski G and Bach F. 2010. Structured sparse principal component analysis//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia, Italy: PMLR: 366-373
Kim S and Xing E P. 2010. Tree-guided group Lasso for multi-task regression with structured sparsity//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: Omnipress: 543-550
Krause A and Cevher V. 2010. Submodular dictionary selection for sparse representation//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: OmnipressUSA: 567-574
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 26th Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA: Curran Associates, Inc.: 1097-1105[ DOI: 10.1145/3065386 http://dx.doi.org/10.1145/3065386 ]
Labate D, Lim W Q, Kutyniok G and Weiss G. 2005. Sparse multidimensional representation using shearlets//Proceedings Volume 5914, Wavelets XI. San Diego, CA, USA: SPIE: 59140U[ DOI: 10.1117/12.613494 http://dx.doi.org/10.1117/12.613494 ]
Le Pennec E and Mallat S. 2005. Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing, 14(4):423-438[DOI:10.1109/TIP.2005.843753]
Lesage S, Gribonval R, Bimbot F and Benaroya L. 2005. Learning unions of orthonormal bases with thresholded singular value decomposition//Proceedings of 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, PA, USA: IEEE[ DOI: 10.1109/ICASSP.2005.1416298 http://dx.doi.org/10.1109/ICASSP.2005.1416298 ]
Levie R, Monti F, Bresson X and Bronstein M M. 2019. CayleyNets:graph convolutional neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1):97-109[DOI:10.1109/TSP.2018.2879624]
Li H and Lin Z C. 2017. Provable accelerated gradient method for nonconvex low rank optimization. Machine Learning, 1-32[DOI:10.1007/s10994-019-05819-w]
Li M H, Xie Q, Zhao Q, Wei W, Gu S H, Tao J and Meng D Y. 2018a. Video rain streak removal by multiscale convolutional sparse coding//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 6644-6653[ DOI: 10.1109/CVPR.2018.00695 http://dx.doi.org/10.1109/CVPR.2018.00695 ]
Li R Y, Wang S, Zhu F Y and Huang J Z. 2018b. Adaptive graph convolutional neural networks//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, LA, USA: AAAI: 3546-3553
Li Y, Dai W R, Zou J N, Xiong H K and Zheng Y F. 2017. Structured sparse representation with union of data-driven linear and multilinear subspaces model for compressive video sampling. IEEE Transactions on Signal Processing, 65(19):5062-5077[DOI:10.1109/TSP.2017.2721905]
Liu G C, Lin Z C, Yan S C, Sun J, Yu Y and Ma Y. 2013. Robust recovery of subspace structures by low-rank representation. IEEETransactions on Pattern Analysis and Machine Intelligence, 35(1):171-184[DOI:10.1109/TPAMI.2012.88]
Liu J L, Garcia-Cardona C, Wohlberg B and Yin W. 2017. Online convolutional dictionary learning//Proceedings of 2017 International Conference on Image Processing (ICIP). Beijing, China: IEEE: 1707-1711[ DOI: 10.1109/ICIP.2017.8296573 http://dx.doi.org/10.1109/ICIP.2017.8296573 ]
Liu L, Wu J S, Li D W, Senhadji L and Shu H Z. 2019. Fractional wavelet scattering network and applications. IEEE Transactions on Biomedical Engineering, 66(2):553-563[DOI:10.1109/TBME.2018.2850356]
Liu M and Chen S C. 2017. Label-dependent sparse representation for synthetic aperture radar target configuration recognition. International Journal of Remote Sensing, 38(17):4868-4887[DOI:10.1080/01431161.2017.1328144]
Lu C Y, Feng J S, Lin Z C, Mei T and Yan S C. 2019. Subspace clustering by block diagonal representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2):487-501[DOI:10.1109/TPAMI.2018.2794348]
Lu Y M and Do M N. 2007. Multidimensional directional filter banks and surfacelets. IEEE Transactions on Image Processing, 16(4):918-931[DOI:10.1109/TIP.2007.891785]
Lu Z W and Peng Y X. 2013. Latent semantic learning with structured sparse representation for human action recognition. Pattern Recognition, 46(7):1799-1809[DOI:10.1016/j.patcog.2012.09.027]
Mairal J, Bach F and Ponce J. 2014. Sparse modeling for image and vision processing. Foundations and Trends in Computer Graphics and Vision, 8(2/3):85-283[DOI:10.1561/0600000058]
Mairal J, Bach F, Ponce J and Sapiro G. 2010. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11(1):19-60
Mairal J, Jenatton R, Obozinski G and Bach F. 2011. Convex and network flow optimization for structured sparsity. Journal of Machine Learning Research, 12(9):2681-2720
Mallat S. 2009. Geometrical grouplets. Applied and Computational Harmonic Analysis0.1016/j.acha.2008.03.004, 26(2):161-180[DOI:10.1016/j.acha.2008.03.004]
Mallat S. 2012. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):1331-1398[DOI:10.1002/cpa.21413]
Mallat S G and Zhang Z F. 1993. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415[DOI:10.1109/78.258082]
Meinshausen N and Bühlmann P. 2006. High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34(3):1436-1462[DOI:10.1214/009053606000000281]
Narang S K and Ortega A. 2012. Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE Transactions on Signal Processing, 60(6):2786-2799[DOI:10.1109/TSP.2012.2188718]
Obozinski G, Taskar B and Jordan M I. 2010. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20(2):231-252[DOI:10.1007/s11222-008-9111-x]
Oyallon E, Belilovsky E and Zagoruyko S. 2017. Scaling the scattering transform: deep hybrid networks//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 5619-5628[ DOI: 10.1109/ICCV.2017.599 http://dx.doi.org/10.1109/ICCV.2017.599 ]
Oyallon E and Mallat S. 2015. Deep roto-translation scattering for object classification//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE: 2865-2873[ DOI: 10.1109/CVPR.2015.7298904 http://dx.doi.org/10.1109/CVPR.2015.7298904 ]
Papyan V, Romano Y and Elad M. 2017a. Convolutional neural networks analyzed via convolutional sparse coding. Journal of Machine Learning Research, 18(1):2887-2938
Papyan V, Romano Y, Elad M and Sulam J. 2017b. Convolutional dictionary learning via local processing//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE: 5306-5314[ DOI: 10.1109/ICCV.2017.566 http://dx.doi.org/10.1109/ICCV.2017.566 ]
Papyan V, Romano Y, Sulam J and Elad M. 2018. Theoretical foundations of deep learning via sparse representations:a multilayer sparse model and its connection to convolutional neural networks. IEEE Signal Processing Magazine, 35(4):72-89[DOI:10.1109/MSP.2018.2820224]
Papyan V, Sulam J and Elad M. 2017c. Working locally thinking globally:theoretical guarantees for convolutional sparse coding. IEEE Transactions on Signal Processing, 65(21):5687-5701[DOI:10.1109/TSP.2017.2733447]
Pati Y C, Rezaiifar R and Krishnaprasad P S. 1993. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition//Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE: 40-44[ DOI: 10.1109/ACSSC.1993.342465 http://dx.doi.org/10.1109/ACSSC.1993.342465 ]
Peng G J. 2019. Adaptive ADMM for dictionary learning in convolutional sparse representation. IEEE Transactions on Image Processing, 28(7):3408-3422[DOI:10.1109/tip.2019.2896541]
Peng H W, Li B, Ling H B, Hu W M, Xiong W H and Maybank S J. 2017. Salient object detection via structured matrix decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4):818-832[DOI:10.1109/TPAMI.2016.2562626]
Plaut E and Giryes R. 2018. Matching pursuit based convolutional sparse coding//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, AB, Canada: IEEE: 6847-6851[ DOI: 10.1109/ICASSP.2018.8461543 http://dx.doi.org/10.1109/ICASSP.2018.8461543 ]
Quan T M and Jeong W K. 2016. Compressed sensing reconstruction of dynamic contrast enhanced MRI using GPU-accelerated convolutional sparse coding//Proceedings of the 13th International Symposium on Biomedical Imaging (ISBI). Prague, Czech Republic: IEEE: 518-521[ DOI: 10.1109/ISBI.2016.7493321 http://dx.doi.org/10.1109/ISBI.2016.7493321 ]
Ram I, Elad M and Cohen I. 2011. Generalized tree-based wavelet transform. IEEE Transactions on Signal Processing, 59(9):4199-4209[DOI:10.1109/TSP.2011.2158428]
Rubinstein R, Peleg T and Elad M. 2013. Analysis K-SVD:a dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on Signal Processing, 61(3):661-677[DOI:10.1109/TSP.2012.2226445]
Rubinstein R, Zibulevsky M and Elad M. 2010. Double sparsity:learning sparse dictionaries for sparse signal approximation. IEEE Transactions on Signal Processing, 58(3):1553-1564[DOI:10.1109/TSP.2009.2036477]
Rustamov R M and Guibas L J. 2013. Wavelets on graphs via deep learning//Proceedings of the 27th Annual Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA: Curran Associates, Inc.: 998-1006[ DOI: 10.1007/978-3-030-03574-7_5 http://dx.doi.org/10.1007/978-3-030-03574-7_5 ]
Ruvolo P and Eaton E. 2013. Online multi-task learning based on K-SVD//Proceedings of the ICML2013 Workshop on Theoretically Grounded Transfer Learning. Atlanta, GA, USA: [s.n.]
Sandryhaila A and Moura J M F. 2013. Discrete signal processing on graphs. IEEE Transactions on Signal Processing, 61(7):1644-1656[DOI:10.1109/TSP.2013.2238935]
Serrano A, Heide F, Gutierrez D, Wetzstein G and Masia B. 2016. Convolutional sparse coding for high dynamic range imaging. Computer Graphics Forum, 35(2):153-163[DOI:10.1111/cgf.12819]
Shuman D I, Faraji M J and Vandergheynst P. 2016a. A multiscale pyramid transform for graph signals. IEEE Transactions on Signal Processing, 64(8):2119-2134[DOI:10.1109/TSP.2015.2512529]
Shuman D I, Narang S K, Frossard P, Ortega A and Vandergheynst P. 2013. The emerging field of signal processing on graphs:extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3):83-98[DOI:10.1109/MSP.2012.2235192]
Shuman D I, Ricaud B and Vandergheynst P. 2016b. Vertex-frequency analysis on graphs. Applied and Computational Harmonic Analysis, 40(2):260-291[DOI:10.1016/j.acha.2015.02.005]
Shuman D I, Wiesmeyr C, Holighaus N and Vandergheynst P. 2015. Spectrum-adapted tight graph wavelet and vertex-frequency frames. IEEE Transactions on Signal Processing, 63(16):4223-4235[DOI:10.1109/TSP.2015.2424203]
Sifre L and Mallat S. 2012. Combined scattering for rotation invariant texture analysis//Proceedings of the 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: ESANN: 68-81
Silva G and Rodriguez P. 2018. Efficient convolutional dictionary learning using partial update fast iterative shrinkage-thresholding algorithm//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, AB, Canada: IEEE: 4674-4678[ DOI: 10.1109/ICASSP.2018.8462305 http://dx.doi.org/10.1109/ICASSP.2018.8462305 ]
Sreter H and Giryes R. 2018. Learned convolutional sparse coding//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, AB, Canada: IEEE: 2191-2195[ DOI: 10.1109/ICASSP.2018.8462313 http://dx.doi.org/10.1109/ICASSP.2018.8462313 ]
Sulam J, Papyan V, Romano Y and Elad M. 2018. Multilayer convolutional sparse modeling:pursuit and dictionary learning. IEEE Transactions on Signal Processing, 66(15):4090-4104[DOI:10.1109/TSP.2018.2846226]
Tanaka Y and Sakiyama A. 2014. $$M$$ -channel oversampled graph filter banks. IEEE Transactions on Signal Processing, 62(14):3578-3590[DOI:10.1109/tsp.2014.2328983]
Teke O and Vaidyanathan P P. 2017. Extending classical multirate signal processing theory to graphs-Part Ⅱ:M-channel filter banks. IEEE Transactions on Signal Processing, 65(2):423-437[DOI:10.1109/TSP.2016.2620111]
Tsitsvero M, Barbarossa S and Di Lorenzo P. 2016. Signals on graphs:uncertainty principle and sampling. IEEE Transactions on Signal Processing, 64(18):4845-4860[DOI:10.1109/TSP.2016.2573748]
Turlach B A, Venables W N andWright S J. 2005. Simultaneous variable selection. Technometrics, 47(3):349-363[DOI:10.1198/004017005000000139]
Varoquaux G, Jenatton R, Gramfort A, Obozinski G, Thirion B and Bach F. 2010. Sparse structured dictionary learning for brain resting-state activity modeling//NIPS Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions: 1-7
Velisavljević V, Beferull-Lozano B, Vetterli M and Dragotti P L. 2006. Directionlets:anisotropic multidirectional representation with separable filtering. IEEE Transactions on Image Processing, 15(7):1916-1933[DOI:10.1109/TIP.2006.877076]
Vidal R, Ma Y and Sastry S. 2005. Generalized principal component analysis (GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12):1945-1959[DOI:10.1109/TPAMI.2005.244]
Wang H P, Li S, Zhou Y and Chen S Z. 2018a. SAR automatic target recognition using a roto-translational invariant wavelet-scattering convolution network. Remote Sensing, 10(4):501[DOI:10.3390/rs10040501]
Wang Y Q, Yao Q M, Kwok J T Y and Ni L M. 2018b. Scalable online convolutional sparse coding. IEEE Transactions on Image Processing, 27(10):4850-4859[DOI:10.1109/TIP.2018.2842152]
Wang Y Q, Yao Q M, Kwok J T Y and Ni L M. 2018c. Online convolutional sparse coding with sample-dependent dictionary//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR: 5209-5218
Wen W, Wu C P, Wang Y D, Chen Y R and Li H. 2016a. Learning structured sparsity in deep neural networks//Proceedings of the 30th Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc.: 2074-2082
Wen Y D, Liu W Y, Yang M, Fu Y L, Xiang Y J and Hu R. 2016b. Structured occlusion coding for robust face recognition. Neurocomputing, 178:11-24[DOI:10.1016/j.neucom.2015.05.132]
Wen Z W, Goldfarb D and Scheinberg K. 2011. Block coordinate descent methods for semidefinite programming//Anjos M F and Lasserre J B, eds. Handbook on Semidefinite, Conic and Polynomial Optimization. Boston: Springer[ DOI: 10.1007/978-1-4614-0769-0_19 http://dx.doi.org/10.1007/978-1-4614-0769-0_19 ]
Wiatowski T and Bölcskei H. 2018. A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Transactions on Information Theory, 64(3):1845-1866[DOI:10.1109/TIT.2017.2776228]
Wohlberg B. 2014. Efficient convolutional sparse coding//Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE: 7173-7177[ DOI: 10.1109/ICASSP.2014.6854992 http://dx.doi.org/10.1109/ICASSP.2014.6854992 ]
Wu Z H, Pan S R, Chen F W, Long G D, Zhang C Q and Yu P S. 2019. A comprehensive survey on graph neural networks[EB/OL].[2019-09-01] . https://arxiv.org/pdf/1901.00596.pdf https://arxiv.org/pdf/1901.00596.pdf
Xiong H K, Zhu L C, Ma N N and Zheng Y F. 2011. Scalable video compression framework with adaptive orientational multiresolution transform and nonuniform directional filterbank design. IEEE Transactions on Circuits and Systems for Video Technology, 21(8):1085-1099[DOI:10.1109/TCSVT.2011.2133310]
Xiong Y H, Xu C and Xiong H K. 2016. Kernelized learning in deep scattering convolution networks//Proceedings of 2016 IEEE International Conference on Multimedia and Expo (ICME). Seattle, WA, USA: IEEE[ DOI: 10.1109/ICME.2016.7552973 http://dx.doi.org/10.1109/ICME.2016.7552973 ]
Xu B B, Shen H W, Cao Q, Qiu Y Q and Cheng X Q. 2019. Graph wavelet neural network//Proceedings of the 7th International Conference on Learning Representation. New Orleans, LA, USA: [s.n.]: 1-13
Xu C, Dai W R and Xiong H K. 2017. Extended conjugate polar Fourier transforminconvolution network//Proceedings of 2017 IEEE International Conference on Image Processing (ICIP). Beijing, China: IEEE: 2453-2457[ DOI: 10.1109/ICIP.2017.8296723 http://dx.doi.org/10.1109/ICIP.2017.8296723 ]
Xu C and Xiong H K. 2016. Revertible deep convolutional networks with iterated directional filter bank//Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE: 1586-1590[ DOI: 10.1109/ICASSP.2016.7471944 http://dx.doi.org/10.1109/ICASSP.2016.7471944 ]
Xu Y C, Xiao T J, Zhang J X, Yang K Y and Zhang Z. 2014. Scale-invariant convolutional neural networks[EB/OL].[2019-09-01] . https://arxiv.org/pdf/1411.6369.pdf https://arxiv.org/pdf/1411.6369.pdf
Yan S J, Xiong Y J and Lin D H. 2018. Spatial temporal graph convolutional networks for skeleton-based action recognition//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, LA, USA: AAAI: 7444-7452
Ye J C, Han Y and Cha E. 2018. Deep convolutional framelets:a general deep learning framework for inverse problems. SIAM Journal on Imaging Sciences, 11(2):991-1048[DOI:10.1137/17M1141771]
Yin R J, Gao T R, Lu Y M and Daubechies I. 2017. A tale of two bases:local-nonlocal regularization on image patches with convolution framelets. SIAM Journal on Imaging Sciences, 10(2):711-750[DOI:10.1137/16m1091447]
Yuan M. 2010. High dimensional inverse covariance matrix estimation via linear programming. Journal of Machine Learning Research, 11:2261-2286
Yuan M and Lin Y. 2006. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 68(1):49-67[DOI:10.1111/j.1467-9868.2005.00532.x]
Zeiler M D, Krishnan D, Taylor G W and Fergus R. 2010. Deconvolutional networks//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE: 2528-2535[ DOI: 10.1109/CVPR.2010.5539957 http://dx.doi.org/10.1109/CVPR.2010.5539957 ]
Zhang H and Patel V M. 2016. Convolutional sparse coding-based image decomposition//Procedings of the British Machine Vision Conference 2016. York, UK: BMVA Press[ DOI: 10.5244/C.30.125 http://dx.doi.org/10.5244/C.30.125 ]
Zhang H and Patel V M. 2017. Convolutional sparse and low-rank coding-based rain streak removal//Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa, CA, USA: IEEE: 1259-1267[ DOI: 10.1109/WACV.2017.145 http://dx.doi.org/10.1109/WACV.2017.145 ]
Zhao P, Rocha G and Yu B. 2009. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 37(6A):3468-3497[DOI:10.1214/07-AOS584]
Zhou G Y, Lu Z W and Peng Y X. 2013. $${L_1}$$ -graph construction using structured sparsity. Neurocomputing, 120:441-452[DOI:10.1016/j.neucom.2013.03.045]
Zhou Y, Chang H, Barner K, Spellman P and Parvin B. 2014. Classification of histology sections via multispectral convolutional sparse coding//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE: 3081-3088[ DOI: 10.1109/CVPR.2014.394 http://dx.doi.org/10.1109/CVPR.2014.394 ]
Zhu Y Y and Lucey S. 2015. Convolutional sparse coding for trajectory reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3):529-540[DOI:10.1109/TPAMI.2013.2295311]
Zou D M and Lerman G. 2019. Graph convolutional neural networks via scattering. Applied and Computational Harmonic Analysis[ DOI: 10.1016/j.acha.2019.06.003 http://dx.doi.org/10.1016/j.acha.2019.06.003 ]
相关文章
相关作者
相关机构