单幅光学遥感影像去霾算法及评价综述
Overview of single image-based haze removal method for visible remote sensing images
- 2019年24卷第9期 页码:1416-1433
纸质出版日期: 2019-09-16
DOI: 10.11834/jig.180676
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2019-09-16 ,
移动端阅览
姜侯, 吕宁. 单幅光学遥感影像去霾算法及评价综述[J]. 中国图象图形学报, 2019,24(9):1416-1433.
Hou Jiang, Ning Lyu. Overview of single image-based haze removal method for visible remote sensing images[J]. Journal of Image and Graphics, 2019,24(9):1416-1433.
光学遥感影像经常受到云或霾影响,而在多数情况下极少能获取辅助数据用于遥感影像去霾;因此单幅光学遥感影像的图像处理去霾算法成为遥感影像预处理的重要技术。目前,不同研究者设计了多种算法,但是缺乏系统性的总结与对比分析,本文旨在系统性地总结单幅遥感影像去霾算法的研究进展,并提供典型算法的基本原理、优缺点及适用场景。采用文献综合分析方法从霾条件影像成像模型、基础原理和结果评价3方面对当前的去霾算法进行归类总结和原理剖析,然后结合具体应用场景分析算法的适用范围和存在问题,并提出可行的解决方案。常见的去霾算法大体可归纳为暗目标减法、滤波法、暗通道先验法和经验变换法4类,这些算法采用的霾条件影像成像模型包括加法模型、霾传输衰减模型和照明—反射模型等;在算法的评估中,常用的手段有主观分析方法、影像光谱特征分析方法以及图像质量指标评估法等。现有算法并不能适用于所有的场景或图像,存在模型参数难以自适应调整、模型对特殊地物类型敏感、处理结果失真严重等问题;算法的评价主要采用主观对比分析方法,根据应用需求构建客观指标成为目前的热点方向。
Optical remote sensing images are often affected by clouds or haze
and in most cases
auxiliary data are not available for removing haze from the original satellite images. Therefore
the single image-based haze removal method has become the necessary preprocessing technology. A variety of algorithms have been developed by different researchers
but systematic summary and comparative analysis are rare. This paper aims to systematically summarize the research progress of a single image-based haze removal algorithm and provide the basic theory
advantages
and disadvantages and applicable scenarios of typical algorithms. This paper first classifies and summarizes the current haze removal algorithms from three aspects (haze attenuation model
basic theory
and evaluation method)
then analyzes the application scope and problems of current algorithms combined with specific application scenarios
and finally presents feasible solutions with respect to special problems. The imaging models used in the haze removal process are the additive
haze degradation
and illumination-reflection models. The additive model
which is simplified from radiation transfer equations
considers that the at-satellite radiance under haze or cloud conditions is the sum of different radiation components
including the constant path radiance
the surface reflected radiance
and spatially varying haze contribution. This model is adopted by the classical dark object subtraction (DOS) method and its various improved versions. The haze degradation model divides the observed light intensity into two components:direct attenuation describing the scene radiance and its decay in the atmosphere and airlight resulting from scattered light. Both components are correlated to the medium transmission that describes the portion of the light that is not scattered and reaches the sensor. Haze removal methods that rely on the dark channel prior (DCP) usually estimate the medium transmission through the haze degradation model. The illumination-reflection model abstracts the observed image as a product of the illumination component of the light source and the reflection component of the object. In the frequency domain
the haze or the cloud signal is mainly concentrated in the low-frequency region and can be suppressed through high-pass filtering. The widely used methods based on the illumination-reflection model include homomorphic filtering and wavelet decomposition. A haze removal procedure generally consists of two consecutive stages:haze detection and haze correction. Haze detection involves obtaining the precise spatial intensity of haze or thin clouds in an image
and haze correction is the process of removing haze influence depending on the estimated haze intensity. The distributions of haze usually vary dramatically in the spatial and temporal domains; as a result
the collection of detailed in situ measurements of haze conditions during the time of image acquisition is almost impossible in practical applications. Thus
single image-based haze removal methods have attracted increasing interest over the past decades. Existing methods retrieved in the literature fall into four common categories:DOS
frequency filtering
DCP
and image transformation-based approaches. DOS-based methods have evolved from the stage where they are suitable for homogeneous haze conditions only to the stage where they are able to compensate for spatially varying haze contaminations. The typical algorithms belong to the dense dark vegetation (DDV) technique and haze thickness map (HTM) method. The DDV technique depends on the empirical correlation between the reflectance of visible bands (usually blue and/or red) and that of a haze-transparent band (e.g.
band 7 in the case of Landsat data) for DDV pixels. A DDV-based method would fail to work if a scene does not contain sufficient and evenly distributed vegetated pixels or the correlation of the DDV pixels is significantly different from the standard one. The HTM algorithm estimates haze intensity by searching dark targets within local neighboring blocks instead of searching in an entire scene. The HTM algorithm is feasible for satellite images with high spatial resolutions because pure dark pixels without mixing with bright targets are required in a small local region
but it is unable to handle scenes that have large areas of relatively bright surfaces. Frequency filtering-based approaches operate in the spatial frequency domain assuming that haze contamination is in a relatively low frequency compared with the changeable reflectance of surface covers and can thus be removed by applying a filtering process. Wavelet decomposition and homomorphic filtering are two representative approaches. The major obstacle in applying these methods is determining a cut-off frequency or choosing the wavelet basis. Current solutions rely on empirical criteria and are usually suitable for some special issues. DCP-based methods combine the haze degradation model and DCP
which originates from the statistics of outdoor haze-free images (i.e.
in most non-sky patches of haze-free images
at least one color channel has very low intensity at some pixels). When applying DCP-based methods for haze removal in remote sensing images
improvements are required due to the different characteristics between natural scenes and satellite images. Image transformation-based haze removals are initially developed based on the tasseled cap transformation (TCT) because haze contamination seems to be the major contributor to the fourth component of TCT. Haze-optimized transformation (HOT) might be the most widely used transformation-based haze removal method
which supposes that digital numbers of red and blue bands are highly correlated for pixels within the clearest portions of a scene and that this relationship holds for all surface classes. Given that the algorithm relies on only two visible bands
which means that no haze-transparent band is needed
it can be applied to a broad range of satellite images (e.g.
Landsat
MODIS
Sentinel-2
QuikBird
and IKONOS). Nevertheless
serious spurious HOT responses exist over non-vegetated areas (e.g.
water bodies
snow cover
bare soil
and urban targets)
leading to under-correction or overcorrection of these targets. A usual solution is to exclude sensitive land cover types from original HOT and then estimate HOT values for the excluded pixels through spatial inference. Another suggested strategy for addressing this issue is to fill the sinks and flatten the peaks in a HOT image. Other haze removal methods are also involved in band combination
mixed pixel decomposition
or machine learning techniques. For example
multi-scale residual convolutional neural network (MRCNN) is designed for haze removal of Landsat 8 OLI images. MRCNN is able to predict haze intensity by feeding into specific hazy image blocks after it automatically learns the mapping relations between hazy images and their associated haze transmission from sufficient training samples. As for algorithm analysis and evaluation
researchers are inclined to adopt subjective analysis or choose reference images to evaluate spectral consistency before and after haze removal. Recently
image quality indices have been utilized more frequently to evaluate the contrast
brightness
structural consistency
and fidelity of dehazed images. The existing algorithms are not suitable for all scenarios or images
and they face some problems. For instance
parameters are difficult to adjust adaptively
the model is sensitive to special land cover types
and outputted results are seriously distorted. The evaluation of different algorithms is mainly based on subjective comparative analysis
and building objective indicators according to application requirements has become the current research direction.
遥感影像去霾暗目标减法暗通道先验霾传输衰减图像质量评价霾优化变换小波分解
remote sensing dehazingdark object subtractiondark channel priorhaze degradation modelimage quality evaluationhaze optimized transformationwavelet decomposition
Li H W, Yang M H, Liu Y S. Remote sensing image cloud removing based on median filter and wavelet transform[J]. Geomatics&Spatial Information Technology, 2012, 35(6): 49-51.
李海巍, 杨敏华, 刘益世.基于中值滤波和小波变换的遥感影像去云[J].测绘与空间地理信息, 2012, 35(6): 49-51.[DOI: 10.3969/j.issn.1672-5867.2012.07.015]
Long J, Shi Z W, Tang W, et al. Single remote sensing image dehazing[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 59-63.[DOI: 10.1109/lgrs.2013.2245857]
Ju J C, Roy D P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally[J]. Remote Sensing of Environment, 2008, 112(3): 1196-1211.[DOI: 10.1016/j.rse.2007.08.011]
Huo J, Lyu D R. Analysis of cloud's distribution in Beijing with all-sky images[J]. Scientia Meteorologica Sinica, 2005, 25(3): 238-243.
霍娟, 吕达仁.利用全天空数字图像对北京上空云况分布特征的试验分析[J].气象科学, 2005, 25(3): 238-243.[DOI: 10.3969/j.issn.1009-0827.2005.03.003]
Song C H, Woodcock C E, Seto K C, et al. Classification and change detection using Landsat TM data:when and how to correct atmospheric effects?[J]. Remote Sensing of Environment, 2001, 75(2): 230-244.[DOI: 10.1016/S0034-4257(00)00169-3]
Luo J C, Zhou C H, Yang Y. Land-cover and land-use classification based on remote sensing intelligent geo-interpreting model[J]. Journal of Natural Resources, 2001, 16(2): 179-183.
骆剑承, 周成虎, 杨艳.遥感地学智能图解模型支持下的土地覆盖/土地利用分类[J].自然资源学报, 2001, 16(2): 179-183.[DOI: 10.11849/zrzyxb.2001.02.013]
Fichera C R, Modica G, Pollino M. Land cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics[J]. European Journal of Remote Sensing, 2012, 45(1): 1-18.[DOI: 10.5721/eujrs20124501]
Lunetta R S, Knight J F, Ediriwickrema J, et al. Land-cover change detection using multi-temporal modis NDVI data[J]. Remote Sensing of Environment, 2006, 105(2): 142-154.[DOI: 10.1016/j.rse.2006.06.018]
Li H L. A study on land use survey and dynamic change monitoring by using remote sensing[D]. Taiyuan: Taiyuan University of Technology, 2007.
李恒利.土地利用调查与动态监测的遥感方法研究[D].太原: 太原理工大学, 2007.
Longbotham N, Pacifici F, Glenn T, et al. Multi-modal change detection, application to the detection of flooded areas: outcome of the 2009-2010 data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1): 331-342.[DOI: 10.1109/jstars.2011.2179638]
Miura T, Huete A R, Yoshioka H, et al. An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction[J]. Remote Sensing of Environment, 2001, 78(3): 284-298.[DOI: 10.1016/s0034-4257(01)00223-1]
LuD. Detection and substitution of clouds/hazes and their cast shadows on IKONOS images[J]. International Journal of Remote Sensing, 2007, 28(18): 4027-4035.[DOI: 10.1080/01431160701227703]
Yang S G. A study on population distributing and function area in Shanghai[D]. Beijing: Capital University of Economics and Business, 2007.
杨守国.上海市人口分布变动和城市功能区研究[D].北京: 首都经济贸易大学, 2007.
Eckardt R, Berger C, Thiel C, et al. Removal of optically thick clouds from multi-spectral satellite images using multi-frequency SAR data[J]. Remote Sensing, 2013, 5(6): 2973-3006.[DOI: 10.3390/rs5062973]
Kaufman Y J. The atmospheric effect on remote sensing and its correction[M]//Asrar G. Theory and Applications of Optical Remote Sensing. New York: John Wiley&Sons, 1989.
Zhang Y, Guindon B, Cihlar J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images[J]. Remote Sensing of Environment, 2002, 82(2-3): 173-187.[DOI: 10.1016/s0034-4257(02)00034-2]
Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118: 83-94.[DOI: 10.1016/j.rse.2011.10.028]
Richter R, Schläpfer D, Müller A. An automatic atmospheric correction algorithm for visible/nir imagery[J]. International Journal of Remote Sensing, 2006, 27(10): 2077-2085.[DOI: 10.1080/01431160500486690]
Makarau A, Richter R, Schläpfer D, et al. Combined haze and cirrus removal for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 379-383.[DOI: 10.1109/lgrs.2016.2515110]
Jiang H, Lu N, Yao L, et al. Single image dehazing for visible remote sensing based on tagged haze thickness maps[J]. Remote Sensing Letters, 2018, 9(7): 627-635.[DOI: 10.1080/2150704x.2018.1456701]
Chavez P S Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data[J]. Remote Sensing of Environment, 1988, 24(3): 459-479.[DOI: 10.1016/0034-4257(88)90019-3]
Kaufman Y J, Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery[J]. International Journal of Remote Sensing, 1988, 9(8): 1357-1381.[DOI: 10.1080/01431168808954942]
Makarau A, Richter R, Müller R, et al. Haze detection and removal in remotely sensed multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5895-5905.[DOI: 10.1109/tgrs.2013.2293662]
Dal Moro G., Halounova L. Haze removal for high-resolution satellite data: a case study[J]. International Journal of Remote Sensing, 2007, 28(10): 2187-2205.[DOI: 10.1080/01431160600928559]
Kaufman Y J, Wald A E, Remer L A, et al. Remote sensing of aerosol over the continents with the aid of a 2.2 μm channel[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1286-1298.
Liang S, Fang H, Chen M. Atmospheric correction of Landsat ETM+ land surface imagery. I. methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2490-2498.[DOI: 10.1109/36.964986]
Nayar S K, Narasimhan S G. Vision in bad weather[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999: 820-827.[DOI:10.1109/ICCV.1999.790306http://dx.doi.org/10.1109/ICCV.1999.790306]
Narasimhan S G, Nayar S K. Vision and the Atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254.[DOI: 10.1023/A:1016328200723]
Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.[DOI: 10.1109/tpami.2003.1201821]
He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.[DOI: 10.1109/TPAMI.2010.168]
Wang S Z, Wan H Q, Zeng L S, et al. Haze removal methods of remote sensing image using dark channel prior[J]. Journal of Geomatics Science and Technology, 2011, 28(3): 182-185, 189.
王时震, 万惠琼, 曾令沙, 等.应用暗原色先验规律的遥感影像去雾技术[J].测绘科学技术学报, 2011, 28(3): 182-185, 189.[DOI: 10.3969/j.issn.1673-6338.2011.03.007]
Pan X X, Xie F Y, Jiang Z G, et al. Haze removal fora single remote sensing image based on deformed haze imaging model[J]. IEEE Signal Processing Letters, 2015, 22(10): 1806-1810.[DOI: 10.1109/lsp.2015.2432466]
Jiang H, Lu N. Multi-scale residual convolutional neural network for haze removal of remote sensing images[J]. Remote Sensing, 2018, 10(6): 945.[DOI: 10.3390/rs10060945]
Gonzalez R C, Woods R E. Digital Image Processing[M]. 2nd ed. New York: Prentice Hall, 2002.
Liu Z K, Hunt B R. A new approach to removing cloud cover from satellite imagery[J]. Computer Vision, Graphics, and Image Processing, 1984, 25(2): 252-256.[DOI: 10.1016/0734-189x(84)90107-5]
Du Y, Guindon B, Cihlar J. Haze detection and removal in high resolution satellite image with wavelet analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 210-217.[DOI: 10.1109/36.981363]
Ye Q G, Zong J C, Li C, et al. Removing cloud and mist from remote sensing digital images based on homographic filtering[J]. Hydrographic Surveying and Charting, 2009, 29(3): 45-46, 57.
叶秋果, 宗景春, 李钏, 等.基于同态滤波的遥感影像去云雾处理[J].海洋测绘, 2009, 29(3): 45-46, 57.[DOI: 10.3969/j.issn.1671-3044.2009.03.014]
Liu W J, Zhou S G, Zhao M Y, et al. A new method for RS image dehazing based on atmospheric scattering theory[J]. Bulletin of Surveying and Mapping, 2015, (10): 38-43.
刘文静, 周绍光, 赵梦银, 等.大气散射理论的遥感影像雾霾去除新方法[J].测绘通报, 2015, (10): 38-43.[DOI: 10.13474/j.cnki.11-2246.2015.0309]
Shen H F, Li H F, Qian Y, et al. An effective thin cloud removal procedure for visible remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96: 224-235.[DOI: 10.1016/j.isprsjprs.2014.06.011]
Chavez P S Jr. Radiometric calibration of Landsat thematic mapper multispectral images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1989, 55(9): 1285-1294.
Liang S L, Fang H L, Morisette J T, et al. Atmospheric correction of landsat ETM+ land surface imagery. Ⅱ. validation and applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2736-2746.[DOI: 10.1109/tgrs.2002.807579]
Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11): 1417-1434.[DOI: 10.1080/01431168608948945]
Holben B, Vermote E, Kaufman Y J, et al. Aerosol retrieval over land from AVHRR data-application for atmospheric correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 212-222.[DOI: 10.1109/36.134072]
Kaufman Y J, Remer L A. Detection of forests using mid-IR reflectance: an application for aerosol studies[J]. IEEE Transactions on Geoscience andRemote Sensing, 1994, 32(3): 672-683.[DOI: 10.1109/36.297984]
Ackerman S A. Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks[J]. Remote Sensing of Environment, 1989, 27(2): 129-133.[DOI: 10.1016/0034-4257(89)90012-6]
Xu M, Jia X P, Pickering M. Automatic cloud removal for Landsat 8 OLI images using cirrus band[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE, 2014: 2511-2514.[DOI:10.1109/igarss.2014.6946983http://dx.doi.org/10.1109/igarss.2014.6946983]
Gao B C, Li R R. Removal of thin cirrus scattering effects in Landsat 8 OLI images using the cirrus detecting channel[J]. Remote Sensing, 2017, 9(8): #834.[DOI: 10.3390/rs9080834]
Fries R, Modestino J. Image enhancement by stochastic homomorphic filtering[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(6): 625-637.[DOI: 10.1109/TASSP.1979.1163324]
Wu C Q, Wang Q, Yang Z F. Cloud-moving of water RS image based on mixed pixel model[J]. Journal of Remote Sensing, 2006, 10(2): 176-183.
吴传庆, 王桥, 杨志峰.基于混合像元分解的水体遥感图像去云法[J].遥感学报, 2006, 10(2): 176-183.
Liu J, Wang X, Chen M, et al. Thin cloud removal from single satellite images[J]. Optics Express, 2014, 22(1): 618-632.[DOI: 10.1364/oe.22.000618]
Cohen A, Daubechies I, Jawerth B, et al. Multiresolution analysis, wavelets and fast algorithms on an interval[J]. Applied and Computational Harmonic Analysis, 1993, 1(1): 54-81.
Wu W, Luo J C, Hu X D, et al. A thin-cloud mask method for remote sensing images based on sparse dark pixel region detection[J]. Remote Sensing, 2018, 10(4): #617.[DOI: 10.3390/rs10040617]
Levin A, Lischinski D, Weiss Y. A closed-form solution to natural image matting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 228-242.[DOI: 10.1109/TPAMI.2007.1177]
He K M, Sun J, Tang X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.[DOI: 10.1109/TPAMI.2012.213]
Sulami M, Glatzer I, Fattal R, et al. Automatic recovery of the atmospheric light in hazy images[C]//Proceedings of 2014 IEEE International Conference on Computational Photography. Santa Clara, CA, USA: IEEE, 2014: 1-11.[DOI:10.1109/ICCPHOT.2014.6831817http://dx.doi.org/10.1109/ICCPHOT.2014.6831817]
Yuan Q, Shen H F, Li H F. Single remote sensing image haze removal based on spatial and spectral self-adaptive model[C]//Proceedings of the 8th International Conference on Image and Graphics. Tianjin, China: Springer, 2015: 382-392.[DOI:10.1007/978-3-319-21969-1_33http://dx.doi.org/10.1007/978-3-319-21969-1_33]
Kauth R J, Thomas G S. The tasselled cap—a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat[C]//Proceedings of Symposium on Machine Processing of Remotely Sensed Data. West Lafayette: Purdue University, 1976: 41-51.
Crist E P, Cicone R C. A physically-based transformation of thematic mapper data—the TM tasseled cap[J]. IEEE Transactions on Geoscience and Remote Sensing, 1984, 22(3): 256-263.[DOI: 10.1109/tgrs.1984.350619]
Richter R. A spatially adaptive fast atmospheric correction algorithm[J]. International Journal of Remote Sensing, 1996, 17(6): 1201-1214.[DOI: 10.1080/01431169608949077]
Richter R. Atmospheric correction of satellite data with haze removal including a haze/clear transition region[J]. Computers& Geosciences, 1996, 22(6): 675-681.[DOI: 10.1016/0098-3004(96)00010-6]
Jiang H, Lyu N, Yao L. HOT-transform based method to remove haze or thin cloud for Landsat 8 OLI satellite data[J]. Journal of Remote Sensing, 2016, 20(4): 620-631.
姜侯, 吕宁, 姚凌.改进HOT法的Landsat 8 OLI遥感影像雾霾及薄云去除[J].遥感学报, 2016, 20(4): 620-631.[DOI: 10.11834/jrs.20165276]
He X Y, Hu J B, Chen W, et al. Haze removal based on advanced haze-optimized transformation (AHOT) for multispectral imagery[J]. International Journal of Remote Sensing, 2010, 31(20): 5331-5348.[DOI: 10.1080/01431160903369600]
Zhang Y, Guindon B, Li X W. A robust approach for object-based detection and radiometric characterization of cloud shadow using haze optimized transformation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5540-5547.[DOI: 10.1109/tgrs.2013.2290237]
Jiang H, Lu N, Yao L. A high-fidelity haze removal method based on HOT for visible remote sensing images[J]. Remote Sensing, 2016, 8(10): #844.[DOI: 10.3390/rs8100844]
Liu C B, Hu J B, Lin Y, et al. Haze detection, perfection and removal for high spatial resolution satellite imagery[J]. International Journal of Remote Sensing, 2011, 32(23): 8685-8697.[DOI: 10.1080/01431161.2010.547884]
Chen S L, Chen X H, Chen J, et al. An iterative haze optimized transformation for automatic cloud/haze detection of landsat imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2682-2694.[DOI: 10.1109/tgrs.2015.2504369]
Sun L X, Latifovic R, Pouliot D. Haze removal based on a fully automated and improved haze optimized transformation for Landsat imagery over land[J]. Remote Sensing, 2017, 9(10): 972.[DOI: 10.3390/rs9100972]
Samet H, Tamminen M. Efficient component labeling of images of arbitrary dimension represented by linear bintrees[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 579-586.[DOI: 10.1109/34.3918]
Wu S J, Li L, Gong B X, et al. Comparison of the methods for haze elimination of GeoEye-1 remote sensing image[J]. Remote Sensing for Land&Resources, 2012, 24(3): 50-53.
吴寿江, 李亮, 宫本旭, 等. GeoEye-1遥感图像去雾霾方法比较[J].国土资源遥感, 2012, 24(3): 50-53.
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[EB/OL].[2018-12-24]DOI:https://arxiv.org/1511.07122.pdfhttps://arxiv.org/1511.07122.pdf.
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.[DOI:10.1109/cvpr.2016.90http://dx.doi.org/10.1109/cvpr.2016.90]
Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv: 1207.0580, 2012.
Sheikh H R, Bovik A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.[DOI: 10.1109/TIP.2005.859378]
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.[DOI: 10.1109/TIP.2003.819861]
Wang Z, Bovik A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84.[DOI: 10.1109/97.995823]
Shah P, Merchant S N, Desai U B. Multifocus and multispectral image fusion based on pixel significance using multiresolution decomposition[J]. Signal, Image and Video Processing, 2013, 7(1): 95-109.[DOI: 10.1007/s11760-011-0219-7]
Zhao W, Lu H C. Medical image fusion and denoising with alternating sequential filter and adaptive fractional order total variation[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(9): 2283-2294.[DOI: 10.1109/TIM.2017.2700198]
Tsagaris V, Anastassopoulos V. Information measure for assessing pixel-level fusion methods[C]//Proceedings of SPIE 5573, Image and Signal Processing for Remote Sensing X. Maspalomas, Canary Islands, Spain: SPIE, 2004: 5573.[DOI:10.1117/12.565597http://dx.doi.org/10.1117/12.565597]
Piella G, Heijmans H. A new quality metric for image fusion[C]//Proceedings of 2003 International Conference on Image Processing. Barcelona, Spain: IEEE, 2003: Ⅲ-173.[DOI:10.1109/icip.2003.1247209http://dx.doi.org/10.1109/icip.2003.1247209]
Chen G H, Yang C L, Xie S L. Gradient-based structural similarity for image quality assessment[C]//Proceedings of 2006 International Conference on Image Processing. Atlanta, GA, USA: IEEE, 2006: 2929-2932.[DOI:10.1109/icip.2006.313132http://dx.doi.org/10.1109/icip.2006.313132]
Han Y, Cai Y Z, Cao Y, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127-135.[DOI: 10.1016/j.inffus.2011.08.002]
Yang Y C, Li J, Wang Y P. Review of image fusion quality evaluation methods[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7): 1021-1035.
杨艳春, 李娇, 王阳萍.图像融合质量评价方法研究综述[J].计算机科学与探索, 2018, 12(7): 1021-1035.
相关作者
相关机构