摘要:目的图像和视频合成技术在媒体后期处理领域广泛应用,随着技术门槛的降低,大量合成素材被发布并迅速传播。然而,部分合成内容可能含有误导性信息,威胁视听内容的真实性和安全性。传统合成检测方法主要依赖合成痕迹或画面异常检测,但随着合成技术的不断进步,现有方法在检测精度和适应性方面仍存在优化空间,需要改进以应对日益复杂的合成内容检测需求。方法本文提出一种融合物理与深度学习的合成图像检测方法,创新性地结合光照和阴影一致性分析。通过特征提取与融合网络,实现光照图与光照强度的一致性分析,判断物体采集环境;利用交比估计检测光照方向一致性,有效提升了检测精度和适应性。同时构建了具有物理属性的数据集,为合成图像检测提供数据支持。结果在NIST 16(National Institute of Standards and Technology Database 16)、Coverage和CASIA(Chinese Academy of Sciences Institute of Automation Database)数据集上的实验表明,本文方法在AUC(area under the curve)指标上分别达到94.2%、93.6%和90.3%,F1分数分别达到80.2%、79.3%和58.1%,优于对比方法。在噪声攻击实验中,本文方法对尺寸变化、高斯模糊、高斯噪声和JPEG(Joint Photographic Experts Group)压缩表现出更强的适应性,平均AUC为84.03%。此外,本文提出的数据集在训练过程中表现出高可用性,使用该数据集训练的模型AUC平均提升18.1%。结论本文方法在准确性和鲁棒性方面均优于对比方法,构建的数据集能够有效支持合成图像检测模型的训练、验证和测试,为该领域的研究提供了重要参考。数据集下载链接:https://doi.org/10.57760/sciencedb.j00240.00069。
摘要:目的现有数据浓缩后门攻击方法将含有触发器的中毒样本和干净样本浓缩为小的数据集,中毒数据中真实数据的强信号掩盖触发器的弱信号,并且未考虑将非目标类浓缩数据与中毒数据特征分离,非目标类浓缩数据残留触发器特征。因此,提出分离触发器和多重对比的数据浓缩后门攻击。方法首先将触发器与真实数据进行分离。分离的触发器作为样本与真实数据并行嵌入浓缩数据,减少真实数据对触发器的干扰。然后,对分离的触发器进行优化,将触发器接近目标类真实数据的特征,提高触发器的嵌入效果,同时对触发器进行了分区放大预处理来增加触发器像素的数量,使其在优化过程获取大量的梯度用于指导学习。在数据浓缩阶段,通过多重对比将目标类浓缩数据与触发器特征投影在同一空间,将非目标类浓缩数据与触发器特征分离,进一步提高后门攻击的成功率。结果为了验证所提出方法的有效性,将所提出方法在 FashionMNIST(Fashion Modified National Institute of Standards and Technology database)、CIFAR10(Canadian Institute for Advances Research’s ten categories dataset)、STL10(Stanford letter-10)、SVHN(street view house numbers)与其他4种方法进行对比实验。所提出的方法在5个数据集和6个不同的模型上均达到100%的攻击成功率,同时未降低干净样本在模型上的准确率。结论所提出的方法通过解决现有方法存在的问题,实现了性能的显著提高。本文方法具体代码见:https://github.com/tfuy/STMC。
摘要:目的近年来,基于深度学习的水印方法得到了广泛研究。现有方法通常对特征图的低频和高频部分同等对待,忽视了不同频率成分之间的重要差异,导致模型在处理多样化攻击时缺乏灵活性,难以同时实现水印的高保真性和强鲁棒性。为此,本文提出一种频率感知驱动的深度鲁棒图像水印技术(deep robust image watermarking driven by frequency awareness, RIWFP)。方法通过差异化机制处理低频和高频成分,提升水印性能。具体而言,低频成分通过小波卷积神经网络进行建模,利用宽感受野卷积在粗粒度层面高效学习全局结构和上下文信息;高频成分则采用深度可分离卷积和注意力机制组成的特征蒸馏块进行精炼,强化图像细节,在细粒度层面高效捕捉高频信息。此外,本文使用多频率小波损失函数,引导模型聚焦于不同频带的特征分布,进一步提升生成图像的质量。结果实验结果表明,提出的频率感知驱动的深度鲁棒图像水印技术在多个数据集上均表现出优越性能。在COCO(common objects in context)数据集上,RIWFP在随机丢弃攻击下的准确率达到91.4%;在椒盐噪声和中值滤波攻击下,RIWFP分别以100%和99.5%的准确率达到了最高水平,展现了其对高频信息的高效学习能力。在ImageNet数据集上,RIWFP在裁剪攻击下的准确率为93.4%;在JPEG压缩攻击下的准确率为99.6%,均显著优于其他对比方法。综合来看,RIWFP在COCO和ImageNet数据集上的平均准确率分别为96.7%和96.9%,均高于其他对比方法。结论本文所提方法通过频率感知的粗到细处理策略,显著增强了水印的不可见性和鲁棒性,在处理多种攻击时表现出优越性能。