Image Understanding and Computer Vision | Views : 0 下载量: 139 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Large-model driven test-time adaptation for multi-modal point cloud semantic segmentation

    • In the field of point cloud semantic segmentation, researchers have proposed a test time adaptive method that combines visual big model knowledge. By integrating visual text information and local feature consistency constraints, it significantly improves the generalization performance of point cloud semantic segmentation in various scenarios.
    • Vol. 30, Issue 11, Pages: 3651-3664(2025)   

      Received:27 December 2024

      Revised:2025-04-12

      Accepted:15 April 2025

      Published:16 November 2025

    • DOI: 10.11834/jig.240762     

    移动端阅览

  • Liu X F, Liu Y, Li H R, Zhang Y and Guo Y L. 2025. Large-model driven test-time adaptation for multi-modal point cloud semantic segmentation. Journal of Image and Graphics, 30(11):3651-3664 DOI: 10.11834/jig.240762.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Zhu Zhongjie 浙江万里学院宁波市DSP重点实验室;中国海洋大学信息科学与工程学院
Zhang Rong 浙江万里学院宁波市DSP重点实验室
Bai Yongqiang 浙江万里学院宁波市DSP重点实验室
Wang Yuer 浙江万里学院宁波市DSP重点实验室
Sun Jiamin 浙江万里学院宁波市DSP重点实验室;中国海洋大学信息科学与工程学院
Sun Liujie 上海理工大学出版印刷与艺术设计学院
Zeng Tengfei 上海理工大学出版印刷与艺术设计学院
Fan Jingxing 上海理工大学出版印刷与艺术设计学院

相关机构

Ningbo Key Laboratory of DSP, Zhejiang Wanli University
Faculty of Information Science and Engineering, Ocean University of China
College of Communication and Art Design, University of Shanghai for Science and Technology
School of Computer Science and Engineering, Xi’an University of Technology
Shaanxi Provincial Key Laboratory of Network Computing and Security Technology
0