Object Detection and Industrial Applications | Views : 0 下载量: 53 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Supervised attention-based oriented object detection in remote sensing images

    • In the field of remote sensing image object detection, researchers have proposed a new two-stage anchor free detection model based on Faster R-CNN, combined with anchor free detection and supervised mask attention techniques. This model guides the detection model to focus on the target area through attention mechanism and mask supervision method, improves the quality of target features, and adopts a dynamically adjusted soft label strategy to achieve reasonable label allocation and improve detection accuracy. On DOTA and HRSC2016 data sets, the average accuracy rate reached 76.36% and 90.51%, respectively, which exceeded most directional detection models, indicating the progressiveness and effectiveness of this method.
    • Vol. 30, Issue 3, Pages: 696-709(2025)   

      Received:16 May 2024

      Revised:13 August 2024

      Published:16 March 2025

    • DOI: 10.11834/jig.240247     

    移动端阅览

  • Yu Lingxiao, Hao Jie, Zuo Liang. 2025. Supervised attention-based oriented object detection in remote sensing images. Journal of Image and Graphics, 30(03):0696-0709 DOI: 10.11834/jig.240247.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Li Zhaohui 大连海事大学航运经济管理学院
An Jintang 大连海事大学航运经济管理学院
Jia Hongyu 大连海事大学航运经济管理学院
Fang Yan 大连海事大学航运经济管理学院
Jialin Yang 太原理工大学电气与动力工程学院
Xuejun Guo 太原理工大学大数据学院
Zehua Chen 太原理工大学大数据学院
Huang Zhihai 广东工业大学土木与交通工程学院

相关机构

School of Maritime Economics and Management, Dalian Maritime University
College of Electric and Power Engineering, Taiyuan University of Technology
College of Data Science, Taiyuan University of Technology
School of Civil and Transportation Engineering, Guangdong University of Technology
Guangzhou Metro Design & Research Institute Co., Ltd.
0