Fusion and Intelligent Interpretation for Multi-source Remote Sensing Data | Views : 0 下载量: 49 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Bipartite adversarial autoencoder network for unsupervised detection of changes in heterogeneous remote sensing images

    • Vol. 29, Issue 8, Pages: 2188-2204(2024)   

      Published: 16 August 2024

    • DOI: 10.11834/jig.230497     

    移动端阅览

  • Jia Meng, Zhao Qin, Lu Xiaofeng. 2024. Bipartite adversarial autoencoder network for unsupervised detection of changes in heterogeneous remote sensing images. Journal of Image and Graphics, 29(08):2188-2204 DOI: 10.11834/jig.230497.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Jiang Xian 中国林业科学研究院资源信息研究所,国家林业和草原局林业遥感与信息技术重点实验室
Cao Weiqun 北京林业大学信息学院;国家林业草原局林业智能信息处理工程技术研究中心
Liu Dongping 中国林业科学研究院森林生态环境与自然保护研究所,国家林业和草原局森林保护学重点实验室
Li Xinyue 北京林业大学信息学院;国家林业草原局林业智能信息处理工程技术研究中心
Wenqing Zhao 华北电力大学控制与计算机工程学院;复杂能源系统智能计算教育部工程研究中心
Haiming Zhang 华北电力大学控制与计算机工程学院
Minfu Xu 华北电力大学控制与计算机工程学院
朱铁一 青岛海洋大学计算机系

相关机构

School of Information Science and Technology, Beijing Forestry University
Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration (NFGA)
Key Laboratory of Forestry Remote Sensing and Information System, NFGA, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry
Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry
School of Control and Computer Engineering, North China Electric Power University
0