A review of real-time rendering technology based on mobile internet platforms
- Vol. 27, Issue 6, Pages: 1877-1897(2022)
Published: 16 June 2022 ,
Accepted: 22 March 2022
DOI: 10.11834/jig.220177
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 June 2022 ,
Accepted: 22 March 2022
移动端阅览
Chang Liu, Yuchi Huo, Yanci Zhang, Qian Zhang, Jiaxiang Zheng, Rui Tang, Geng Yu, Rui Wang, Jinyuan Jia. A review of real-time rendering technology based on mobile internet platforms. [J]. Journal of Image and Graphics 27(6):1877-1897(2022)
移动在线实时绘制技术受移动互联网发展的驱动,为3维可视化、计算机视觉、虚拟现实、增强现实、扩展现实和元宇宙等新兴研究领域提供了核心技术的支撑。本文以在线实时绘制技术为切入点,探讨了该技术在移动端、Web端、云端和多端协同这4类平台下的发展重心和研究现状,并深度阐述了工业级在线云平台的实施方案。首先,针对移动端的在线实时绘制,分析了近年来移动端绘制硬件构架设计的优化方向;探讨了在功耗和带宽受到制约的情况下移动端如何对渲染算法进行加速,如何对高功耗的光线跟踪算法进行优化;列举了包括图形应用程序编程接口(application programming interface,API)和游戏引擎在内的移动端渲染工具。然后,针对Web端在线实时绘制,分析了Web端的3D渲染机制,梳理了以3D场景的轻量化预处理、大规模3D场景的细粒度化网络传输、3D场景的对等传输以及Web3D在线特效渲染为代表的Web端在线绘制的关键技术(尤其面向大规模3D场景),列举了国内外知名Web3D引擎并探讨了主流游戏引擎对Web3D应用的支持。再后,针对云端在线实时绘制,从应用托管、资源调度和串流这三大云平台的核心功能入手,调研了以串流应用优化技术为核心的在线云绘制现状。此后,从多端绘制任务分摊机制入手,分析了以“端云”协同和“端边云”协同为目标的在线多端协同绘制的发展。最后,以当前工业级在线云绘制平台为研究对象,分析了包括微软、英伟达、Unity、酷家乐等一线云绘制企业的在线实时云绘制平台方案,验证了移动在线绘制技术在工业界的实用性。
Mobile internet real-time rendering technology facilitates key technical capabilities on the aspects of three dimensions (3D) visualization
computer vision
virtual reality
augmented reality
extended reality
and meta-universe. 3D visualization applications based on online real-time rendering technology have been widely scattered on multiple mobile Internet platforms. 3D based Internet applications have been transformed into new online visualization applications with 3D virtual scenes as the main interactive object and intensive immersion to deal with service locations and time constrained issues of the mobile Internet. Our review is focused on four platforms
including mobile terminals
web terminals
cloud terminals and multi-terminals collaboration. First
we investigate the "graphics processing unit" on mobile devices
which is the critical factor of mobile online real-time graphics rendering
and analyze its recent computing ability
designing
and optimization issues. We examined the possibility of hosting desktop-level rendering algorithms on mobile rendering devices
taking the ray-tracing approach as an example. We analyzed the rendering algorithms issues can be accelerated on the power and bandwidth constrained mobile orientation. We reviewed mobile rendering tools like mobile graphics application programming interface(API) and game engines
and conduct comparative category analysis for their performance. Second
we discussed the current Web3D online rendering mechanisms represented by the combination of WebGL2.0 and HTML5 in terms of web-oriented online real-time graphics rendering; we compared the technical features and rendering performance of well-known Web3D engines
and review the support of mainstream game engines for Web3D applications; we examined the challenged technologies of Web3D lightweighting solutions in related to the online real-time rendering of large-scale Web3D scenes like Web3D scene lightweighting and peer-to-peer networking(P2P) progressive transmission. In respect of online real-time graphics cloud rendering
we analyzed the remote rendering architecture of cloud rendering system; We revealed the core service layer of cloud rendering system in terms of cloud services——"platform as a service (PaaS)"
and sorted its three major functions out like application hosting
resource scheduling
and streaming; we analyzed two types of cloud-rendering optimization strategies derived from video stream compression and rendering latency mitigation; we described the core application of online cloud rendering system——the "cloud game"
and compared the system framework
technical features
and user experience of some of the latest "cloud game" applications. To enable multi-end collaborative online graphics rendering
we analyzed the rendering-task sharing and collaboration of the end-cloud system; we examined the collaboration pattern and technical features of the end-edge-cloud rendering system based on the introduction of edge computing; we make use of rendering resources toanalyze the load balancing optimization issues originated from computing power deployment and resource scheduling of the multi-end rendering system. Finally
we listed the current industry based online real-time cloud rendering systems
including NVIDIA-derived CloudXR
unity-based render streaming
Microsoft Azure remote rendering
and Kujiale cloud-based home decoration and design platform. We compared these systems through their framework
technical features and rendering effects.
在线实时绘制云渲染Web3D端云协同远程绘制
online real-time renderingcloud renderingWeb3Dend-cloud collaborationremote rendering
Ain Q U, Saddique A, Tariq I, Maqsood T B, Ishaq I, Zafar S and Malik B H. 2018. Comparison of mobile phone proceessor's architecture//Proceedings of the 9th IEEE International Conference on Software Engineering and Service Science. Beijing, China: IEEE: 970-973[DOI: 10.1109/ICSESS.2018.8663778http://dx.doi.org/10.1109/ICSESS.2018.8663778]
Bachhuber C, Martinez A S, Pries R, Eger S and Steinbach E. 2019. Edge cloud-based augmented reality//2019 IEEE 21st International Workshop on Multimedia Signal Processing. Kuala Lumpur, Malaysia: IEEE: 1-6[DOI: 10.1109/MMSP.2019.8901715http://dx.doi.org/10.1109/MMSP.2019.8901715]
Bao P and Gourlay D. 2004. Remote walkthrough over mobile networks using 3-D image warping and streaming. IEE Proceedings-Vision, Image and Signal Processing, 151(4): 329-336[DOI: 10.1049/ip-vis:20040749]
Bhojan A, Ng S P, Ng J and Ooi W T. 2020. CloudyGame: enabling cloud gaming on the edge with dynamic asset streaming and shared game instances. Multimedia Tools and Applications, 79(43): 32503-32523[DOI: 10.1007/s11042-020-09612-z]
Bugeja K, Debattista K and Spina S. 2019. An asynchronous method for cloud-based rendering. The Visual Computer, 35(12): 1827-1840[DOI: 10.1007/s00371-018-1577-8]
Buyukkaya E, Abdallah M and Simon G. 2015. A survey of peer-to-peer overlay approaches for networked virtual environments. Peer-to-Peer Networking and Applications, 8(2): 276-300[DOI: 10.1007/s12083-013-0231-5]
Cai K Y, Wang W C, Chen Z B, Chen Q Q and Teng J. 2009. Exploiting repeated patterns for efficient compression of massive models//Proceedings of the 8th International Conference on Virtual Reality Continuum and ITS Applications in Industry. Yokohama, Japan: ACM: 145-150[DOI: 10.1145/1670252.1670283http://dx.doi.org/10.1145/1670252.1670283]
Cai W, Chi Y F, Zhou C H, Zhu C J and Leung V C M. 2018. UBCGaming: ubiquitous cloud gaming system. IEEE Systems Journal, 12(3): 2483-2494[DOI: 10.1109/JSYST.2018.2797080]
Chatzopoulos D, Bermejo C, Huang Z P and Hui P. 2017. Mobile augmented reality survey: from where we are to where we go. IEEE Access, 5: 6917-6950[DOI: 10.1109/ACCESS.2017.2698164]
Chen D Y and El-Zarki M. 2019. A framework for adaptive residual streaming for single-player cloud gaming. ACM Transactions on Multimedia Computing, Communications, and Applications, 15(2S): #66[DOI: 10.1145/3336498]
Chen H, Zhang X, Xu Y L, Ren J, Fan J T, Ma Z and Zhang W J. 2019. T-gaming: a cost-efficient cloud gaming system at scale. IEEE Transactions on Parallel and Distributed Systems, 30(12): 2849-2865[DOI: 10.1109/TPDS.2019.2922205]
Chen L X, Xu J, Ren S L and Zhou P. 2018. Spatio-temporal edge service placement: a bandit learning approach. IEEE Transactions on Wireless Communications, 17(12): 8388-8401[DOI: 10.1109/TWC.2018.2876823]
Chen Z, Hu W L, Wang J J, Zhao S Y, Amos B, Wu G H, Ha K Y, Elgazzar K, Pillai P, Klatzk R, Siewiorek D and Satyanarayanan M. 2017. An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance//Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing. San Jose, USA: ACM: #14[DOI: 10.1145/3132211.3134458http://dx.doi.org/10.1145/3132211.3134458]
Chilberto J, Zaal S, Aroraa G and Price E. 2020. Building solutions in the azure cloud//Cloud Debugging and Profiling in Microsoft Azure. Berkeley, USA: Apress: 1-19[DOI: 10.1007/978-1-4842-5437-0_1http://dx.doi.org/10.1007/978-1-4842-5437-0_1]
Choy S, Wong B, Simon G and Rosenberg C. 2012. The brewing storm in cloud gaming: a measurement study on cloud to end-user latency//2012 11th Annual Workshop on Network and Systems Support for Games (NetGames). Venice, Italy: IEEE: 1-6[DOI: 10.1109/NetGames.2012.6404024http://dx.doi.org/10.1109/NetGames.2012.6404024]
Crassin C, Luebke D, Mara M, McGuire M, Oster B, Shirley P, Pike P P and Wyman C. 2015. CloudLight: a system for amortizing indirect lighting in real-time rendering. Journal of Computer Graphics Techniques, 4(4): 1-27
Debevec P. 2006. Image-based lighting//ACM SIGGRAPH 2006 Courses. Boston, Massachusetts, USA: ACM: 4-es[DOI: 10.1145/1185657.1185686http://dx.doi.org/10.1145/1185657.1185686]
Dimitrov R. 2007. Cascaded shadow maps. Developer Documentation, NVIDIA Corp[EB/OL]. [2021-11-28].http://www.cse.chalmers.se/edu/year/2011/course/TDA361/Advanced%20Computer%20Graphics/cascaded_shadow_maps.pdfhttp://www.cse.chalmers.se/edu/year/2011/course/TDA361/Advanced%20Computer%20Graphics/cascaded_shadow_maps.pdf
Englert M, Jung Y, Klomann M, Etzold J, Grimmy P and Jia J Y. 2015. A streaming framework for instant 3D rendering and interaction//Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology. Beijing, China: ACM: 192[DOI: 10.1145/2821592.2821645http://dx.doi.org/10.1145/2821592.2821645]
Evans A, Romeo M, Bahrehmand A, Agenjo J and Blat J. 2014.3D graphics on the web: a survey. Computers and Graphics, 41: 43-61[DOI: 10.1016/j.cag.2014.02.002]
Fehn C. 2004. Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV//Proceedings Volume 5291, Stereoscopic Displays and Virtual Reality Systems XI. San Jose, US: SPIE: 93-105[DOI: 10.1117/12.524762http://dx.doi.org/10.1117/12.524762]
Frigo P, Giuffrida C, Bos H and Razavi K. 2018. Grand Pwning unit: accelerating microarchitectural attacks with the GPU//2018 IEEE Symposium on Security and Privacy (SP). San Francisco, USA: IEEE: 195-210[DOI: 10.1109/SP.2018.00022http://dx.doi.org/10.1109/SP.2018.00022]
Gubran A A and Aamodt T M. 2019. Emerald: graphics modeling for SoC systems//The 46th International Symposium on Computer Architecture. Phoenix, USA: ACM: 169-182[DOI: 10.1145/3307650.3322221http://dx.doi.org/10.1145/3307650.3322221]
Guo L Q, Pang J and Walid A. 2018a. Joint placement and routing of network function chains in data centers//Proceedings of IEEE INFOCOM 2018-IEEE Conference on Computer Communications. Honolulu, USA: IEEE: 612-620[DOI: 10.1109/INFOCOM.2018.8486429http://dx.doi.org/10.1109/INFOCOM.2018.8486429]
Guo Y, Stolyar A L and Walid A. 2018b. Shadow-routing based dynamic algorithms for virtual machine placement in a network cloud. IEEE Transactions on Cloud Computing, 6(1): 209-220[DOI: 10.1109/TCC.2015.2464795]
Gül S, Podborski D, Son J, Bhullar G S, Buchholz T, Schierl T and Hellge C. 2020. Cloud rendering-based volumetric video streaming system for mixed reality services//Proceedings of the 11th ACM Multimedia Systems Conference. Istanbul, Turkey: ACM: 357-360[DOI: 10.1145/3339825.3393583http://dx.doi.org/10.1145/3339825.3393583]
Hladky J, Seidel H P and Steinberger M. 2019. Tessellated shading streaming. Computer Graphics Forum, 38(4): 171-182[DOI: 10.1111/cgf.13780]
Hoppe H. 1996. Progressive meshes//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM: 99-108[DOI: 10.1145/237170.237216http://dx.doi.org/10.1145/237170.237216]
Hou X S, Dey S, Zhang J Z and Budagavi M. 2021. Predictive adaptive streaming to enable mobile 360-degree and VR experiences. IEEE Transactions on Multimedia, 23: 716-731[DOI: 10.1109/TMM.2020.2987693]
Hou X S, Lu Y and Dey S. 2017. Wireless VR/AR with edge/cloud computing//Proceedings of the 26th International Conference on Computer Communication and Networks (ICCCN). Vancouver, Canada: IEEE: 1-8[DOI: 10.1109/ICCCN.2017.8038375http://dx.doi.org/10.1109/ICCCN.2017.8038375]
Hu S Y, Huang T H, Chang S C, Sung W L, Jiang J R and Chen B Y. 2008. FLoD: a framework for peer-to-peer 3D streaming//Proceedings of the 27th Conference on Computer Communications. Phoenix, USA: IEEE: 1373-1381[DOI: 10.1109/INFOCOM.2008.195http://dx.doi.org/10.1109/INFOCOM.2008.195]
Hu S Y, Jiang J R and Chen B Y. 2010. Peer-to-peer 3D streaming. IEEE Internet Computing, 14(2): 54-61[DOI: 10.1109/MIC.2009.98]
Hwang S J, Lee J, Shin Y, Lee W J and Ryu S. 2015. A mobile ray tracing engine with hybrid number representations//Proceedings of SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications. Kobe, Japan: ACM: #3[DOI: 10.1145/2818427.2818446http://dx.doi.org/10.1145/2818427.2818446]
Jacinto H, Kéchichian R, Desvignes M, Prost R and Valette S. 2012. A web interface for 3D visualization and interactive segmentation of medical images//Proceedings of the 17th International Conference on 3D Web Technology. Los Angeles, USA: ACM: 51-58[DOI: 10.1145/2338714.2338722http://dx.doi.org/10.1145/2338714.2338722]
Jaya I, Cai W T and Li Y S. 2020. Rendering server allocation for MMORPG players in cloud gaming//Proceedings of the 49th International Conference on Parallel Processing-ICPP. Edmonton, Canada: ACM: #66[DOI: 10.1145/3404397.3404463http://dx.doi.org/10.1145/3404397.3404463]
Jia J Y, Wang M F, Wang W and Hei X J. 2016. On prioritization mechanisms for large-scale 3D streaming in distributed virtual environments//Proceedings of 2016 International Conference on Virtual Reality and Visualization. Hangzhou, China: IEEE: 465-472[DOI: 10.1109/ICVRV.2016.85http://dx.doi.org/10.1109/ICVRV.2016.85]
Jia J Y, Wang W and Hei X J. 2014. An efficient caching algorithm for peer-to-peer 3D streaming in distributed virtual environments. Journal of Network and Computer Applications, 42: 1-11[DOI: 10.1016/j.jnca.2014.03.005]
Jia J Y, Wang W, Wang M F, Fan C, Zhang C X and Yu Y. 2014. Multi-layered incremental and scalable sector of interest (MISSOI) based efficient progressive transmission of large-scale DVE scenes. Chinese Journal of Computers, 37(6): 1324-1334
贾金原, 王伟, 王明飞, 范辰, 张晨曦, 俞阳. 2014. 基于多层增量式可扩展扇形兴趣区域的大规模DVE场景对等渐进式传输机制. 计算机学报, 37(6): 1324-1334[DOI: 10.3724/SP.J.1016.2014.01324]
Jiang W and Gu J W. 2015. Video stitching with spatial-temporal content-preserving warping//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston, USA: IEEE: 42-48[DOI: 10.1109/CVPRW.2015.7301374http://dx.doi.org/10.1109/CVPRW.2015.7301374]
Laghari A A, He H, Memon K A, Laghari R A, Halepoto I A and Khan A. 2019. Quality of experience (QoE) in cloud gaming models: a review. Multiagent and Grid Systems, 15(3): 289-304[DOI: 10.3233/MGS-190313]
Lai C F, Hwang R H and Chao H C. 2017. A QoS aware resource allocation strategy for mobile graphics rendering with cloud support. IEEE Transactions on Circuits and Systems for Video Technology, 27(1): 110-124[DOI: 10.1109/TCSVT.2016.2589740]
Lalos A S, Nikolas I, Vlachos E and Moustakas K. 2017. Compressed sensing for efficient encoding of dense 3D meshes using model-based Bayesian learning. IEEE Transactions on Multimedia, 19(1): 41-53[DOI: 10.1109/TMM.2016.2605927]
Le Y F, Liu J C, Ergün F and Wang D. 2014. Online load balancing for mapreduce with skewed data input//Proceedings of IEEE INFOCOM 2014-IEEE Conference on Computer Communications. Toronto, Canada: IEEE: 2004-2012[DOI: 10.1109/INFOCOM.2014.6848141http://dx.doi.org/10.1109/INFOCOM.2014.6848141]
Lee W J, Hwang S J, Shin Y, Ryu S and Ihm L. 2016. Adaptive multi-rate ray sampling on mobile ray tracing GPU//Proceedings of SIGGRAPH ASIA 2016 Mobile Graphics and Interactive Applications. Macau, China: ACM: #3[DOI: 10.1145/2999508.2999523http://dx.doi.org/10.1145/2999508.2999523]
Lee W J, Hwang S J, Shin Y, Yoo J J and Ryu S. 2015. An efficient hybrid ray tracing and rasterizer architecture for mobile GPU//Proceedings of SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications. Kobe, Japan: ACM: #2[DOI: 10.1145/2818427.2818442http://dx.doi.org/10.1145/2818427.2818442]
Lee W J, Hwang S J, Shin Y, Yoo J J and Ryu S. 2017. Fast stereoscopic rendering on mobile ray tracing GPU for virtual reality applications//Proceedings of 2017 IEEE International Conference on Consumer Electronics (ICCE). Las Vegas, USA: IEEE: 355-357[DOI: 10.1109/ICCE.2017.7889353http://dx.doi.org/10.1109/ICCE.2017.7889353]
Lee W J, Lee S H, Nah J H, Kim J W, Shin Y, Lee J and Jung S Y. 2012. SGRT: a scalable mobile GPU architecture based on ray tracing//Proceedings of ACM SIGGRAPH 2012 Posters. Los Angeles, USA: ACM: #44[DOI: 10.1145/2342896.2342953http://dx.doi.org/10.1145/2342896.2342953]
Li G L and Huang Y Y. 2004. Research and application of progressive coding of 3D model and streaming transformation. Journal of Beijing University of Aeronautics and Astronautics, 30(4): 370-374
李公立, 黄毓瑜. 2004.3维模型的渐进式编码与流传输技术的研究. 北京航空航天大学学报, 30(4): 370-374[DOI: 10.13700/j.bh.1001-5965.2004.04.020]
Liu C, Jia J Y, Lu Y F, Zhang Q and Zhao L. 2019. GI-map tree: global illumination collaborative real-time rendering in Web3D dynamic scene. Journal of System Simulation, 31(8): 1591-1604
刘畅, 贾金原, 陆一凡, 张乾, 赵磊. 2019. 光图树: Web3D动态场景全局光照的协同实时渲染. 系统仿真学报, 31(8): 1591-1604[DOI: 10.16182/j.issn1004731x.joss.18-VR0731]
Liu C, Jia J Y, Zhang Q and Zhao L. 2017. Lightweight WebSIM rendering framework based on cloud-baking//Proceedings of 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. Singapore, Singapore: ACM: 221-229[DOI: 10.1145/3064911.3064933http://dx.doi.org/10.1145/3064911.3064933]
Liu C, Liu X J, Jia J Y, Xu S B, Zhang Q, Huang C X and Huang X. 2021. A Web3D cloud rendering system for dynamic real-time lighting and shadow based on device power. Scientia Sinica (Informationis), 51(2): 231-246
刘畅, 刘小军, 贾金原, 徐识溥, 张乾, 黄晨曦, 黄欣. 2021. 基于设备性能的Web3D动态实时光影云渲染系统. 中国科学: 信息科学, 51(2): 231-246[DOI: 10.1360/SSI-2020-0334]
Liu C, Ooi W T, Jia J Y and Zhao L. 2018a. Cloud baking: collaborative scene illumination for dynamic Web3D scenes. ACM Transactions on Multimedia Computing, Communications, and Application, 14(3S): #59[DOI: 10.1145/3206431]
Liu X J, Xie N, Tang K and Jia J Y. 2016. Lightweighting for Web3D visualization of large-scale BIM scenes in real-time. Graphical Models, 88: 40-56[DOI: 10.1016/j.gmod.2016.06.001]
Liubogoshchev M, Ragimova K, Lyakhov A, Tang S Y and Khorov E. 2021. Adaptive cloud-based extended reality: modeling and optimization. IEEE Access, 9: 35287-35299[DOI: 10.1109/ACCESS.2021.3062555]
Ma J P, Xu J Y, Chen B and Chen Q. 2016. Generation and compression research of stable progressive meshes. Journal of Chinese Computer Systems, 37(12): 2755-2759
Maclntyre B and Smith T F. 2018. Thoughts on the future of WebXR and the immersive web//2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). Munich, Germany: IEEE: 338-342[DOI: 10.1109/ISMAR-Adjunct.2018.00099http://dx.doi.org/10.1109/ISMAR-Adjunct.2018.00099]
Marion C and Jomier J. 2012. Real-time collaborative scientific WebGL visualization with WebSocket//Proceedings of the 17th International Conference on 3D Web Technology. Los Angeles, USA: ACM: 47-50[DOI: 10.1145/2338714.2338721http://dx.doi.org/10.1145/2338714.2338721]
Mark W R, McMillan L and Bishop G. 1997. Post-rendering 3D warping//Proceedings of 1997 Symposium on Interactive 3D Graphics. Providence, USA: ACM: 7-16[DOI: 10.1145/253284.253292http://dx.doi.org/10.1145/253284.253292]
Martin S, Bjørge M, Kakarlapudi S and Fredriksen J H. 2013. Challenges with high quality mobile graphics//Proceedings of ACM SIGGRAPH 2013 Mobile. Anaheim, USA: ACM: #7[DOI: 10.1145/2503512.2503522http://dx.doi.org/10.1145/2503512.2503522]
Martin S, Garrard A, Gruber A, Bjorge M, Zioma R, Benge S and Nummelin N. 2015. Moving mobile graphics//Proceedings of ACM SIGGRAPH 2015 Courses. Los Angeles, USA: ACM: #18[DOI: 10.1145/2776880.2787664http://dx.doi.org/10.1145/2776880.2787664]
McMillan L. 1997. An Image-Based Approach to Three-Dimensional Computer Graphics. Chapel Hill, United States: University of North Carolina at Chapel Hill
Mori Y, Fukushima N, Yendo T, Fujii T andTanimoto M. 2009. View generation with 3D warping using depth information for FTV. Signal Processing: Image Communication, 24(1/2): 65-72[DOI: 10.1016/j.image.2008.10.013]
Mueller J H, Voglreiter P, Dokter M, Neff T, Makar M, Steinberger M and Schmalstieg D. 2018. Shading atlas streaming. ACM Transactions on Graphics (TOG), 37(6): #199[DOI: 10.1145/3272127.3275087]
Nah J H, Lim Y, Ki S and Shin C. 2016. Z2traversal order for VR stereo rendering on tile-based mobile GPUs//Proceedings of SIGGRA PH ASIA 2016 Technical Briefs. Macau, China: ACM: #6[DOI: 10.1145/3005358.3005374http://dx.doi.org/10.1145/3005358.3005374].
Olsson O, Persson E and Billeter M. 2015. Real-time many-light management and shadows with clustered shading//Proceedings of ACM SIGGRAPH 2015 Courses. Los Angeles, USA: ACM: #12[DOI: 10.1145/2776880.2792712http://dx.doi.org/10.1145/2776880.2792712]
Pitkänen M, Viitanen M, Mercat A and Vanne J. 2019. Remote VR gaming on mobile devices//Proceedings of the 27th ACM International Conference on Multimedia. Nice, France: ACM: 2191-2193[DOI: 10.1145/3343031.3350595http://dx.doi.org/10.1145/3343031.3350595]
Robart M, Paulin M and Caubet R. 1999. Material model for physically based rendering//Volume 3826, Polarization and Color Techniques in Industrial Inspection. Munich, Germany: SPIE: 10-21[DOI: 10.1117/12.364327http://dx.doi.org/10.1117/12.364327]
Shade J, Gortler S, He L W and Szeliski R. 1998. Layered depth images//Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM: 231-242[DOI: 10.1145/280814.280882http://dx.doi.org/10.1145/280814.280882]
Shao W, Liu C and Jia J Y. 2020. Lightmap-based GI collaborative rendering system for Web3D application. Journal of System Simulation, 32(4): 649-659
邵威, 刘畅, 贾金原. 2020. 基于光照贴图的Web3D全局光照协作式云渲染系统. 系统仿真学报, 32(4): 649-659[DOI: 10.16182/j.issn1004731x.joss.19-vr0471]
Shi S, Nahrstedt K and Campbell R. 2012. A real-time remote rendering system for interactive mobile graphics. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 8(3S): #46[DOI: 10.1145/2348816.2348825]
Shikhare D, Bhakar S and Mudur S P. 2001. Compression of large 3D engineering models using automatic discovery of repeating geometric features[EB/OL]. [2021-11-22].https://www.angelfire.com/space2/dineshshikhare/papers/vmv2001.pdfhttps://www.angelfire.com/space2/dineshshikhare/papers/vmv2001.pdf
Shin Y, Hwang S J, Lee J, Lee W J and Ryu S. 2015. Latency tolerance techniques for real-time ray tracing on mobile computing platform//Proceedings of SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications. Kobe, Japan: ACM: #1[DOI: 10.1145/2818427.2818437http://dx.doi.org/10.1145/2818427.2818437]
Siddeq M M and Rodrigues M A. 2016. Novel 3D compression methods for geometry, connectivity and texture. 3D Research, 7(2): #13[DOI: 10.1007/s13319-016-0091-x]
Singh M P and Jain M K. 2014. Evolution of processor architecture in mobile phones. International Journal of Computer Applications, 90(4): 34-39[DOI: 10.5120/15564-4339]
Slivar I, Suznjevic M, Skorin-Kapov L and Matijasevic M. 2014. Empirical QoE study of in-home streaming of online games//Proceedings of the 13th Annual Workshop on Network and Systems Support for Games. Nagoya, Japan: IEEE: 1-6[DOI: 10.1109/NetGames.2014.7010133http://dx.doi.org/10.1109/NetGames.2014.7010133]
Smolic A, Muller K, Dix K, Merkle P, Kauff P and Wiegand T. 2008. Intermediate view interpolation based on multiview video plus depth for advanced 3D video systems//Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, USA: IEEE: 2448-2451[DOI: 10.1109/ICIP.2008.4712288http://dx.doi.org/10.1109/ICIP.2008.4712288]
Sullivan G J, Ohm J R, Han W J and Wiegand T. 2012. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12): 1649-1668[DOI: 10.1109/TCSVT.2012.2221191]
Sun B L, Li X, Song J C, Cheng Z N, Xu Y and Zhou X H. 2014. Texture-directed mobile GPU power management for closed-source games//Proceedings of 2014 IEEE International Conference on High Performance Computing and Communications, 2014 IEEE 6th International Symposium on Cyberspace Safety and Security, 2014 IEEE 11th International Conference on Embedded Software and Syst. Paris, France: IEEE: 348-354[DOI: 10.1109/HPCC.2014.58http://dx.doi.org/10.1109/HPCC.2014.58]
Surana P, Madhani N and Gopalakrishnan T. 2020. A comparative study on the recent smart mobile phone processors//Proceedings of the 7th International Conference on Smart Structures and Systems. Chennai, India: IEEE: 1-3[DOI: 10.1109/ICSSS49621.2020.9202174http://dx.doi.org/10.1109/ICSSS49621.2020.9202174]
Taleb T, Ksentini A and Frangoudis P A. 2019. Follow-me cloud: when cloud services follow mobile users. IEEE Transactions on Cloud Computing, 7(2): 369-382[DOI: 10.1109/TCC.2016.2525987]
Tan Z, Zhao J H, Li Y J, Xu Y J and Lu S W. 2021. Device-based LTE latency reduction at the application layer[EB/OL]. [2021-11-22].https://www.usenix.org/conference/nsdi21/presentation/tanhttps://www.usenix.org/conference/nsdi21/presentation/tan
Tandianus B, Seah H S, Vu T D and Phan A T. 2018. Cloud-based dynamic streaming and loading of 3D scene//Proceedings of 2018 International Conference on Cyberworlds (CW). Singapore, Singapore: IEEE: 409-414[DOI: 10.1109/CW.2018.00079http://dx.doi.org/10.1109/CW.2018.00079]
Tolia N, Andersen D G and Satyanarayanan M. 2006. Quantifying interactive user experience on thin clients. Computer, 39(3): 46-52[DOI: 10.1109/MC.2006.101]
Trinelli M, Gallo M, Rifai M and Pianese F. 2019. Transparent AR processing acceleration at the edge//Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking. Dresden, Germany: ACM: 30-35[DOI: 10.1145/3301418.3313942http://dx.doi.org/10.1145/3301418.3313942]
Viitanen T, Koskela M, Jääskeläinen P, Kultala H and Takala J. 2017. MergeTree: a fast hardware HLBVH constructor for animated ray tracing. ACM Transactions on Graphics, 36(5): #169[DOI: 10.1145/3132702]
Wang L, Jiao L, Li J, Gedeon J and Mühlhäuser M. 2019a. Moera: mobility-agnostic online resource allocation for edge computing. IEEE Transactions on Mobile Computing, 18(8): 1843-1856[DOI: 10.1109/TMC.2018.2867520]
Wang M F, Jia J Y, Xie N and Zhang C X. 2015a. Interest-driven avatar neighbor-organizing for P2P transmission in distributed virtual worlds. Computer Animation and Virtual Worlds, 27(6): 519-531[DOI: 10.1002/cav.1670]
Wang R, Yu B W, Marco J, Hu T L, Gutierrez D and Bao H J. 2016. Real-time rendering on a power budget. ACM Transactions on Graphics, 35(4): #111[DOI: 10.1145/2897824.2925889]
Wang R H, Zhang B, Bi J N, Zhang X H, Guo X L, Jiao D, Lv J H and Ma S L. 2020. Cloud rendering learning platform technology research for visual analysis of large scale 3D multimedia data. Multimedia Tools and Applications, 79(7): 5371-5398[DOI: 10.1007/s11042-018-6569-1]
Wang R H, Zhang B, Wu M Q, Zhang J, Guo X L, Zhang X H, Li H B, Jiao D and Ma S L. 2019b. Performance bottleneck analysis and resource optimized distribution method for IoT cloud rendering computing system in cyber-enabled applications. EURASIP Journal on Wireless Communications and Networking, 2019: #79[DOI: 10.1186/s13638-019-1401-9]
Wang S Q, Urgaonkar R, Zafer M, He T, Chan K and Leung K K. 2015b. Dynamic service migration in mobile edge-clouds//Proceedings of IFIP Networking Conference (IFIP Networking). Toulouse, France: IEEE: 1-9[DOI: 10.1109/IFIPNetworking.2015.7145316http://dx.doi.org/10.1109/IFIPNetworking.2015.7145316]
Wang W, Jia J Y, Zhang C X and Yu Y. 2010. Progressive 3D scenes replacement mechanism for P2P overlay. Journal of Computer Applications, 30(9): 2422-2426, 2430
王伟, 贾金原, 张晨曦, 俞阳. 2010. 面向P2P网络的渐进式3维场景更新策略.计算机应用, 30(9): 2422-2426, 2430
Wen L X, Xie N and Jia J Y. 2016. Client-driven strategy of large-scale scene streaming//Proceedings of the 22nd International Conference on Multimedia Modeling. Miami, USA: Springer: 93-103[DOI: 10.1007/978-3-319-27674-8_9http://dx.doi.org/10.1007/978-3-319-27674-8_9]
Xie J M. 2012. Research on key technologies base Unity3D game engine//Proceedings of the 7th International Conference on Computer Science and Education. Melbourne, Australia: IEEE: 695-699[DOI: 10.1109/ICCSE.2012.6295169http://dx.doi.org/10.1109/ICCSE.2012.6295169]
Yahyavi A and Kemme B. 2013. Peer-to-peer architectures for massively multiplayer online games: a survey. ACM Computing Surveys, 46(1): #9[DOI: 10.1145/2522968.2522977]
Yun J, Lee J, Kim C G, Lim Y K, Nah J H, Kim Y and Park W C. 2018. A novel performance prediction model for mobile GPUs. IEEE Access, 6: 16235-16245[DOI: 10.1109/ACCESS.2018.2816040]
Zhang L, Sun A, Shea R, Liu J C and Zhang M. 2019a. Rendering multi-party mobile augmented reality from edge//Proceedings of the 29th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. Amherst, USA: ACM: 67-72[DOI: 10.1145/3304112.3325612http://dx.doi.org/10.1145/3304112.3325612]
Zhang X, Chen H, Zhao Y C, Ma Z, Xu Y L, Huang H J, Yin H and Wu D O. 2019b. Improving cloud gaming experience through mobile edge computing. IEEE Wireless Communications, 26(4): 178-183[DOI: 10.1109/MWC.2019.1800440]
Zheng J, Zhang J F, Li J, Tang R, Gao S H and Zhou Z H. 2020. Structured3D: a large photo-realistic dataset for structured 3D modeling//Proceedings of 2020 European Conference on Computer Vision. Glasgow, UK: Springer: 519-535[DOI: 10.1007/978-3-030-58545-7_30http://dx.doi.org/10.1007/978-3-030-58545-7_30]
Zhu M H, Mondet S, Morin G, Ooi W T and Cheng W. 2011. Towards peer-assisted rendering in networked virtual environments//Proceedings of the 19th ACM international conference on Multimedia. Scottsdale, USA: ACM: 183-192[DOI: 10.1145/2072298.2072324http://dx.doi.org/10.1145/2072298.2072324]
相关文章
相关作者
相关机构