Ship hull number detection and recognition under sparse samples
- Vol. 28, Issue 4, Pages: 984-1003(2023)
Published: 16 April 2023
DOI: 10.11834/jig.211167
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 April 2023 ,
移动端阅览
洪汉玉, 陈冰川, 马雷, 张必银. 2023. 稀疏样本条件下的舰船舷号检测与识别. 中国图象图形学报, 28(04):0984-1003
Hong Hanyu, Chen Bingchuan, Ma Lei, Zhang Biyin. 2023. Ship hull number detection and recognition under sparse samples. Journal of Image and Graphics, 28(04):0984-1003
目的
2
舰船舷号检测识别是海面态势感知的关键技术,精准的舷号检测识别对海洋权益保护具有重要意义。但目前没有公开数据提供支持。为此,本文先构建了一个真实场景下的稀疏舰船舷号数据集(sparse ship hull number dataset in real scene,SSHN-RS),包含3 004幅舰船图像,共计11 328个舷号字符,覆盖了多国、各类、水平、倾斜、背景简单、背景复杂、光线不佳和被遮挡的舰船舷号样本,是一个具有挑战性的数据集。基于SSHN-RS,开展舰船舷号检测识别研究,其主要难点在于:1)样本稀疏,模型容易过拟合;2)舷号字符分布密集,网络难以充分提取各字符特征;3)部分字符存在嵌套区域和相似区域,网络会识别出大量冗余结果。针对上述难点,提出了一种基于多视角渐进式上下文解耦的舰船舷号检测识别算法。
方法
2
首先,引入一个固定中心和最大化面积的随机透视变换技术,在不增加样本数量的前提下扩充舷号姿态,实现了数据增广,提升了模型的泛化能力;其次,提出了一个渐进式上下文解耦技术,先通过依次擦除舷号各字符生成一系列新样本,再利用特征提取网络提取和融合各样本的多尺度特征,不仅减少字符上下文信息对特征学习的干扰,而且再次增广了数据;最后,在测试阶段,提出了一个掩码间扰动抑制技术,先根据预测结果采用与渐进式上下文解耦技术类似的方法生成新样本并重新进行预测,再引入一个1维非极大值抑制技术去除预测结果中错误的冗余字符,输出最佳检测识别结果,进一步优化网络性能。
结果
2
在SSHN-RS上采用主流实例分割算法进行定性和定量评估。在定量评估上,本文算法舷号的检测精确率、召回率、
F
值和识别率分别可达0.985 4,0.957 6,0.971 3,0.901 8,均优于其他算法。相比指标排名第2的算法,分别提高了4.51%,3.45%,3.97%,8.83%;在定性评估上,本文算法更适合舰船舷号检测识别任务,检测识别性能更高。此外,本文算法可以泛化到其他实例分割算法中,以经典算法Mask RCNN(mask region based convolutional neural network)为例,加入本文算法各模块后,各指标分别提升了9.82%,6.04%,7.80%,6.73%。
结论
2
本文算法可以解决舷号检测识别任务中因样本稀疏、舷号分布密集、部分字符存在嵌套和相似性带来的问题,在主观和客观上均取得了最先进的性能,并且具有通用性。SSHN-RS可通过
https://github.com/Bingchuan897/SSHN-RS
https://github.com/Bingchuan897/SSHN-RS
获取。
Objective
2
Ship hull number detection and recognition can be as the key technologies for marine awareness. It is essential for the preservation of maritime rights and interests. However, it is required to data-driven researches in support of ship hull number detection and recognition. Therefore, we develop a sparse ship hull number dataset in real scene (SSHN-RS), which contains 3 004 images with a total of 11 328 hull numbers. The challenging SSHN-RS dataset is featured of ship hull numbers of various countries, hull numbers of various types, horizontal hull numbers, inclined hull numbers, hull numbers with complex background, hull numbers with simple background, poorly illuminated hull numbers and partially occluded hull numbers. We carry out SSHN-RS-related research on ship hull number detection and recognition. The main challenges are required to be resolved on three aspects as following: 1) the hull number samples are sparse, which causes over-fitting of the network, 2) the features of hull number are densely distributed, which is challenged to learn some of the hull number characteristics fully, and 3) some hull number have its nested areas and a high degree of similarity, which is costly for large number of redundant results.
Method
2
To resolve these problems mentioned above, we demonstrate a ship hull number detection and recognition algorithm in terms of multi-view progressive context decoupling. First, a random perspective transformation technology with fixed center and maximized area is illustrated. To realize data augmentation and improve the generalization ability of the model, the hull number spatial attitude is extended without increasing the number of samples. Second, a progressive context decoupling technology is proposed. A series of new samples are first generated by sequentially erasing each character of the hull number, and the feature extraction network is then used to extract and fuse the multi-scale features of each sample. It can reduce the influence of feature-contextual information on feature learning and rich the data expansion. It can improve the feature expression ability effectively as well. Finally, in the testing stage, to generate new samples, and inputs the new samples into the testing network for prediction, an inter mask disturbance suppression technology is first focused on a method similar to the progressive context decoupling technology. At the same time, a one-dimensional non-maximum suppression technology is introduced that it can mainly process the hull number recognition results of each sample twice. To suppress the redundant mask in the detection and recognition results effectively, it can make each character of the hull number of all samples correspond to a recognition result. For the testing network, the output has only a set of optimal results. However, there is hull number noisy recognition in some samples. Therefore, the hull number recognition results of all samples are added on the original images, and the second one-dimensional non-maximum suppression technology is performed and processed on it. It can suppress the noises in some samples and outputs a set of optimal results. The post-processing module can optimize the detection and recognition performance further.
Result
2
The comparative experiment is mainly carried out on SSHN-RS. First, we conduct evaluation analysis on the general instance segmentation algorithms. Multi-view progressive context decoupling-based detection precision, recall, f-score and recognition rate of the ship number detection and recognition algorithm can reach 0.985 4, 0.957 6, 0.971 3 and 0.901 8, which are improved by 4.51%, 3.45%, 3.97% and 8.83% respectively compared to the second-ranked method. Second, the ablation experiments on the ship hull number detection and recognition algorithm are carried out in terms of multi-view progressive context decoupling. The experimental results show that the performance of ship hull number detection and recognition is improved whether each technology is used solely or mixed. Finally, to validate its effectiveness, we apply some popular modules of the ship hull number detection and recognition algorithm based on multi-view progressive context decoupling to other general instance segmentation algorithms. Taking the classic algorithm mask region based convolutional neural network(Mask RCNN) as an example, the indexes have been improved by 9.82%, 6.04%, 7.80% and 6.73% of each after our algorithm module is added.
Conclusion
2
Our SSHN-RS contains rich and effective ship hull number information, which can provide data support for ship hull number detection and recognition. The experimental results show that the multi-view progressive context decoupling-based ship hull number detection and recognition algorithm can optimize the detection and recognition performance of hull numbers due to sparse samples, dense character distribution, nested areas, and characters-between high similarity. This algorithm can be generalized to other deep learning based segmentation algorithms. The benchmarks-relevant are provided as a basis for future research on ship hull number detection and recognition. The dataset is available at
https://github.com/Bingchuan897/SSHN-RS
https://github.com/Bingchuan897/SSHN-RS
.
稀疏样本公开数据集舰船舷号检测与识别实例分割数据增广渐进式上下文解耦
sparse samplespublic datasetship hull number detection and recognitioninstance segmentationdata augmentationprogressive context decoupling
Chen H, Sun K Y, Tian Z, Shen C H, Huang Y M and Yan Y L. 2020. BlendMask: top-down meets bottom-up for instance segmentation//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 8570-8578 [DOI: 10.1109/CVPR42600.2020.00860http://dx.doi.org/10.1109/CVPR42600.2020.00860]
Chen X. 2017. Convolutional Neural Network Based Natural Scene Text Detection and Application. Changsha: National University of Defense Technology
陈旭. 2017. 基于卷积神经网络的自然场景文字检测研究与应用. 长沙: 国防科技大学 [DOI: 10.27052/d.cnki.gzjgu.2017.000378http://dx.doi.org/10.27052/d.cnki.gzjgu.2017.000378]
Cheng M Y. 2021. Development suggestions of maritime emergency rescue work under background of maritime power construction in China. Shipping Management, 43(2): 14-15, 19
程明远. 2021. 建设海洋强国背景下我国海上应急救援工作发展建议. 水运管理, 43(2): 14-15, 19 [DOI: 10.13340/j.jsm.2021.02.005http://dx.doi.org/10.13340/j.jsm.2021.02.005]
Ch'ng C K, Chan C S and Liu C L. 2020. Total-Text: toward orientation robustness in scene text detection. International Journal on Document Analysis and Recognition (IJDAR), 23(1): 31-52 [DOI: 10.1007/s10032-019-00334-zhttp://dx.doi.org/10.1007/s10032-019-00334-z]
Gupta A, Vedaldi A and Zisserman A. 2016. Synthetic data for text localisation in natural images//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 2315-2324 [DOI: 10.1109/CVPR.2016.254http://dx.doi.org/10.1109/CVPR.2016.254]
He K M, Gkioxari G, Dollár P and Girshick R. 2017. Mask R-CNN//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2980-2988 [DOI: 10.1109/ICCV.2017.322http://dx.doi.org/10.1109/ICCV.2017.322]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Huang G, Liu Z, Van Der Maaten L and Weinberger K Q. 2017. Densely connected convolutional networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2261-2269 [DOI: 10.1109/CVPR.2017.243http://dx.doi.org/10.1109/CVPR.2017.243]
Huang S Z, Xu H S, Xia X Z and Zhang Y. 2018. End-to-end vessel plate number detection and recognition using deep convolutional neural networks and LSTMs//Proceedings of the 11th International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE: 195-199 [DOI: 10.1109/ISCID.2018.00051http://dx.doi.org/10.1109/ISCID.2018.00051]
Huang Z J, Huang L C, Gong Y C, Huang C and Wang X G. 2019. Mask scoring R-CNN//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 6402-6411 [DOI: 10.1109/CVPR.2019.00657http://dx.doi.org/10.1109/CVPR.2019.00657]
Jaderberg M, Simonyan K, Vedaldi A and Zisserman A. 2014. Synthetic data and artificial neural networks for natural scene text recognition//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE: #2227 [DOI: 10.48550/arXiv.1406.2227http://dx.doi.org/10.48550/arXiv.1406.2227]
Jiang Z P, Pan K R, Zhang G L, Liu Y Q, Zhang Y and Sun K X. 2021. Research on scene text detection based on confidence fusion. Computer Technology and Development, 31(8): 39-44
蒋志鹏, 潘坤榕, 张国林, 刘玉琪, 张瑛, 孙科学. 2021. 基于置信度融合的自然场景文本检测方法. 计算机技术与发展, 31(8): 39-44 [DOI: 10.3969/j.issn.1673-629X.2021.08.007http://dx.doi.org/10.3969/j.issn.1673-629X.2021.08.007]
Lee Y and Park J. 2020. CenterMask: real-time anchor-free instance segmentation//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: Springer: 13903-13912 [DOI: 10.1109/CVPR42600.2020.01392http://dx.doi.org/10.1109/CVPR42600.2020.01392]
Li H, Wang P and Shen C H. 2017. Towards end-to-end text spotting with convolutional recurrent neural networks//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 5248-5256 [DOI: 10.1109/ICCV.2017.560http://dx.doi.org/10.1109/ICCV.2017.560]
Liao M H, Lyu P, He M H, Yao C, Wu W H and Bai X. 2021. Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(2): 532-548 [DOI: 10.1109/TPAMI.2019.2937086http://dx.doi.org/10.1109/TPAMI.2019.2937086]
Liao M H, Shi B G and Bai X. 2018. TextBoxes++: a single-shot oriented scene text detector. IEEE Transactions on Image Processing, 27(8): 3676-3690 [DOI: 10.1109/TIP.2018.2825107http://dx.doi.org/10.1109/TIP.2018.2825107]
Liao M H, Shi B G, Bai X, Wang X G and Liu W Y. 2017. TextBoxes: a fast text detector with a single deep neural network//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI: 4161-4167 [DOI: 10.1609/aaai.v31i1.11196http://dx.doi.org/10.1609/aaai.v31i1.11196]
Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollr P and Zitnick C L. 2014. Microsoft COCO: common objects in context//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer: 740-755 [DOI: 10.1007/978-3-319-10602-1_48http://dx.doi.org/10.1007/978-3-319-10602-1_48]
Liu C Y, Chen X X, Luo C J, Jin L W, Xue Y and Liu Y L. 2021. Deep learning methods for scene text detection and recognition. Journal of Image and Graphics, 26(6): 1330-1367
刘崇宇, 陈晓雪, 罗灿杰, 金连文, 薛洋, 刘禹良. 2021. 自然场景文本检测与识别的深度学习方法. 中国图象图形学报, 26(6): 1330-1367 [DOI: 10.11834/jig.210044http://dx.doi.org/10.11834/jig.210044]
Liu H J, Wang M, Liu L H, Wu J B and Huang H B. 2020. Hull number detection for ship images based on image super-resolution//Proceedings of the 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Chengdu, China: IEEE: 339-344 [DOI: 10.1109/CISP-BMEI51763.2020.9263636http://dx.doi.org/10.1109/CISP-BMEI51763.2020.9263636]
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016. SSD: single shot MultiBox detector//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer: 21-37 [DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Long J, Shelhamer E and Darrell T. 2015. Fully convolutional networks for semantic segmentation//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 3431-3440 [DOI: 10.1109/CVPR.2015.7298965http://dx.doi.org/10.1109/CVPR.2015.7298965]
Lu Y and Hu J. 2021. Detection and Identification of Ship's Hull Number Based on Deep Learning. Computer Knowledge and Technology, 17(11): 178-180
路云, 胡杰. 2021. 基于深度学习的船舶舷号检测与识别. 电脑知识与技术, 17(11): 178-180 [DOI:10.14004/ j.cnki.ckt.2021.0984http://dx.doi.org/10.14004/j.cnki.ckt.2021.0984]
Lucas S M, Panaretos A, Sosa L, Tang A, Wong S, Young R, Ashida K, Nagai H, Okamoto M, Yamamoto H, Miyao H, Zhu J M, Ou W W, Wolf C, Jolion J M, Todoran L, Worring M and Lin X F. 2005. ICDAR 2003 robust reading competitions: entries, results, and future directions. International Journal of Document Analysis and Recognition (IJDAR), 7(2/3): 105-122 [DOI: 10.1007/s10032-004-0134-3http://dx.doi.org/10.1007/s10032-004-0134-3]
Lyu P, Liao M H, Yao C, Wu W H and Bai X. 2018. Mask TextSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 71-88 [DOI: 10.1007/978-3-030-01264-9_5http://dx.doi.org/10.1007/978-3-030-01264-9_5]
Ma L, Li H L, Meng F M, Wu Q B and Ngan K N. 2017. Learning efficient binary codes from high-level feature representations for multilabel image retrieval. IEEE Transactions on Multimedia, 19(11): 2545-2560 [DOI: 10.1109/TMM.2017.2703089http://dx.doi.org/10.1109/TMM.2017.2703089]
Ma L, Li X, Shi Y, Wu J M and Zhang Y Z. 2020. Correlation filtering-based hashing for fine-grained image retrieval. IEEE Signal Processing Letters, 27: 2129-2133 [DOI: 10.1109/LSP.2020.3039755http://dx.doi.org/10.1109/LSP.2020.3039755]
Mishra A, Alahari K and Jawahar C. 2012. Scene text recognition using higher order language priors//Proceedings of 2012 British Machine Vision Conference. Surrey, UK: BMVA Press: #127 [DOI: 10.5244/C.26.127http://dx.doi.org/10.5244/C.26.127]
Netzer Y, Wang T, Coates A, Bissacco A, Wu B and Ng A Y. 2011. Reading digits in natural images with unsupervised feature learning//NIPS Workshop on Deep Learning and Unsupervised Feature Learning. Granada, Spain: [s.n.]: 12-17
Pan A Q and Men Y Y. 2020. License plate recognition based on faster R-CNN and BRNN. Software Guide, 19(8): 49-53
潘安琪, 门玉英. 2020. 基于Faster R-CNN与BRNN的车牌识别. 软件导刊, 19(8): 49-53 [DOI: 10.11907/rjdk.201323http://dx.doi.org/10.11907/rjdk.201323]
Phan T Q, Shivakumara P, Tian S X and Tan C L. 2014. Recognizing text with perspective distortion in natural scenes//Proceedings of 2014 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE: 569-576 [DOI: 10.1109/ICCV.2013.76http://dx.doi.org/10.1109/ICCV.2013.76]
Qiao L, Tang S L, Cheng Z Z, Xu Y L, Niu Y, Pu S L and Wu F. 2020. Text perceptron: towards end-to-end arbitrary-shaped text spotting//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York, USA: AAAI: 11899-11907 [DOI: 10.1609/aaai.v34i07.6864http://dx.doi.org/10.1609/aaai.v34i07.6864]
Qin S Y, Bissaco A, Raptis M, Fujii Y and Xiao Y. 2019. Towards unconstrained end-to-end text spotting//Proceedings of 2019 IEEE/CVF Conference on Computer Vision. Seoul, Korea (South): IEEE: 4703-4713 [DOI: 10.1109/ICCV.2019.00480http://dx.doi.org/10.1109/ICCV.2019.00480]
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern. Las Vegas, USA: IEEE: 779-788 [DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Risnumawan A, Shivakumara P, Chan C S and Tan C L. 2014. A robust arbitrary text detection system for natural scene images. Expert Systems with Applications, 41(18): 8027-8048 [DOI: 10.1016/j.eswa.2014.07.008http://dx.doi.org/10.1016/j.eswa.2014.07.008]
Ruan C, Guo H and An J B. 2021. SAR inshore ship detection algorithm in complex background. Journal of Image and Graphics, 26(5): 1058-1066
阮晨, 郭浩, 安居白. 2021. 复杂背景下SAR近岸舰船检测. 中国图象图形学报, 26(5): 1058-1066 [DOI: 10.11834/jig.200266http://dx.doi.org/10.11834/jig.200266]
Shi B G, Bai X and Belongie S. 2017a. Detecting oriented text in natural images by linking segments//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 3482-3490 [DOI: 10.1109/CVPR.2017.371http://dx.doi.org/10.1109/CVPR.2017.371]
Shi B G, Yao C, Liao M H, Yang M K, Xu P, Cui L Y, Belongie S, Lu S J and Bai X. 2017b. ICDAR2017 competition on reading chinese text in the wild (RCTW-17)//Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition. Kyoto, Japan: IEEE: 1429-1434 [DOI: 10.1109/ICDAR.2017.233http://dx.doi.org/10.1109/ICDAR.2017.233]
Shrivastava A, Gupta A and Girshick R. 2016. Training region-based object detectors with online hard example mining//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: Springer: 761-769 [DOI: 10.1109/CVPR.2016.89http://dx.doi.org/10.1109/CVPR.2016.89]
Wang K, Babenko B and Belongie S. 2011. End-to-end scene text recognition//Proceedings of 2011 IEEE Conference on Computer Vision. Barcelona, Spain: IEEE: 1457-1464 [DOI: 10.1109/ICCV.2011.6126402http://dx.doi.org/10.1109/ICCV.2011.6126402]
Wang X L, Kong T, Shen C H, Jiang Y N and Li L. 2020. SOLO: segmenting objects by locations//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 649-665 [DOI: 10.1007/978-3-030-58523-5_38http://dx.doi.org/10.1007/978-3-030-58523-5_38]
Xing L J, Tian Z, Huang W L and Scott M. 2019. Convolutional character networks//Proceedings of 2019 IEEE/CVF Conference on Computer Vision. Seoul, Korea (South): IEEE: 9125-9135 [DOI: 10.1109/ICCV.2019.00922http://dx.doi.org/10.1109/ICCV.2019.00922]
Yi Y H, He J J, Lu L Q and Tang Z W. 2020. Association of text and other objects for text detection with natural scene images. Journal of Image and Graphics, 25(1): 126-135
易尧华, 何婧婧, 卢利琼, 汤梓伟. 2020. 顾及目标关联的自然场景文本检测. 中国图象图形学报, 25(1): 126-135 [DOI: 10.11834/jig.190179http://dx.doi.org/10.11834/jig.190179]
Yu D H, Zhang B M, Guo H T, Zhao C and Xu J F. 2018. Joint salient feature and convolutional neural network for ship detection in remote sensing images. Journal of Image and Graphics, 23(12): 1947-1958
余东行, 张保明, 郭海涛, 赵传, 徐俊峰. 2018. 联合显著性特征与卷积神经网络的遥感影像舰船检测. 中国图象图形学报, 23(12): 1947-1958 [DOI: 10.11834/jig.180323http://dx.doi.org/10.11834/jig.180323]
Yuan T L, Zhu Z, Xu K, Li C J, Mu T J and Hu S M. 2019. A large Chinese text dataset in the wild. Journal of Computer Science and Technology, 34(3): 509-521 [DOI: 10.1007/s11390-019-1923-yhttp://dx.doi.org/10.1007/s11390-019-1923-y]
Zong S G, Xia X C, Liang S Y and Zhang Z L. 2018. Air-launched laser-guided weapons research based on ship wake detection. Laser and Infrared, 48(10): 1295-1299
宗思光, 夏学成, 梁善永, 章正良. 2018. 空射激光制导武器对舰船隐蔽指示特性研究. 激光与红外, 48(10): 1295-1299 [DOI: 10.3969/j.issn.1001-5078.2018.10.018http://dx.doi.org/10.3969/j.issn.1001-5078.2018.10.018]
相关文章
相关作者
相关机构