Multi-scale feature fusion and additive attention guide brain tumor MR image segmentation
- Vol. 28, Issue 4, Pages: 1157-1172(2023)
Published: 16 April 2023
DOI: 10.11834/jig.211073
移动端阅览
浏览全部资源
扫码关注微信
Published: 16 April 2023 ,
移动端阅览
孙家阔, 张荣, 郭立君, 汪建华. 2023. 多尺度特征融合与加性注意力指导脑肿瘤MR图像分割. 中国图象图形学报, 28(04):1157-1172
Sun Jiakuo, Zhang Rong, Guo Lijun, Wang Jianhua. 2023. Multi-scale feature fusion and additive attention guide brain tumor MR image segmentation. Journal of Image and Graphics, 28(04):1157-1172
目的
2
U-Net是医学图像分割领域中应用最为广泛的基础分割网络,然而U-Net及其各种增强网络在跳跃连接时仅利用相同尺度特征,忽略了具有互补信息的多尺度特征对当前尺度特征的指导作用。同时,跳跃连接时编码器特征和解码器特征所处的网络深度不同,二者直接串联会产生语义特征差距。针对这两个问题,提出了一种新型分割网络,以改进现有网络存在的不足。
方法
2
首先,将编码器不同层级具有不同尺度感受野的特征进行融合,并在融合特征与编码器各层级特征间引入加性注意力对编码器特征进行指导,以增强编码器特征的判别性;其次,在编码器特征和解码器特征间采用加性注意力来自适应地学习跳跃连接特征中的重要特征信息,以降低二者间的语义特征差距。
结果
2
在多模态脑肿瘤数据集BraTS2020(multimodal brain tumor segmentation challenge 2020)上评估了所提出的网络模型,并进行了消融实验和对比实验。实验结果表明,所提出的网络在BraTS2020验证数据集上关于整个肿瘤、肿瘤核心和增强肿瘤的平均Dice分别为0.887 5、0.719 4和0.706 4,优于2D网络DR-Unet104(deep residual Unet with 104 convolutional layers)的分割结果,其中肿瘤核心和增强肿瘤的分割结果分别高出后者4.73%和3.08%。
结论
2
所提出的分割网络模型,通过将编码器中具有互补信息的多尺度特征进行融合,然后对当前尺度特征进行加性注意力指导,同时在编码器和解码器特征间采用加性注意力机制来降低跳跃连接时二者间的语义特征差距,能更精准地分割MR(magnetic resonance)图像中脑肿瘤子区域。
Objective
2
U-Net can be as the basic network in medical image segmentation. For U-Net and its various augmented networks, the encoder can extract features from input images in terms of a series of convolution and down-sampling operations. With the convolution and down-sampling operations at each layer of the encoder, the feature map sizes are decreased and the receptive field sizes can be remained to increase. For the network training, each level of the encoder can learn discriminative feature information at the current scale. To improve its feature utilization, the augmented U-Net schemes can melt skip connections between the encoder features and the decoder features into feature information-reused of shallow layers. However, the same scale are concatenated the features only via the skip-connected channel, and the role of multi-scale features with complementary information can be ignored. In addition, encoder features are oriented at a relatively shallow position in the overall network structure, while decoder features are based on a relatively deep position. As a result, a semantic feature gap is required to be bridged between encoder features and decoder features when skip connections are made. To optimize the U-Net and its augmented networks model, a novel segmentation network model is developed.
Method
2
We construct a segmentation network in terms of multi-scale feature fusion and additive attention mechanism. First, the features are fused in relevant to multi-scale receptive fields at different levels of the encoder. To guide the encoder features and enhance their discrimination ability, additive attention is introduced between the fused features and the encoder features at each level of the encoder. Second, to bridge the gap between the two semantic features, encoder and decoder features-between additive attention is used to learn important feature information in skip connections features adaptively. Experiments are carried out based on five-fold cross-validation. Multimodal magnetic resonance(MR) images of 234 high-grade glioma (HGG) samples and 59 low-grade glioma (LGG) samples in the BraTS2020 training dataset are used as the training data. MR images of 59 HGG samples and 15 LGG samples from the BraTS2020 training dataset are regarded as the validation data. The validation dataset of BraTS2020 is used as the final test data. The images of each modality are normalized using the Z-Score approach on the basis of the original data. The loss function is used in terms of the categorical cross-entropy loss function. Our model proposed is equipped with Ubuntu 18.04 operating system using Pycharm based on Keras, and the network model is trained and predicted on a workstation with a 16 GB graphics memory NVIDIA Quadro P5000 GPU. An ADAM optimizer is used in terms of a learning rate of 0.000 1 and the parameters in the network are initialized using the he_normal parameter initialization method. Our batch size for training the network is set to 12 and the model took 3 days to train after 150 iterations.
Result
2
To evaluate the performance of the proposed model, the Dice coefficient and the 95% Hausdorff distance (HD95) are used as evaluation metrics for the segmented regions of whole tumor(WT), tumor core(TC) and enhancing tumor(ET). To obtain quantitative evaluation results for these evaluation metrics, network-based segmentation results are uploaded to the BraTS2020 online evaluation platform. First, the segmentation effectiveness of the proposed network is verified on the BraTS2020 validation dataset. The experimental results show that the average Dice of the proposed network in relevant to ET, WT and TC are 0.706 4, 0.887 5 and 0.719 4 of each. Then, the proposed network is investigated in ablation experiments to validate the effectiveness of the proposed multi-scale feature fusion module, the fused feature additive attention module, and the encoder-decoder additive attention concatenate module. The results of the ablation experiments show that the addition of the proposed multi-scale feature fusion module to the backbone network improves the average Dice of the network of ET, WT and TC by 2.23%, 2.13% and 0.97%, respectively. In addition, the average Dice values of the network about ET, WT and TC are increased by 1.54%, 0.58% and 1.45% more after adding the proposed multi-scale feature fusion and fused feature additive attention modules to the network. The average Dice values of the network related to ET, WT and TC are increased by 2.46%, 0.82% and 3.51% further after the proposed encoder-decoder additive attention concatenate module is added to the network. Finally, our optimal network is compared to U-Net and popular augmented networks, as well as other non-U-Net segmentation networks. The proposed network to the 2D network DR-Unet104 is optimized by 4.73%, 3.08% and 0.13% for TC, ET and WT. Furthermore, the visualization results show that the proposed network can segment the boundaries of different tumor regions more accurately and achieve a better overall segmentation effect.
Conclusion
2
To segment brain tumor sub-regions in MR images more accurately, we develop a novel segmentation network model. It can fuse multi-scale features with complementary information in the encoder, and additive attention guidance can be applied to the features in the current scale. To reduce the gap between the two semantic features, additive attention mechanism is also used between the encoder features and the decoder features when skip connections are made.
医学图像分割脑肿瘤磁共振(MR)图像U-Net多尺度特征融合加性注意力
medical image segmentationbrain tumormagnetic resonance (MR) imagesU-Netmulti-scale feature fusionadditive attention
Awasthi N, Pardasani R and Gupta S. 2021. Multi-threshold attention U-Net (MTAU) based model for multimodal brain tumor segmentation in MRI scans//Proceedings of the 6th International MICCAI Brainlesion Workshop. Cham, Switzerland: Springer: 168-178 [DOI: 10.1007/978-3-030-72087-2_15http://dx.doi.org/10.1007/978-3-030-72087-2_15]
Bahdanau D, Cho K and Bengio Y. 2014. Neural machine translation by jointly learning to align and translate [EB/OL]. [2022-04-23]. https://arxiv.org/pdf/1409.0473.pdfhttps://arxiv.org/pdf/1409.0473.pdf
Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J S, Freymann J B, Farahani K and Davatzikos C. 2017. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data, 4(1): #170117 [DOI: 10.1038/sdata.2017.117http://dx.doi.org/10.1038/sdata.2017.117]
Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara R T, Berger C, Ha S M, Rozycki M, Prastawa M, Alberts E, Lipkova J, Freymann J, Kirby J, Bilello M, Fathallah-Shaykh H, Wiest R, Kirschke J, Wiestler B, Colen R, Kotrotsou A, Lamontagne P, Marcus D, Milchenko M, Nazeri A, Weber M A, Mahajan A, Baid U, Gerstner E, Kwon D, Acharya G, Agarwal M, Alam M, Albiol A, Albiol A, Albiol F J, Alex V, Allinson N, Amorim P H A, Amrutkar A, Anand G, Andermatt S, Arbel T, Arbelaez P, Avery A, Azmat M, Pranjal B, BAI W J, Banerjee S, Barth B, Batchelder T, Batmanghelich K, Battistella E, Beers A, Belyaev M, Bendszus M, Benson E, Bernal J, Bharath H N, Biros G, Bisdas S, Brown J, Cabezas M, Gao S L, Cardoso J M, Carver E N, Casamitjana A, Castillo L S, Catà M, Cattin P, Cerigues A, Chagas V S, Chandra S, Chang Y J, Chang S Y, Chang K, Chazalon J, Chen S C, Chen W, Chen J W, Chen Z L, Cheng K, Choudhury A R, Chylla R, Clérigues A, Colleman S, Rodriguez Colmeiro R G, Combalia M, Costa A, Cui X M, Dai Z Z, Dai L T, Daza L A, Deutsch E, Ding C X, Dong C, Dong S D, Dudzik W, Eaton-Rosen Z, Egan G, Escudero G, Estienne T, Everson R, Fabrizio J, Fan Y, Fang L W, Feng X, Ferrante E, Fidon L, Fischer M, French A P, Fridman N, Fu H, Fuentes D, Gao Y Z, Gates E, Gering D, Gholami A, Gierke W, Glocker B, Gong M M, González-Villá S, Grosges T, Guan Y F, Guo S, Gupta S, Han W S, Han I S, Harmuth K, He H G, Hernández-Sabaté A, Herrmann E, Himthani N, Hsu W, Hsu C, Hu X J, Hu X B, Hu YT, Hu Y F, Hua R, Huang T Y, Huang W L, Van Huffel S, Huo Q, Vivek H V, Iftekharuddin K M, Isensee F, Islam M, Jackson A S, Jambawalikar S R, Jesson A, Jian W J, Jin P, Jose V J M, Jungo A, Kainz B, Kamnitsas K, Kao P Y, Karnawat A, Kellermeier T, Kermi A, Keutzer K, Khadir M T, Khened M, Kickingereder P, Kim G, King N, Knapp H, Knecht U, Kohli L, Kong D R, Kong X M, Koppers S, Kori A, Krishnamurthi G, Krivov E, Kumar P, Kushibar K, Lachinov D, Lambrou T, Lee J, Lee C, Lee Y, Lee M, Lefkovits S, Lefkovits L, Levitt J, Li T F, Li H W, Li W Q, Li H Y, Li X C, Li Y X, Li H, Li Z Y, Li X Y, Li Z J, Li X G, Li W Q, Lin Z S, Lin F M, Lio P, Liu C, Liu B Q, Liu X, Liu M Y, Liu J, Liu L Y, Llado X, Lopez M M, Lorenzo P R, Lu Z T, Luo L, Luo Z G, Ma J, Ma K, Mackie T, Madabushi A, Mahmoudi I, Maier-Hein K H, Maji P, Mammen C P, Mang A, Manjunath B S, Marcinkiewicz M, McDonagh S, McKenna S, McKinley R, Mehl M, Mehta S, Mehta R, Meier R, Meinel C, Merhof D, Meyer C, Miller R, Mitra S, Moiyadi A, Molina-Garcia D, Monteiro M A B, Mrukwa G, Myronenko A, Nalepa J, Ngo T, Nie D, Ning H, Niu C, Nuechterlein N K, Oermann E, Oliveira A, Oliveira D D C, Oliver A, Osman A F I, Ou Y N, Ourselin S, Paragios N, Park M S, Paschke B, Pauloski J G, Pawar K, Pawlowski N, Pei L M, Peng S T, Pereira S M, Perez-Beteta J, Perez-Garcia V M, Pezold S, Pham B, Phophalia A, Piella G, Pillai G N, Piraud M, Pisov M, Popli A, Pound M P, Pourreza R, Prasanna P, Prkovska V, Pridmore T P, Puch S, Puybareau É, Qian B Y, Qiao X, Rajchl M, Rane S, Rebsamen M, Ren H L, Ren X H, Revanuru K, Rezaei M, Rippel O, Rivera L C, Robert C, Rosen B, Rueckert D, Safwan M, Salem M, Salvi J, Sanchez I, Sánchez I, Santos H M, Sartor E, Schellingerhout D, Scheufele K, Scott M R, Scussel A A, Sedlar S, Serrano-Rubio J P, Shah N J, Shah N, Shaikh M, Shankar B U, Shboul Z, Shen H P, Shen D G, Shen L L, Shen H C, Shenoy V, Shi F, Shin H E, Shu H, Sima D, Sinclair M, Smedby O, Snyder J M, Soltaninejad M, Song G D, Soni M, Stawiaski J, Subramanian S, Sun L, Sun R, Sun J W, Sun K, Sun Y, Sun G X, Sun S, Suter Y R, Szilagyi L, Talbar S, Tao D C, Tao D C, Teng Z Z, Thakur S, Thakur M H, Tharakan S, Tiwari P, Tochon G, Tran T, Tsai Y M, Tseng K L, Tuan T A, Turlapov V, Tustison N, Vakalopoulou M, Valverde S, Vanguri R, Vasiliev E, Ventura J, Vera L, Vercauteren T, Verrastro C A, Vidyaratne L, Vilaplana V, Vivekanandan A, Wang G T, Wang Q, Wang C J, Wang W, Wang D, Wang R X, Wang Y Y, Wang C L, Wang G T, Wen N, Xin Wen X, Weninger L, Wick W, Wu S C, Wu Q, Wu Y H, Xia Y, Xu Y W, Xu X W, Xu P Y, Yang T L, Yang X P, Yang H Y, Yang J L, Yang H J, Yang G, Yao H D, Ye X J, Yin C C, Young-Moxon B, Yu J H, Yue X Y, Zhang S T, Zhang A, Zhang K, Zhang X J, Zhang L C, Zhang X Y, Zhang Y Z, Zhang L, Zhang J G, Zhang X, Zhang T H, Zhao S C, Zhao Y, Zhao X M, Zhao L, Zheng Y F, Zhong L M, Zhou C H, Zhou X B, Zhou F, Zhu H T, Zhu J, Ying Z G, Zong W W, Kalpathy-Cramer J, Farahani K, Davatzikos C, Van Leemput K and Menze B. 2018. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge [EB/OL]. [2021-11-09]. https://arxiv.org/pdf/1811.02629.pdfhttps://arxiv.org/pdf/1811.02629.pdf
Bauer S, Wiest R, Nolte L P and Reyes M. 2013. A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine and Biology, 58(13): R97-R129 [DOI: 10.1088/0031-9155/58/13/R97http://dx.doi.org/10.1088/0031-9155/58/13/R97]
Çiçek Ö, Abdulkadir A, Lienkamp S S, Brox T and Ronneberger O. 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece: Springer: 424-432 [DOI: 10.1007/978-3-319-46723-8_49http://dx.doi.org/10.1007/978-3-319-46723-8_49]
Chen L C, Zhu Y K, Papandreou G, Schroff F and Adam H. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 833-851 [DOI: 10.1007/978-3-030-01234-2_49http://dx.doi.org/10.1007/978-3-030-01234-2_49]
Colman J, Zhang L, Duan W T and Ye X J. 2020. DR-Unet104 for multimodal MRI brain tumor segmentation//Proceedings of the 6th International MICCAI Brainlesion Workshop. Lima, Peru: Springer: 410-419 [DOI: 10.1007/978-3-030-72087-2_36http://dx.doi.org/10.1007/978-3-030-72087-2_36]
He K H and Xiao Z Y. 2021. LRUNet: a lightweight rapid semantic segmentation network for brain tumors. Journal of Image and Graphics, 26(9): 2233-2242
何康辉, 肖志勇. 2021. LRUNet: 轻量级脑肿瘤快速语义分割网络. 中国图象图形学报, 26(9): 2233-2242 [DOI: 10.11834/jig.200436http://dx.doi.org/10.11834/jig.200436]
He K M, Zhang X Y, Ren S Q and Sun J. 2015. Delving deep into rectifiers: surpassing human-level performance on imagenet classification//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 1026-1034 [DOI: 10.1109/ICCV.2015.123http://dx.doi.org/10.1109/ICCV.2015.123]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Hinton G E, Srivastava N, Krizhevsky A, Sutskever I and Salakhutdinov R R. 2012. Improving neural networks by preventing co-adaptation of feature detectors [EB/OL]. [2021-11-09]. https://arxiv.org/pdf/1207.0580.pdfhttps://arxiv.org/pdf/1207.0580.pdf
Hu J, Shen L and Sun G. 2018. Squeeze-and-excitation networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7132-7141 [DOI: 10.1109/CVPR.2018.00745http://dx.doi.org/10.1109/CVPR.2018.00745]
Huang G, Liu Z, Van Der Maaten L and Weinberger K Q. 2017. Densely connected convolutional networks//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2261-2269 [DOI: 10.1109/CVPR.2017.243http://dx.doi.org/10.1109/CVPR.2017.243]
Ibtehaz N and Rahman M S. 2020. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121: 74-87 [DOI: 10.1016/j.neU-Net.2019.08.025http://dx.doi.org/10.1016/j.neU-Net.2019.08.025]
Ioffe S and Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France: JMLR.org: 448-456
Jetley S, Lord N A, Lee N and Torr P H S. 2018. Learn to pay attention [EB/OL]. [2021-11-09]. https://arxiv.org/pdf/1804.02391.pdfhttps://arxiv.org/pdf/1804.02391.pdf
Liu Z, Lin Y T, Cao Y, Hu H, Wei Y X, Zhang Z, Lin S and Guo B N. 2021. Swin transformer: hierarchical vision transformer using shifted windows//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE: 9992-10002 [DOI: 10.1109/ICCV48922.2021.00986http://dx.doi.org/10.1109/ICCV48922.2021.00986]
Long J, Shelhamer E and Darrell T. 2015. Fully convolutional networks for semantic segmentation//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 3431-3440 [DOI: 10.1109/CVPR.2015.7298965http://dx.doi.org/10.1109/CVPR.2015.7298965]
Menze B H, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber M A, Arbel T, Avants B B, Ayache N, Buendia P, Collins D L, Cordier N, Corso J J, Criminisi A, Das T, Delingette H, Demiralp Ç, Durst C R, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X T, Hamamci A, Iftekharuddin K M, Jena R, John N M, Konukoglu E, Lashkari D, Mariz J A, Meier R, Pereira S, Precup D, Price S J, Raviv T R, Reza S M S, Ryan M, Sarikaya D, Schwartz L, Shin H C, Shotton J, Silva C A, Sousa N, Subbanna N K, Szekely G, Taylor T J, Thomas O M, Tustison N J, Unal G, Vasseur F, Wintermark M, Ye D H, Zhao L, Zhao B S, Zikic D, Prastawa M, Reyes M and Leemput K V. 2015. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10): 1993-2024 [DOI: 10.1109/TMI.2014.2377694http://dx.doi.org/10.1109/TMI.2014.2377694]
Misra D. 2019. Mish: a self regularized non-monotonic neural activation function [EB/OL]. [2021-11-09]. https://arxiv.org/pdf/1908.08681v1.pdfhttps://arxiv.org/pdf/1908.08681v1.pdf
Oktay O, Schlemper J, Le Folgoc L, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla N Y, Kainz B, Glocker B and Rueckert D. 2018. Attention U-Net: learning where to look for the pancreas [EB/OL]. [2021-11-09]. https://arxiv.org/pdf/1804.03999.pdfhttps://arxiv.org/pdf/1804.03999.pdf
Ostrom Q T, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C and Barnholtz-Sloan J S. 2015. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neurooncology, 17(S4): iv1-iv62 [DOI: 10.1093/neuonc/nov189http://dx.doi.org/10.1093/neuonc/nov189]
Ren L, Li Q, Guan X and Ma J. 2018. Three-dimensional segmentation of brain tumors in magnetic resonance imaging based on improved continuous max-flow. Laser and Optoelectronics Progress, 55(11): #111011
任璐, 李锵, 关欣, 马杰. 2018. 改进的连续型最大流算法脑肿瘤磁核共振成像三维分割. 激光与光电子学进展, 55(11): #111011 [DOI: 10.3788/LOP55.111011http://dx.doi.org/10.3788/LOP55.111011]
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Shen T, Jiang J, Zhou T Y, Pan S R, Long G D and Zhang C Q. 2018. DiSAN: directional self-attention network for RNN/CNN-free language understanding//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 13th Innovative Applications of Artificial Intelligence Conference and the 18th AAAI Symposium on Educational Advances in Artificial Intelligence. Louisiana, USA: AAAI Press: #668
Shi J L, Zhang R, Guo L J, Gao L L, Li Y Q, Ma H F and Wang J H. 2020. Dual dense context-aware network for hippocampal segmentation. Biomedical Signal Processing and Control, 61: #102038 [DOI: 10.1016/j.bspc.2020.102038http://dx.doi.org/10.1016/j.bspc.2020.102038]
Sinha A and Dolz J. 2021. Multi-scale self-guided attention for medical image segmentation. IEEE Journal of Biomedical and Health Informatics, 25(1): 121-130 [DOI: 10.1109/JBHI.2020.2986926http://dx.doi.org/10.1109/JBHI.2020.2986926]
Valanarasu J M J, Oza P, Hacihaliloglu I and Patel V M. 2021. Medical transformer: gated axial-attention for medical image segmentation[EB/OL]. [2022-04-23]. https://arxiv.org/pdf/2102.10662v2.pdfhttps://arxiv.org/pdf/2102.10662v2.pdf
Wang J D, Sun K, Cheng T H, Jiang B R, Deng C R, Zhao Y, Liu D, Mu Y D, Tan M K, Wang X G, Liu W Y and Xiao B. 2021. Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10): 3349-3364 [DOI: 10.1109/TPAMI.2020.2983686http://dx.doi.org/10.1109/TPAMI.2020.2983686]
Wang X L, Girshick R, Gupta A and He K M. 2018a. Non-local neural networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7794-7803 [DOI: 10.1109/CVPR.2018.00813http://dx.doi.org/10.1109/CVPR.2018.00813]
Wang Y, Deng Z J, Hu X W, Zhu L, Yang X, Xu X M, Heng P A and Ni D. 2018b. Deep attentional features for prostate segmentation in ultrasound//Proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention. Granada, Spain: Springer: 523-530 [DOI: 10.1007/978-3-030-00937-3_60http://dx.doi.org/10.1007/978-3-030-00937-3_60]
Woo S, Park J, Lee J Y and Kweon I S. 2018. CBAM: convolutional block attention module//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer: 3-19 [DOI: 10.1007/978-3-030-01234-2_1http://dx.doi.org/10.1007/978-3-030-01234-2_1]
Xia F, Shao H J and Deng X. 2022. Cross-stage deep-learning-based MRI fused images of human brain tumor segmentation. Journal of Image and Graphics, 27(3): 873-884
夏峰, 邵海见, 邓星. 2022. 融合跨阶段深度学习的脑肿瘤MRI图像分割. 中国图象图形学报, 27(3): 873-884 [DOI: 10.11834/jig.210330http://dx.doi.org/10.11834/jig.210330]
Xiao X, Lian S, Luo Z M and Li S Z. 2018. Weighted Res-UNet for high-quality retina vessel segmentation//Proceedings of the 9th International Conference on Information Technology in Medicine and Education. Hangzhou, China: IEEE: 327-331 [DOI: 10.1109/ITME.2018.00080http://dx.doi.org/10.1109/ITME.2018.00080]
Xu J H, Teng W P K, Wang X J and Nürnberger A. 2021. A deep supervised U-attention net for pixel-wise brain tumor segmentation//Proceedings of the 6th International MICCAI Brainlesion Workshop. Lima, Peru: Springer: 278-289 [DOI: 10.1007/978-3-030-72087-2_24http://dx.doi.org/10.1007/978-3-030-72087-2_24]
Zhao C C, Zhao Z M, Zeng Q R and Feng Y J. 2021. MVP U-Net: multi-view pointwise U-Net for brain tumor segmentation//Proceedings of the 6th International MICCAI Brainlesion Workshop. Lima, Peru: Springer: 93-103 [DOI: 10.1007/978-3-030-72087-2_9http://dx.doi.org/10.1007/978-3-030-72087-2_9]
Zhao H S, Shi J P, Qi X J, Wang X G and Jia J Y. 2017. Pyramid scene parsing network//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 6230-6239 [DOI: 10.1109/CVPR.2017.660http://dx.doi.org/10.1109/CVPR.2017.660]
Zhou Z W, Siddiquee M M R, Tajbakhsh N and Liang J M. 2018. UNet++: a nested U-Net architecture for medical image segmentation//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Granada, Spain: Springer: 3-11 [DOI: 10.1007/978-3-030-00889-5_1http://dx.doi.org/10.1007/978-3-030-00889-5_1]
相关文章
相关作者
相关机构