Video processing and compression technologies
- Vol. 26, Issue 6, Pages: 1179-1200(2021)
Received:31 December 2020,
Revised:2021-1-12,
Accepted:19 January 2021,
Published:16 June 2021
DOI: 10.11834/jig.200861
移动端阅览

浏览全部资源
扫码关注微信
Received:31 December 2020,
Revised:2021-1-12,
Accepted:19 January 2021,
Published:16 June 2021
移动端阅览
视频处理与压缩是多媒体计算与通信领域的核心主题之一,是连接视频采集传输和视觉分析理解的关键桥梁,也是诸多视频应用的基础。当前“5G+超高清+AI”正在引发多媒体计算与通信领域的新一轮重大技术革新,视频处理与压缩技术正在发生深刻变革,亟需建立视频大数据高效紧凑表示理论和方法。为此,学术研究机构和工业界对视频大数据的视觉表示机理、视觉信息紧凑表达、视频信号重建与恢复、高层与低层视觉融合处理方法及相应硬件技术等前沿领域进行了广泛深入研究。本文从数字信号处理基础理论出发,分析了当前视频处理与压缩领域的热点问题和研究内容,包括基于统计先验模型的视频数据表示模型及处理方法、融合深度网络模型的视频处理技术、视频压缩技术以及视频压缩标准进展等领域。详细描述了视频超分辨率、视频重建与恢复、视频压缩技术等领域面临的前沿动态、发展趋势、技术瓶颈和标准化进程等内容,对国际国内研究内容和发展现状进行了综合对比与分析,并展望了视频处理与压缩技术的发展与演进方向。更高质量视觉效果和高效率视觉表达之间将不再是单独研究的个体,融合类脑视觉系统及编码机理的视频处理与压缩技术将是未来研究的重要领域之一。
Video processing and compression are the most fundamental research areas in multimedia computing and communication technologies. They play a significant role in bridging video acquisition
video streaming
and video delivery together with the visual information analysis and visual understanding. Video processing and compression are also the foundations of applicational multimedia technologies and support various down-stream video applications. Digital videos are the largest big data in our contemporary modern society. The multimedia industry is the core component of the intellectual information era. The human kind steps into the intellectual information era with the continuous development of artificial intelligence and new generation of information revolution. Many emerging interdisciplinary research topics interact and fuse. Currently
the 5G plus ultra-high definition plus artificial intelligence invokes a novel trend of massive technology revolution in the context of multimedia computing and communication. The video processing and compression techniques also face challenging and intensive reform given this background. The demands for the theoretical and applicational breakthrough research on the compact video data representations
the highly efficient processing pipelines
and the high-performance algorithms are increasing. To address these issues
the academic and industrial society have already made extensive contributions and studies into several cutting-edge research areas and contents
including visual signal representation mechanism of video big data
compact visual information expression
video signal restoration and reconstruction
high-level and low-level vision fusion methods
and their hardware implementations. Based on fundamental theories in discrete signal processing
the active research topics as well as the corresponding state-of-the-art methodologies in the field of video processing and compression are systematically reviewed and analyzed. A comprehensive review of research topics
namely
statistical prior model-based video data representation learning and its processing methods
deep network-based video processing and compression solutions
video coding techniques
and video compression standardization process is provided. More importantly
the challenges of these research areas
the future developing tendency
the state-of-the-art approach as well as the standardization process are also provided from top to bottom. Specifically
the video processing algorithms
including model-based and deep learning based video super-resolution and video restoration solutions are initially reviewed. The video super-resolution contains spatial super-resolution and temporal super-resolution methods. The video restoration focuses on video deblurring and video deraining. The prior model based approaches and neural approaches are reviewed and compared. Subsequently
this paper presents the review of video compression methods from two aspects
namely
conventional coding tool development and learning-based video coding approaches. The former focuses on the modular improvements on predictive coding
transform and quantization
filtering
and entropy coding. With the development of multiple next-generation video coding standards
the scope and depth for the coding tool research in conventional hybrid coding framework are extensively broadened. The latter introduces the deep learning based video coding methods
not only for hybrid coding framework but also for end-to-end coding framework. Deep neural network based coding would definitely become the next jump of high-dimensional multimedia signal coding. For both parts
the detailed technology and standardization are described to shape the overall development of video compression. In addition
the extensive comparative study on these areas between oversea community and domestic community is conducted and analyzed
providing the evidence for the difference and similarity in the current situation. Finally
the future work on theoretical and application studies in video processing and compression is envisioned. In particular
the research between high quality visual effects and high efficiency visual representation would not be separate areas. The fusion of brain-like visual system and encoding mechanism for video processing and compression is a key direction of future research.
Afonso M, Zhang F and Bull D R. 2018. Video compression based on spatio-temporal resolution adaptation. IEEE Transactions on Circuits and Systems for Video Technology, 29(1): 275-280[DOI: 10.1109/TCSVT.2018.2878952]
Agustsson E, Minnen D, Johnston N, BalléJ, Hwang S J and Toderici G. 2020. Scale-space flow for end-to-end optimized video compression//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 8503-8512[ DOI: 10.1109/CVPR42600.2020.00853 http://dx.doi.org/10.1109/CVPR42600.2020.00853 ]
Bare B, Yan B, Ma C X and Li K. 2019. Real-time video super-resolution via motion convolution kernel estimation. Neurocomputing, 367: 236-245[DOI: 10.1016/j.neucom.2019.07.089]
Barnum P C, Kanade T and Narasimhan S. 2007. Spatio-temporal frequency analysis for removing rain and snow from videos//Proceedings of the 1st International Workshop on Photometric Analysis for Computer Vision. Rio de Janeiro, Brazil: HAL: 1-8
Barnum P C, Narasimhan S and Kanade T. 2010. Analysis of rain and snow in frequency space. International Journal of Computer Vision, 86(2/3): #256[DOI: 10.1007/s11263-008-0200-2]
Bossu J, Hautière N and Tarel J P. 2011. Rain or snow detection in image sequences through use of a histogram of orientation of streaks. International Journal of Computer Vision, 93(3): 348-367[DOI: 10.1007/s11263-011-0421-7]
Brewer N and Liu N J. 2008. Using the shape characteristics of rain to identify and remove rain from video//Proceedings of 2008 Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition. Orlando, USA: Springer: 451-458[ DOI: 10.1007/978-3-540-89689-0_49 http://dx.doi.org/10.1007/978-3-540-89689-0_49 ]
Caballero J, Ledig C, Aitken A, Acosta A, Totz J, Wang Z H and Shi W Z. 2017. Real-time video super-resolution with spatio-temporal networks and motion compensation//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2848-2857[ DOI: 10.1109/CVPR.2017.304 http://dx.doi.org/10.1109/CVPR.2017.304 ]
Chen H, Chen J, Chernyak R and Esenlik S. 2018a. Description of SDR, HDR and 360° Video Coding Technology Proposal by Huawei, GoPro, HiSilicon, and Samsung-General Application Scenario, in Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-J0025, 10th Meeting. San Diego, USA: [s.n.]
Chen J, Tan C H, Hou J H, Chau L P and Li H. 2018b. Robust video content alignment and compensation for rain removal in a CNN framework//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 6286-6295[ DOI: 10.1109/CVPR.2018.00658 http://dx.doi.org/10.1109/CVPR.2018.00658 ]
Chen T, Liu H J, Shen Q, Yue T, Cao X and Ma Z. 2017. DeepCoder: a deep neural network based video compression//Proceedings of 2017 IEEE Visual Communications and Image Processing. St. Petersburg, USA: IEEE: 1-4[ DOI: 10.1109/VCIP.2017.8305033 http://dx.doi.org/10.1109/VCIP.2017.8305033 ]
Chen Y L and Hsu C T. 2013. A generalized low-rank appearance model for spatio-temporally correlated rain streaks//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE: 1968-1975[ DOI: 10.1109/ICCV.2013.247 http://dx.doi.org/10.1109/ICCV.2013.247 ]
Chen Y W and Chien W J. 2018b. Description of SDR, HDR and 360° Video Coding Technology Proposal by Qualcomm and Technicolor Low and High Complexity Versions. JVET Document, JVET-J0021
Chen Z B, He T Y, Jin X and Wu F. 2020a. Learning for video compression. IEEE Transactions on Circuits and Systems for Video Technology, 30(2): 566-576[DOI: 10.1109/TCSVT.2019.2892608]
Chen Z B, Shi J and Li W P. 2020b. Learned fast HEVC intra coding. IEEE Transactions on Image Processing, 29: 5431-5446[DOI: 10.1109/TIP.2020.2982832]
Choi H and Bajić I V. 2020. Deep frame prediction for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 30(7): 1843-1855[DOI: 10.1109/TCSVT.2019.2924657]
Cui W X, Zhang T, Zhang S P, Jiang F, Zuo W M, Wan Z L and Zhao D B. 2017. Convolutional neural networks based intra prediction for HEVC//Proceedings of 2017 Data Compression Conference. Snowbird, USA: IEEE: 436-436[ DOI: 10.1109/DCC.2017.53 http://dx.doi.org/10.1109/DCC.2017.53 ]
Dai J F, Qi H Z, Xiong Y W, Li Y, Zhang G D, Hu H and Wei Y C. 2017a. Deformable convolutional networks//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 764-773[ DOI: 10.1109/ICCV.2017.89 http://dx.doi.org/10.1109/ICCV.2017.89 ]
Dai Y Y, Liu D and Wu F. 2017b. A convolutional neural network approach for post-processing in HEVC intra coding//Proceedings of the 23rd International Conference on Multimedia Modeling. Reykjavik, Iceland: Springer: 28-39[ DOI: 10.1007/978-3-319-51811-4_3 http://dx.doi.org/10.1007/978-3-319-51811-4_3 ]
Dai Y Y, Liu D, Zha Z J and Wu F. 2018. A CNN-based in-loop filter with CU classification for HEVC//Proceedings of 2018 IEEE Visual Communications and Image Processing. Taichung, China: IEEE: 1-4[ DOI: 10.1109/VCIP.2018.8698616 http://dx.doi.org/10.1109/VCIP.2018.8698616 ]
Djelouah A, Campos J, Schaub-Meyer S and Schroers C. 2019. Neural inter-frame compression for video coding//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 6421-6429[ DOI: 10.1109/ICCV.2019.00652 http://dx.doi.org/10.1109/ICCV.2019.00652 ]
Dosovitskiy A, Fischer P, Ilg E, Häusser P, Hazirbas C, Golkov V, van der Smagt P, Cremers D and Brox T. 2015. FlowNet: learning optical flow with convolutional networks//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE: 2758-2766[ DOI: 10.1109/ICCV.2015.316 http://dx.doi.org/10.1109/ICCV.2015.316 ]
Drulea M and Nedevschi S. 2011. Total variation regularization of local-global optical flow//Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems. Washington, USA: IEEE: 318-323[ DOI: 10.1109/ITSC.2011.6082986 http://dx.doi.org/10.1109/ITSC.2011.6082986 ]
Fachada S, Bonatto D, Schenkel A and Lafruit G. 2018. Depth image based view synthesis with multiple reference views for virtual reality//Proceedings of 2018 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video. Helsinki, Finland: IEEE: 1-4[ DOI: 10.1109/3DTV.2018.8478484 http://dx.doi.org/10.1109/3DTV.2018.8478484 ]
Fan K, Wang R G, Li G and Gao W. 2019. Efficient prediction methods with enhanced spatial-temporal correlation for HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 29(12): 3716-3728[DOI: 10.1109/TCSVT.2018.2885002]
Fang S, Sun Y, Chen F and Wang L. 2020. CE3-3: Motion Vector Angular Prediction. AVS-Doc, M5143
Fu T L, Zhang K, San L Z, Liu H B, Wang S S and Ma S W. 2019. Unsymmetrical quad-tree partitioning for audio video coding standard-3 (AVS-3)//Proceedings of 2019 Picture Coding Symposium (PCS). Ningbo, China: IEEE: 1-5[ DOI: 10.1109/PCS48520.2019.8954558 http://dx.doi.org/10.1109/PCS48520.2019.8954558 ]
Galpin F, RacapéF, Jaiswal S, Bordes P, Le Léannec F and Franćois E. 2019. CNN-based driving of block partitioning for intra slices encoding//Proceedings of 2019 Data Compression Conference. Snowbird, USA: IEEE: 162-171[ DOI: 10.1109/DCC.2019.00024 http://dx.doi.org/10.1109/DCC.2019.00024 ]
Garg K and Nayar S K. 2004. Detection and removal of rain from videos//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE: #1[ DOI: 10.1109/CVPR.2004.1315077 http://dx.doi.org/10.1109/CVPR.2004.1315077 ]
Garg K and Nayar S K. 2005. When does a camera see rain?//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE: 1067-1074[ DOI: 10.1109/ICCV.2005.253 http://dx.doi.org/10.1109/ICCV.2005.253 ]
Garg K and Nayar S K. 2007. Vision and rain. International Journal of Computer Vision, 75(1): 3-27[DOI: 10.1007/s11263-006-0028-6]
Golinski A, Pourreza R, Yang Y, Sautiere G and Cohen T S. 2020. Feedback recurrent autoencoder for video compression[EB/OL].[2021-01-11] . https://arxiv.org/pdf/2004.04342.pdf https://arxiv.org/pdf/2004.04342.pdf
Guo J and Chao H Y. 2017. Building an end-to-end spatial-temporal convolutional network for video super-resolution//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI: 4053-4060
Habibian A, van Rozendaa T, Tomczak J and Cohen T S. 2019. Video compression with rate-distortion autoencoders//Proceedings of 2019 IEEE International Conference on Computer Vision. Seoul, Korea (South): IEEE: 7033-7042[ DOI: 10.1109/ICCV.2019.00713 http://dx.doi.org/10.1109/ICCV.2019.00713 ]
Haris M, Shakhnarovich G and Ukita N. 2018. Deep back-projection networks for super-resolution//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 1664-1673[ DOI: 10.1109/CVPR.2018.00179 http://dx.doi.org/10.1109/CVPR.2018.00179 ]
Haris M, Shakhnarovich G and Ukita N. 2019. Recurrent back-projection network for video super-resolution//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 3892-3901[ DOI: 10.1109/CVPR.2019.00402 http://dx.doi.org/10.1109/CVPR.2019.00402 ]
He X Y, Hu Q, Zhang X Y, Zhang C Y, Lin W Y and Han X T. 2018. Enhancing HEVC compressed videos with a partition-masked convolutional neural network//Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE: 216-220[ DOI: 10.1109/ICIP.2018.8451086 http://dx.doi.org/10.1109/ICIP.2018.8451086 ]
Hochreiter S and Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735-1780[DOI: 10.1162/neco.1997.9.8.1735]
Hu J H, Peng W H and Chung C H. 2018a. Reinforcement learning for HEVC/H.265 intra-frame rate control//Proceedings of 2018 IEEE International Symposium on Circuits and Systems. Florence, Italy: IEEE: 1-5[ DOI: 10.1109/ISCAS.2018.8351575 http://dx.doi.org/10.1109/ISCAS.2018.8351575 ]
Hu Y Y, Yang W H, Li M D and Liu J Y. 2019. Progressive spatial recurrent neural network for intra prediction. IEEE Transactions on Multimedia, 21(12): 3024-3037[DOI: 10.1109/TMM.2019.2920603]
Hu Z, Cho S, Wang J and Yang M H. 2018b. Deblurring low-light images with light streaks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(10): 2329-2341
Hu Z H, Chen Z B, Xu D, Lu G, Ouyang W L and Gu S H. 2020. Improving deep video compression by resolution-adaptive flow coding//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 193-209[ DOI: 10.1007/978-3-030-58536-5_12 http://dx.doi.org/10.1007/978-3-030-58536-5_12 ]
Huang H Y, Schiopu I and Munteanu A. 2020. Frame-wise CNN-based filtering for intra-frame quality enhancement of HEVC videos. IEEE Transactions on Circuits and Systems for Video Technology(99): #3018230[ DOI: 10.1109/TCSVT.2020.3018230 http://dx.doi.org/10.1109/TCSVT.2020.3018230 ]
Huang Y, Song L and Izquierdo E. 2019. CNN accelerated intra video coding, where is the upper bound?//Proceedings of 2019 Picture Coding Symposium. Ningbo, China: IEEE: 1-5[ DOI: 10.1109/PCS48520.2019.8954494 http://dx.doi.org/10.1109/PCS48520.2019.8954494 ]
Huang Y, Wang W and Wang L. 2018. Video super-resolution via bidirectional recurrent convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 1015-1028[DOI: 10.1109/TPAMI.2017.2701380]
Hui Z, Li J, Gao X B and Wang X M. 2020. Progressive perception-oriented network for single image super-resolution[EB/OL].[2021-01-11] . https://arxiv.org/pdf/1907.10399.pdf https://arxiv.org/pdf/1907.10399.pdf
Huo S, Liu D, Wu F and Li H Q. 2018. Convolutional neural network-based motion compensation refinement for video coding//Proceedings of 2018 IEEE International Symposium on Circuits and Systems. Florence, Italy: IEEE: 1-4[ DOI: 10.1109/ISCAS.2018.8351609 http://dx.doi.org/10.1109/ISCAS.2018.8351609 ]
Irani M and Peleg S. 1991. Improving resolution by image registration. CVGIP: Graphical Models and Image Processing, 53(3): 231-239
Irani M and Peleg S. 1993. Motion analysis for image enhancement: resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation, 4(4): 324-335
Jacobsen J H, Smeulders A and Oyallon E. 2018. i-RevNet: deep invertible networks[EB/OL].[2021-01-11] . https://arxiv.org/pdf/1802.07088.pdf https://arxiv.org/pdf/1802.07088.pdf
Jia C M, Wang S Q, Zhang X F, Wang S S, Liu J Y, Pu S L and Ma S W. 2019. Content-aware convolutional neural network for in-loop filtering in high efficiency video coding. IEEE Transactions on Image Processing, 28(7): 3343-3356[DOI: 10.1109/TIP.2019.2896489]
Jian Y, Zhang J, Luo F, Wang S and Ma S. 2020. CE6-1 related: An improved SAO filtering algorithm. AVS-Doc, M5374
Jiang T X, Huang T Z, Zhao X L, Deng L J and Wang Y. 2017. A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 4057-4066[ DOI: 10.1109/CVPR.2017.301 http://dx.doi.org/10.1109/CVPR.2017.301 ]
Jiang T X, Huang T Z, Zhao X L, Deng L J and Wang Y. 2019. Fastderain: a novel video rain streak removal method using directional gradient priors. IEEE Transactions on Image Processing, 28(4): 2089-2102[DOI: 10.1109/TIP.2018.2880512]
Jin X, Ngan K N and Zhu G X. 2007. Combined inter-intra prediction for high definition video coding//2007 Picture Coding Symposium. Lisbon, Portugal: EURASIP: 1-4
Jin Z P, An P, Shen L Q and Yang C. 2017. CNN oriented fast QTBT partition algorithm for JVET intra coding//Proceedings of 2017 IEEE Visual Communications and Image Processing. St. Petersburg, USA: IEEE: 1-4[ DOI: 10.1109/VCIP.2017.8305020 http://dx.doi.org/10.1109/VCIP.2017.8305020 ]
Jin Z P, An P, Yang C and Shen L Q. 2018. Quality enhancement for intra frame coding via CNNs: an adversarial approach//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, Canada: IEEE: 1368-1372[ DOI: 10.1109/ICASSP.2018.8461356 http://dx.doi.org/10.1109/ICASSP.2018.8461356 ]
Jo Y, Oh S W, Kang J and Kim S J. 2018. Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 3224-3232[ DOI: 10.1109/CVPR.2018.00340 http://dx.doi.org/10.1109/CVPR.2018.00340 ]
Kang J H, Kim S and Lee K M. 2017. Multi-modal/multi-scale convolutional neural network based in-loop filter design for next generation video codec//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE: 26-30[ DOI: 10.1109/ICIP.2017.8296236 http://dx.doi.org/10.1109/ICIP.2017.8296236 ]
Kappeler A, Yoo S, Dai Q Q and Katsaggelos A K. 2016. Video super-resolution with convolutional neural networks. IEEE Transactions on Computational Imaging, 2(2): 109-122[DOI: 10.1109/TCI.2016.2532323]
Karczewicz M, Zhang L, Chien W J and Li X. 2017. Geometry transformation-based adaptive in-loop filter//2016 Picture Coding Symposium. Nuremberg, Germany: IEEE: 1-5[ DOI: 10.1109/PCS.2016.7906346 http://dx.doi.org/10.1109/PCS.2016.7906346 ]
Kim J H, Sim J Y and Kim C S. 2015. Video deraining and desnowing using temporal correlation and low-rank matrix completion. IEEE Transactions on Image Processing, 24(9): 2658-2670[DOI: 10.1109/TIP.2015.2428933]
Kim K and Ro W W. 2019. Fast CU depth decision for HEVC using neural networks. IEEE Transactions on Circuits and Systems for Video Technology, 29(5): 1462-1473[DOI: 10.1109/TCSVT.2018.2839113]
Kim S Y, Lim J, Na T and Kim M. 2019. Video super-resolution based on 3D-CNNs with consideration of scene change//Proceedings of 2019 IEEE International Conference on Image Processing. Taipei, China: IEEE: 2831-2835[ DOI: 10.1109/ICIP.2019.8803297 http://dx.doi.org/10.1109/ICIP.2019.8803297 ]
Kim Y, Soh J W, Park J, Ahn B, Lee H S, Moon Y S and Cho N I. 2020. A pseudo-blind convolutional neural network for the reduction of compression artifacts. IEEE Transactions on Circuits and Systems for Video Technology, 30(4): 1121-1135[DOI: 10.1109/TCSVT.2019.2901919]
Koo M, Salehifar M, Lim J and Kim S. 2019. CE6: Reduced Secondary Transform (RST) (CE6-3.1). JVET-N0193
Krishnan D, Tay T and Fergus R. 2011. Blind deconvolution using a normalized sparsity measure//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE: 233-240[ DOI: 10.1109/CVPR.2011.5995521 http://dx.doi.org/10.1109/CVPR.2011.5995521 ]
Kuang W, Chan Y L, Tsang S H and Siu W C. 2020. DeepSCC: deep learning-based fast prediction network for screen content coding. IEEE Transactions on Circuits and Systems for Video Technology, 30(7): 1917-1932[DOI: 10.1109/TCSVT.2019.2929317]
Li C, Song L, Xie R and Zhang W J. 2017. CNN based post-processing to improve HEVC//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE: 4577-4580[ DOI: 10.1109/ICIP.2017.8297149 http://dx.doi.org/10.1109/ICIP.2017.8297149 ]
Li D Y, Liu Y and Wang Z F. 2019a. Video super-resolution using non-simultaneous fully recurrent convolutional network. IEEE Transactions on Image Processing, 28(3): 1342-1355
Li J H, Li B, Xu J Z, Xiong R Q and Gao W. 2018c. Fully connected network-based intra prediction for image coding. IEEE Transactions on Image Processing, 27(7): 3236-3247[DOI: 10.1109/TIP.2018.2817044]
Li J R, Wang M, Zhang L, Zhang K, Liu H B, Wang S Q, Ma S W and Gao W. 2019b. History-based motion vector prediction for future video coding//Proceedings of 2019 IEEE International Conference on Multimedia and Expo. Shanghai, China: IEEE: 67-72[ DOI: 10.1109/ICME.2019.00020 http://dx.doi.org/10.1109/ICME.2019.00020 ]
Li J R, Wang M, Zhang L, Zhang K, Wang S Q, Wang S S, Ma S W and Gao W. 2020a. Sub-sampled cross-component prediction for chroma component coding//Proceedings of 2020 Data Compression Conference. Snowbird, USA: IEEE: 203-212[ DOI: 10.1109/DCC47342.2020.00028 http://dx.doi.org/10.1109/DCC47342.2020.00028 ]
Li L, Li H Q, Lyu Z Y and Yang H T. 2015. An affine motion compensation framework for high efficiency video coding//Proceedings of 2015 IEEE International Symposium on Circuits and Systems. Lisbon, Portugal: IEEE: 525-528[ DOI: 10.1109/ISCAS.2015.7168686 http://dx.doi.org/10.1109/ISCAS.2015.7168686 ]
Li M H, Xie Q, Zhao Q, Wei W, Gu S H, Tao J and Meng D Y. 2018b. Video rain streak removal by multiscale convolutional sparse coding//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 6644-6653[ DOI: 10.1109/CVPR.2018.00695 http://dx.doi.org/10.1109/CVPR.2018.00695 ]
Li N, Zhang Y, Zhu L W, Luo W H and Kwong S. 2019c. Reinforcement learning based coding unit early termination algorithm for high efficiency video coding. Journal of Visual Communication and Image Representation, 60: 276-286[DOI: 10.1016/j.jvcir.2019.02.021]
Li T Y, Xu M, Deng X and Shen L Q. 2020b. Accelerate CTU partition to real time for HEVC encoding with complexity control. IEEE Transactions on Image Processing, 29: 7482-7496[DOI: 10.1109/TIP.2020.3003730]
Li Y, Li B, Liu D and Chen Z B. 2017. A convolutional neural network-based approach to rate control in HEVC intra coding//Proceedings of 2017 IEEE Visual Communications and Image Processing. St. Petersburg, USA: IEEE: 1-4[ DOI: 10.1109/VCIP.2017.8305050 http://dx.doi.org/10.1109/VCIP.2017.8305050 ]
Li Y, Liu D, Li H Q, Li L, Li Z and Wu F. 2019d. Learning a convolutional neural network for image compact-resolution. IEEE Transactions on Image Processing, 28(3): 1092-1107[DOI: 10.1109/TIP.2018.2872876]
Li Y, Liu D, Li H Q, Li L, Wu F, Zhang H and Yang H T. 2018a. Convolutional neural network-based block up-sampling for intra frame coding. IEEE Transactions on Circuits and Systems for Video Technology, 28(9): 2316-2330[DOI: 10.1109/TCSVT.2017.2727682]
Lin J P, Liu D, Li H Q and Wu F. 2020. M-LVC: multiple frames prediction for learned video compression//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3546-3554[ DOI: 10.1109/CVPR42600.2020.00360 http://dx.doi.org/10.1109/CVPR42600.2020.00360 ]
Lin J P, Liu D, Yang H T, Li H Q and Wu F. 2019. Convolutional neural network-based block up-sampling for HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 29(12): 3701-3715[DOI: 10.1109/TCSVT.2018.2884203]
Liu H J, Chen T, Lu M, Shen Q and Ma Z. 2019. Neural video compression using spatio-temporal priors[EB/OL].[2021-01-11] . https://arxiv.org/pdf/1902.07383.pdf https://arxiv.org/pdf/1902.07383.pdf
Liu C and Sun D Q. 2013, On Bayesian adaptive video super resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(2): 346-360[ DOI: 10.1109/TPAMI.2013.127] http://dx.doi.org/10.1109/TPAMI.2013.127] .
Liu H J, Lu M, Ma Z, Wang F, Xie Z H, Cao X and Wang Y. 2020b. Neural video coding using multiscale motion compensation and spatiotemporal context model[EB/OL].[2021-01-11] . https://arxiv.org/pdf/2007.04574.pdf https://arxiv.org/pdf/2007.04574.pdf
Liu H J, Shen H, Huang L C, Lu M, Chen T and Ma Z. 2020a. Learned video compression via joint spatial-temporal correlation exploration//Proceedings of the 34th AAAI Conference on Artificial Intelligence AAAI 2020,the 32nd Innovative Applications of Artificial Intelligence Conference, IAAI 2020, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020. New York, USA: AAAI: 11580-11587
Liu J Y, Yang W H, Yang S and Guo Z M. 2018. Erase or fill? Deep joint recurrent rain removal and reconstruction in videos//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 3233-3242[ DOI: 10.1109/CVPR.2018.00341 http://dx.doi.org/10.1109/CVPR.2018.00341 ]
Liu Z Y, Yu X Y, Gao Y, Chen S L, Ji X Y and Wang D S. 2016. CU partition mode decision for HEVC hardwired intra encoder using convolution neural network. IEEE Transactions on Image Processing, 25(11): 5088-5103[DOI: 10.1109/TIP.2016.2601264]
Lu G, Cai C L, Zhang X Y, Chen L, Ouyang W L, Xu D and Gao Z Y. 2020b. Content adaptive and error propagation aware deep video compression//Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer: 456-472[ DOI: 10.1007/978-3-030-58536-5_27 http://dx.doi.org/10.1007/978-3-030-58536-5_27 ]
Lu G, Ouyang W L, Xu D, Zhang X Y, Cai C L and Gao Z Y. 2019. DVC: an end-to-end deep video compression framework//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 10998-11007[ DOI: 10.1109/CVPR.2019.01126 http://dx.doi.org/10.1109/CVPR.2019.01126 ]
Lu G, Zhang X Y, Ouyang W L, Chen L, Gao Z Y and Xu D. 2020a. An end-to-end learning framework for video compression. IEEE Transactions on Pattern Analysis and Machine Intelligence: #2988453[ DOI: 10.1109/TPAMI.2020.2988453 http://dx.doi.org/10.1109/TPAMI.2020.2988453 ]
Lu X, Zhou B X, Jin X S and Martin G. 2020c. A rate control scheme for HEVC intra coding using convolution neural network (CNN)//Proceedings of 2020 Data Compression Conference. Snowbird, USA: IEEE: 382-382[ DOI: 10.1109/DCC47342.2020.00055 http://dx.doi.org/10.1109/DCC47342.2020.00055 ]
Lucas A, López-Tapia S, Molina R and Katsaggelos A K. 2019. Generative adversarial networks and perceptual losses for video super-resolution. IEEE Transactions on Image Processing, 28(7): 3312-3327[DOI: 10.1109/TIP.2019.2895768]
Lyu Z Y, Piao Y J, Wu Y, Choi K and Choi K P. 2020. Scan region-based coefficient coding in avs3//Proceedings of 2020 IEEE International Conference on Multimedia and Expo Workshops. London, UK: IEEE: 1-5[ DOI: 10.1109/ICMEW46912.2020.9105993 http://dx.doi.org/10.1109/ICMEW46912.2020.9105993 ]
Ma C Y, Liu D, Peng X L and Wu F. 2018a. Convolutional neural network-based arithmetic coding of DC coefficients for HEVC intra coding//Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE: 1772-1776[ DOI: 10.1109/ICIP.2018.8451166 http://dx.doi.org/10.1109/ICIP.2018.8451166 ]
Ma L, Tian Y and Huang T. 2018b. Residual-based video restoration for HEVC intra coding//Proceedings of the 4th IEEE International Conference on Multimedia Big Data. Xi'an, China: IEEE: 1-7[ DOI: 10.1109/BigMM.2018.8499072 http://dx.doi.org/10.1109/BigMM.2018.8499072 ]
Ma Z, Liao R J, Tao X, Xu L, Jia J and Wu E H. 2015, Handling motion blur in multi-frame super-resolution//Proceedings of 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE: 5224-5232[ DOI: 10.1109/CVPR.2015.7299159 http://dx.doi.org/10.1109/CVPR.2015.7299159 ]
Meng X D, Chen C, Zhu S Y and Zeng B. 2018. A new HEVC in-loop filter based on multi-channel long-short-term dependency residual networks//Proceedings of 2018 Data Compression Conference. Snowbird, USA: IEEE: 187-196[ DOI: 10.1109/DCC.2018.00027 http://dx.doi.org/10.1109/DCC.2018.00027 ]
Meyer S, Djelouah A, McWilliams B, Sorkine-Hornung A, Gross M and Schroers C. 2018. PhaseNet for video frame interpolation//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 498-507[ DOI: 10.1109/CVPR.2018.00059 http://dx.doi.org/10.1109/CVPR.2018.00059 ]
Misra K, Bossen F and Segall A. 2019. On cross component adaptive loop filter for video compression//2019 Picture Coding Symposium. Ningbo, China: IEEE: 1-5[ DOI: 10.1109/PCS48520.2019.8954547 http://dx.doi.org/10.1109/PCS48520.2019.8954547 ]
Niklaus S and Liu F. 2018. Context-aware synthesis for video frame interpolation//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 1701-1710[ DOI: 10.1109/CVPR.2018.00183 http://dx.doi.org/10.1109/CVPR.2018.00183 ]
Niklaus S, Mai L and Liu F. 2017a. Video frame interpolation via adaptive separable convolution//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 261-270[ DOI: 10.1109/ICCV.2017.37 http://dx.doi.org/10.1109/ICCV.2017.37 ]
Niklaus S, Mai L and Liu F. 2017b. Video frame interpolation via adaptive convolution//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2270-2279[ DOI: 10.1109/CVPR.2017.244 http://dx.doi.org/10.1109/CVPR.2017.244 ]
Park W and Kim M. 2019. Deep predictive video compression with bi-directional prediction[EB/OL].[2021-01-11] . https://arxiv.org/pdf/1904/1904.02909.pdf https://arxiv.org/pdf/1904/1904.02909.pdf
Park W J and Lee K H. 2008. Rain removal using Kalman filter in video//Proceedings of 2008 International Conference on Smart Manufacturing Application. Goyangi, Korea (South): IEEE: 494-497[ DOI: 10.1109/ICSMA.2008.4505573 http://dx.doi.org/10.1109/ICSMA.2008.4505573 ]
Park W S and Kim M. 2016. CNN-based in-loop filtering for coding efficiency improvement//Proceedings of the 12th IEEE Image, Video, and Multidimensional Signal Processing Workshop. Bordeaux, France: IEEE: 1-5[ DOI: 10.1109/IVMSPW.2016.7528223 http://dx.doi.org/10.1109/IVMSPW.2016.7528223 ]
Paul S, Norkin A and Bovik A C. 2020. Speeding up VP9 intra encoder with hierarchical deep learning-based partition prediction. IEEE Transactions on Image Processing, 29: 8134-8148[DOI: 10.1109/TIP.2020.3011270]
Pessoa J, Aidos H, Tomás P and Figueiredo M A T. 2020. End-to-end learning of video compression using spatio-temporal autoencoders//Proceedings of 2020 IEEE Workshop on Signal Processing Systems. Coimbra, Portugal: IEEE: 1-6[ DOI: 10.1109/SiPS50750.2020.9195249 http://dx.doi.org/10.1109/SiPS50750.2020.9195249 ]
Pfaff J, Helle P, Maniry D, Kaltenstadler S, Samek W, Schwarz H, Marpe D and Wiegand T. 2018. Neural network based intra prediction for video coding//Proceedings of SPIE 10752, Applications of Digital Image Processing XLI. San Diego, USA: SPIE: 1075213[ DOI: 10.1117/12.2321273 http://dx.doi.org/10.1117/12.2321273 ]
Puri S, Lasserre S and Le Callet P. 2017. CNN-based transform index prediction in multiple transforms framework to assist entropy coding//Proceedings of the 25th European Signal Processing Conference. Kos, Greece: IEEE: 798-802[ DOI: 10.23919/EUSIPCO.2017.8081317 http://dx.doi.org/10.23919/EUSIPCO.2017.8081317 ]
Ranjan A and Black M J. 2017. Optical flow estimation using a spatial pyramid network//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 2720-2729[ DOI: 10.1109/CVPR.2017.291 http://dx.doi.org/10.1109/CVPR.2017.291 ]
Ren W H, Tian J D, Han Z, Chan A and Tang Y D. 2017. Video desnowing and deraining based on matrix decomposition//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE: 4210-4219[ DOI: 10.1109/CVPR.2017.303 http://dx.doi.org/10.1109/CVPR.2017.303 ]
Ren W P, Su J, Sun C and Shi Z P. 2019. An IBP-CNN based fast block partition for intra prediction//2019 Picture Coding Symposium. Ningbo, China: IEEE: 1-5[ DOI: 10.1109/PCS48520.2019.8954522 http://dx.doi.org/10.1109/PCS48520.2019.8954522 ]
Rippel O, Nair S, Lew C, Branson S, Anderson A and Bourdev L. 2019. Learned video compression//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea(South): IEEE: 3453-3462[ DOI: 10.1109/ICCV.2019.00355 http://dx.doi.org/10.1109/ICCV.2019.00355 ]
Said A, Zhao X, Karczewicz M, Chen J L and Zou F. 2016. Position dependent prediction combination for intra-frame video coding//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, USA: IEEE: 534-538[ DOI: 10.1109/ICIP.2016.7532414 http://dx.doi.org/10.1109/ICIP.2016.7532414 ]
Sajjadi M S M, Vemulapalli R and Brown M. 2018. Frame-recurrent video super-resolution//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 6626-6634[ DOI: 10.1109/CVPR.2018.00693 http://dx.doi.org/10.1109/CVPR.2018.00693 ]
Schwarz H, Nguyen T, Marpe D and Wiegand T. 2018. Non-CE7: Alternative Entropy Coding for Dependent Quantization. JVET-K0072.[s.n.]
Shi X J, Chen Z R, Wang H, Yeung D Y, Wong W K and Woo W C. 2015. Convolutional LSTM network: a machine learning approach for precipitation nowcasting//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press: 802-810
Song R, Liu D, Li H Q and Wu F. 2017. Neural network-based arithmetic coding of intra prediction modes in HEVC//Proceedings of 2017 IEEE Visual Communications and Image Processing. St. Petersburg, USA: IEEE: 1-4[ DOI: 10.1109/VCIP.2017.8305104 http://dx.doi.org/10.1109/VCIP.2017.8305104 ]
Song X D, Yao J B, Zhou L L, Wang L, Wu X Y, Xie D and Pu S L. 2018. A practical convolutional neural network as loop filter for intra frame//Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE: 1133-1137[ DOI: 10.1109/ICIP.2018.8451589 http://dx.doi.org/10.1109/ICIP.2018.8451589 ]
Su H, Chen M L, Bokov A, Mukherjee D, Wang Y Q and Chen Y. 2019b. Machine learning accelerated transform search for AV1//Proceedings of 2019 Picture Coding Symposium. Ningbo, China: IEEE: 1-5[ DOI: 10.1109/PCS48520.2019.8954514 http://dx.doi.org/10.1109/PCS48520.2019.8954514 ]
Su H, Tsai C Y, Wang Y Q and Xu Y W. 2019a. Machine learning accelerated partition search for video encoding//Proceedings of 2019 IEEE International Conference on Image Processing. Taipei, China: IEEE: 2661-2665[ DOI: 10.1109/ICIP.2019.8803311 http://dx.doi.org/10.1109/ICIP.2019.8803311 ]
Tang G W, Jing M G, Zeng X Y and Fan Y B. 2019. Adaptive CU split decision with pooling-variable CNN for VVC intra encoding//Proceedings of 2019 IEEE Visual Communications and Image Processing. Sydney, Australia: IEEE, 1-4[DOI: 10.1109/VCIP47243.2019.8965679]
Tao X, Gao H Y, Liao R J, Wang J and Jia J Y. 2017. Detail-revealing deep video super-resolution//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 4482-4490[ DOI: 10.1109/ICCV.2017.479 http://dx.doi.org/10.1109/ICCV.2017.479 ]
Tian Y P, Zhang Y L, Fu Y and Xu C L. 2020. TDAN: temporally-deformable alignment network for video super-resolution//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 3360-3369[ DOI: 10.1109/CVPR42600.2020.00342 http://dx.doi.org/10.1109/CVPR42600.2020.00342 ]
Tripathi A K and Mukhopadhyay S. 2011. A probabilistic approach for detection and removal of rain from videos. IETE Journal of Research, 57(1): 82-91[DOI: 10.4103/0377-2063.78382]
Tripathi A K and Mukhopadhyay S. 2012. Video post processing: low-latency spatiotemporal approach for detection and removal of rain. IET Image Processing, 6(2): 181-196[DOI: 10.1049/iet-ipr.2010.0547]
Tripathi A K and Mukhopadhyay S. 2014. Removal of rain from videos: a review. Signal, Image and Video Processing, 8(8): 1421-1430[DOI: 10.1007/s11760-012-0373-6]
Tsai R Y and Huang T S. 1984. Multiple frame image restoration and registration//Proceedings of 1984 Advances in Computer Vision and Image Processing. Greenwich, UK: JAI Press: 317-339
Wang H, Su D W, Liu C C, Jin L C, Sun X F and Peng X Y. 2019a. Deformable non-local network for video super-resolution. IEEE Access, 7: 177734-177744[DOI: 10.1109/ACCESS.2019.2958030]
Wang L G, Guo Y L, Lin Z P, Deng X P and An W. 2018b. Learning for video super-resolution through HR optical flow estimation//Proceedings of the 14th Asian Conference on Computer Vision. Perth, Australia: Springer: 514-529[ DOI: 10.1007/978-3-030-20887-5_32 http://dx.doi.org/10.1007/978-3-030-20887-5_32 ]
Wang L Q, Cao X R, Niu B B, Yu Q H, Zheng J H and He Y. 2019b. Derived tree block partition for AVS3 intra coding//2019 Picture Coding Symposium. Ningbo, China: IEEE: 1-5[ DOI: 10.1109/PCS48520.2019.8954542 http://dx.doi.org/10.1109/PCS48520.2019.8954542 ]
Wang L Q, Niu B B, Lin Y B, Yu Q H, Zheng J H and He Y. 2018a. Texture and position based multiple transform for inter-predicted residue coding//Proceedings of 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Honolulu, USA: IEEE: 31-35[ DOI: 10.23919/APSIPA.2018.8659520 http://dx.doi.org/10.23919/APSIPA.2018.8659520 ]
Wang M, Li J R, Zhang L, Zhang K, Liu H B, Wang S Q, Kwong S and Ma S W. 2019c. Extended coding unit partitioning for future video coding. IEEE Transactions on Image Processing, 29: 2931-2946[DOI: 10.1109/TIP.2019.2955238]
Wang T T, Xiao W H, Chen M J and Chao H Y. 2018c. The multi-scale deep decoder for the standard HEVC bitstreams//Proceedings of 2018 Data Compression Conference. Snowbird, USA: IEEE: 197-206[ DOI: 10.1109/DCC.2018.00028 http://dx.doi.org/10.1109/DCC.2018.00028 ]
Wang X L, Girshick R, Gupta A and He K M. 2018d. Non-local neural networks//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 7794-7803[ DOI: 10.1109/CVPR.2018.00813 http://dx.doi.org/10.1109/CVPR.2018.00813 ]
Wang X T, Chan K K C, Yu K, Dong C and Loy C C. 2019d. EDVR: video restoration with enhanced deformable convolutional networks//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: IEEE: 1954-1963[ DOI: 10.1109/CVPRW.2019.00247 http://dx.doi.org/10.1109/CVPRW.2019.00247 ]
Wang Y, Xu X, Li Y and Liu S. 2019e. CE1-related: A Rediction Pixel Filtering Method of Intra Coding. AVS-Doc, M5079
Wei W, Yi L X, Xie Q, Zhao Q, Meng D Y and Xu Z B. 2017. Should we encode rain streaks in video as deterministic or stochastic?//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE: 2516-2525[ DOI: 10.1109/ICCV.2017.275 http://dx.doi.org/10.1109/ICCV.2017.275 ]
Wu C Y, Singhal N and Krahenbühl P. 2018. Video compression through image interpolation//Proceedings of the 15th European Conference on Computer Vision. Munich, Bavaria, Germany: Springer: 416-431[ DOI: 10.1007/978-3-030-01237-3_26 http://dx.doi.org/10.1007/978-3-030-01237-3_26 ]
Wu X J, Zhang Z W, Feng J, Zhou L and Wu J M. 2020. End-to-end optimized video compression with MV-residual prediction//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle,USA: IEEE: 156-157[ DOI: 10.1109/CVPRW50498.2020.00086 http://dx.doi.org/10.1109/CVPRW50498.2020.00086 ]
Xing H F, Zhou Z C, Wang J L, Shen H F, He D L and Li F. 2019. Predicting rate control target through a learning based content adaptive model//2019 Picture Coding Symposium. Ningbo, China: IEEE: 1-5[ DOI: 10.1109/PCS48520.2019.8954541 http://dx.doi.org/10.1109/PCS48520.2019.8954541 ]
Xiu X, He Y, Ye Y, Jang H, Nam J, Kim S, Lim J, Chen H, Yang H and Chen J. 2018. CE4-related: One Simplified Design of Advanced Temporal Motion Vector Prediction (ATMVP). JVET-K0346
Xu M, Li T Y, Wang Z L, Deng X, Yang R and Guan Z Y. 2018. Reducing complexity of HEVC: a deep learning approach. IEEE Transactions on Image Processing, 27(10): 5044-5059[DOI: 10.1109/TIP.2018.2847035]
Xu X Z, Liu S, Chuang T D, Huang Y W, Lei S M, Rapaka K, Pang C, Seregin V, Wang Y K and Karczewicz M. 2016. Intra block copy in HEVC screen content coding extensions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 6(4): 409-419[DOI: 10.1109/JETCAS.2016.2597645]
Xue T F, Chen B A, Wu J J, Wei D L and Freeman W T. 2019. Video enhancement with task-oriented flow. International Journal of Computer Vision, 127(8): 1106-1125[DOI: 10.1007/s11263-018-01144-2]
Yan B, Lin C M and Tan W M. 2019. Frame and feature-context video super-resolution//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, the 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019. Honolulu, USA: AAAI: 5597-5604
Yan N, Liu D, Li H Q and Wu F. 2017. A convolutional neural network approach for half-pel interpolation in video coding//2017 IEEE International Symposium on Circuits and Systems. Baltimore, USA: IEEE: 1-4[ DOI: 10.1109/ISCAS.2017.8050458 http://dx.doi.org/10.1109/ISCAS.2017.8050458 ]
Yan N, Liu D, Li H Q, Xu T, Wu F and Li B. 2018. Convolutional neural network-based invertible half-pixel interpolation filter for video coding//Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE: 201-205[ DOI: 10.1109/ICIP.2018.8451286 http://dx.doi.org/10.1109/ICIP.2018.8451286 ]
Yang R, Mentzer F, van Gool L and Timofte R. 2020a. Learning for video compression with hierarchical quality and recurrent enhancement//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE: 6628-6637[ DOI: 10.1109/CVPR42600.2020.00666 http://dx.doi.org/10.1109/CVPR42600.2020.00666 ]
Yang R, Mentzer F, van Gool L and Timofte R. 2020b. Learning for video compression with recurrent auto-encoder and recurrent probability model[EB/OL].[2021-01-11] . https://arxiv.org/pdf/2006.13560.pdf https://arxiv.org/pdf/2006.13560.pdf
Yang R, Xu M, Liu T, Wang Z L and Guan Z Y. 2019b. Enhancing quality for HEVC compressed videos. IEEE Transactions on Circuits and Systems for Video Technology, 29(7): 2039-2054[DOI: 10.1109/TCSVT.2018.2867568]
Yang R, Xu M, Wang Z L and Li T Y. 2018. Multi-frame quality enhancement for compressed video//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE: 6664-6673[ DOI: 10.1109/CVPR.2018.00697 http://dx.doi.org/10.1109/CVPR.2018.00697 ]
Yang W H, Liu J Y and Feng J S. 2019a. Frame-consistent recurrent video deraining with dual-level flow//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 1661-1670[ DOI: 10.1109/CVPR.2019.00176 http://dx.doi.org/10.1109/CVPR.2019.00176 ]
Yi P, Wang Z Y, Jiang K, Jiang J J and Ma J Y. 2019. Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea(South): IEEE: 3106-3115[ DOI: 10.1109/ICCV.2019.00320 http://dx.doi.org/10.1109/ICCV.2019.00320 ]
Yilmaz M A and Tekalp A M. 2020. End-to-end rate-distortion optimization for bi-directional learned video compression//Proceedings of 2010 IEEE International Conference on Image Processing. Abu Dhabi, United Arab Emirates: IEEE: 1311-1315[ DOI: 10.1109/ICIP40778.2020.9190881 http://dx.doi.org/10.1109/ICIP40778.2020.9190881 ]
Zhang H and Patel V M. 2017. Convolutional sparse and low-rank coding-based rain streak removal//Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision. Santa Rosa, USA: IEEE: 1259-1267[ DOI: 10.1109/WACV.2017.145 http://dx.doi.org/10.1109/WACV.2017.145 ]
Zhang J, Jia C M, Ma S W and Gao W. 2015. Non-local structure-based filter for video coding//2015 IEEE International Symposium on Multimedia. Miami, USA: IEEE: 301-306[ DOI: 10.1109/ISM.2015.90 http://dx.doi.org/10.1109/ISM.2015.90 ]
Zhang K, Zhang L, Liu H B, Xu J Z, Deng Z P and Wang Y. 2020a. Interweaved prediction for video coding. IEEE Transactions on Image Processing, 29: 6422-6437[DOI: 10.1109/TIP.2020.2987432]
Zhang X P, Li H, Qi Y Y, Leow W K and Ng T K. 2006. Rain removal in video by combining temporal and chromatic properties//Proceedings of 2006 IEEE International Conference on Multimedia and Expo. Toronto, Canada: IEEE: 461-464[ DOI: 10.1109/ICME.2006.262572 http://dx.doi.org/10.1109/ICME.2006.262572 ]
Zhang Y, Han Y, Chen C C, Hung C H, Chien W J and Karczewicz M. 2018a. CE4.3.3: Locally Adaptive Motion Vector Resolution and MVD Coding. JVET-K0357
Zhang Y B, Shen T, Ji X Y, Zhang Y, Xiong R Q and Dai Q H. 2018b. Residual highway convolutional neural networks for in-loop filtering in HEVC. IEEE Transactions on Image Processing, 27(8): 3827-3841[DOI: 10.1109/TIP.2018.2815841]
Zhang Y F, Wang G, Tian R, Xu M and Kuo C C J. 2019. Texture-classification accelerated CNN scheme for fast intra CU partition in HEVC//Proceedings of 2019 Data Compression Conference. Snowbird, USA: IEEE: 241-249[ DOI: 10.1109/DCC.2019.00032 http://dx.doi.org/10.1109/DCC.2019.00032 ]
Zhang Y H, Zhang K, Zhang L, Liu H B, Wang Y, Wang S S, Ma S W and Gao W. 2020b. Implicit-selected transform in video coding//Proceedings of 2020 IEEE International Conference on Multimedia and Expo Workshops. London, UK: IEEE: 1-6[ DOI: 10.1109/ICMEW46912.2020.9105962 http://dx.doi.org/10.1109/ICMEW46912.2020.9105962 ]
Zhao L L, Wei Z W, Cai W T, Wang W Y, Zeng L Y and Chen J W. 2019a. Efficient screen content coding based on convolutional neural network guided by a large-scale database//Proceedings of 2019 IEEE International Conference on Image Processing. Taipei, China: IEEE: 2656-2660[ DOI: 10.1109/ICIP.2019.8803294 http://dx.doi.org/10.1109/ICIP.2019.8803294 ]
Zhao X D, Liu P, Liu J F and Tang X L. 2008. The application of histogram on rain detection in video//Proceedings of the 11th Joint International Conference on Information Sciences.[s.l.]: Atlantis Press: 382-387[ DOI: 10.2991/jcis.2008.65 http://dx.doi.org/10.2991/jcis.2008.65 ]
Zhao Y, Gao H, Yang H and Chen J. 2019b. Sub-block Transform (SBT) for Inter Blocks. JVET-M0140
Zhu X Z, Hu H, Lin S and Dai J F. 2019. Deformable ConvNets V2: More deformable, better results//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE: 9300-9308[ DOI: 10.1109/CVPR.2019.00953 http://dx.doi.org/10.1109/CVPR.2019.00953 ]
Zoran D and Weiss Y. 2011. From learning models of natural image patches to whole image restoration//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE: 479-486[ DOI: 10.1109/ICCV.2011.6126278 http://dx.doi.org/10.1109/ICCV.2011.6126278 ]
相关文章
相关作者
相关机构
京公网安备11010802024621