Scholar View | Views : 0 下载量: 63 CSCD: 4
  • Export

  • Share

  • Collection

  • Album

    • Main bottlenecks and research prospects of the deep convolutional neural network-based denoising model

    • Vol. 24, Issue 8, Pages: 1207-1214(2019)   

      Received:29 April 2019

      Revised:2019-5-21

      Published:16 August 2019

    • DOI: 10.11834/jig.190165     

    移动端阅览

  • Shaoping Xu, Tingyun Liu, Zhenyu Lin, Guizhen Zhang, Chongxi Li. Main bottlenecks and research prospects of the deep convolutional neural network-based denoising model[J]. Journal of Image and Graphics, 2019, 24(8): 1207-1214. DOI: 10.11834/jig.190165.
  •  
  •  
icon
试读结束,您可以激活您的VIP账号继续阅读。
去激活 >
icon
试读结束,您可以通过登录账户,到个人中心,购买VIP会员阅读全文。
已是VIP会员?
去登录 >
Alert me when the article has been cited
提交

相关作者

Huang Ying 重庆邮电大学计算机科学与技术学院
Jiang Mao 重庆邮电大学计算机科学与技术学院
Li Ze 重庆邮电大学计算机科学与技术学院
Wang Fei 重庆邮电大学计算机科学与技术学院
Li Ailin 重庆邮电大学计算机科学与技术学院
Lyu Fan 中国科学院自动化研究所模式识别实验室
Wang Liang 中国科学院自动化研究所模式识别实验室
Li Xi 浙江大学计算机科学与技术学院

相关机构

School of Computer Science and Technology, Chongqing University of Posts and Telecommunications
School of Electric and Information Engineering, Suzhou University of Science and Technology
School of Computer Science and Engineering, North Minzu University
School of Computer Science and Engineering, Sun Yat-sen University
College of Computer Science and Technology, Zhejiang University
0