Ball curve of the same degree with a parameter
- Vol. 23, Issue 6, Pages: 896-905(2018)
Received:10 November 2017,
Revised:2017-12-26,
Published:16 June 2018
DOI: 10.11834/jig.170586
移动端阅览

浏览全部资源
扫码关注微信
Received:10 November 2017,
Revised:2017-12-26,
Published:16 June 2018
移动端阅览
目的
2
虽然Ball曲线具有很好的几何特性,但当控制顶点保持不变时,曲线的形状却无法进行调整,这无疑限制了其在几何造型中的应用。为了使得任意次Ball曲线在控制顶点保持不变的情形下具有形状可调性,提出了一种构造带参数的同次Ball曲线的简单方法。
方法
2
首先通过将传统三次Ball基的定义区间由[0,1]扩展为[0,α],构造了一种带参数α的三次Ball基,并称之为三次α-Ball基;然后基于三次α-Ball基定义了相应的三次α-Ball曲线,并讨论了三次α-Ball曲线的拼接、参数对曲线的影响以及参数的3种选取方案;最后借助传统高次Ball基的递推性构造了任意次α-Ball基及其对应的α-Ball曲线,并给出了任意次α-Ball基与α-Ball曲线的性质。
结果
2
实例表明,所构造的α-Ball曲线是传统Ball曲线的同次扩展,不仅保留了传统Ball曲线的性质,而且还由于带有参数α使得曲线具有更好的表现能力。利用所给出的3种参数选取方案可构造出满足相应要求的α-Ball曲线。
结论
2
所提出的α-Ball曲线克服了传统Ball曲线在形状调整方面的不足,是一种构造形状可调的任意次Ball曲线的有效方法。
Objective
2
The Ball curve has excellent geometric properties. However
its shape cannot be adjusted when the control points remain unchanged. This condition undoubtedly limits its application in geometrical modeling. A simple method for constructing the Ball curve of the same degree with a parameter is presented to enable the Ball curve with arbitrary degree to obtain shape adjustment capability under fixed control points.
Method
2
The cubic Ball basis
referred to as cubic α-Ball basis
is constructed by extending the definition interval of the traditional cubic Ball basis from [0
1] to [0
α]. Then
the corresponding cubic α-Ball curve is defined base on the cubic α-Ball basis. The splicing of the curves
the influence of the parameter on the curve
and the three selection schemes for the parameter are discussed. Finally
the α-Ball basis and α-Ball curve with arbitrary degree are established by the recursion of the transitional high-degree Ball basis
and the properties of the α-Ball basis and α-Ball curve with arbitrary degree are provided.
Result
2
Examples show that the proposed α-Ball curve is an extension of the same degree to the traditional Ball curve. The curve not only preserves the properties of the traditional Ball curve
such as convex hull
symmetry
geometric invariance
variance reduction
and convexity
but also has better performance because of the parameter α. The α-Ball curve can be constructed to satisfy the requirements by using the three selection schemes for the parameter
including the scheme for the curve with the shortest arc length
the curve with minimum energy
and the curve with the shortest arc length and minimum energy.
Conclusion
2
The α-Ball curve overcomes the disadvantage of the traditional Ball curve in shape adjustment
which is an effective method for constructing the shape-adjustable Ball curve with arbitrary degree.
Ball A A. CONSURF. Part One:introduction of the conic lofting tile[J]. Computer-Aided Design, 1974, 6(4):243-249.[DOI:10.1016/0010-4485(74)90009-8]
Wang G J. Ball curve of high degree and its geometric properties[J]. Applied Mathematics:A Journal of Chinese Universities, 1987, 2(1):126-140.
王国瑾.高次Ball曲线及其几何性质[J].高校应用数学学报, 1987, 2(1):126-140.
Said H B. A generalized Ball curve and its recursive algorithm[J]. ACM Transactions on Graphics, 1989, 8(4):360-371.[DOI:10.1145/77269.77275]
Hu S M, Wang G Z, Jin T G. Properties of two types of generalized Ball curves[J]. Computer-Aided Design, 1996, 28(2):125-133.[DOI:10.1016/0010-4485(95)00047-X]
Ding Y D, Li M, Hua X J. Generalized Ball curves' properties and its application[J]. Acta Mathematicae Applicatae Sinica, 2000, 23(4):580-595.
丁友东, 李敏, 华宣积.广义Ball曲线的性质及其应用[J].应用数学学报, 2000, 23(4):580-595. [DOI:10.3321/j.issn:0254-3079.2000.04.013]
Delgado J, Peña J M. A shape preserving representation with an evaluation algorithm of linear complexity[J]. Computer Aided Geometric Design, 2003, 20(1):1-10.[DOI:10.1016/S0167-8396(02)00190-5]
Wu H Y. Two new types of generalized Ball curves[J]. Acta Mathematicae Applicatae Sinica, 2000, 23(2):196-205.
邬弘毅.两类新的广义Ball曲线[J].应用数学学报, 2000, 23(2):196-205. [DOI:10.3321/j.issn:0254-3079.2000.02.005]
Shen W Q, Wang G Z. Extension of the Ball basis[J]. Journal of Software, 2005, 16(11):1992-1999.
沈莞蔷, 汪国昭. Ball基的推广[J].软件学报, 2005, 16(11):1992-1999. [DOI:10.1360/jos161992]
Wang Z H, Zhu X L. Unifying representation of Bézier curve and Wang-Ball curve[J]. Journal of Computer-Aided Design&Computer Graphics, 2008, 20(7):888-893.
汪志华, 朱晓临. Bézier曲线与Wang-Ball曲线的统一表示[J].计算机辅助设计与图形学学报, 2008, 20(7):888-893.
Shen W Q, Wang G Z. A new family of generalized Ball basis and its corresponding curves[J]. Journal of Zhejiang University:Engineering Science, 2011, 45(3):435-439.
沈莞蔷, 汪国昭.一类新的广义Ball基及其相应曲线[J].浙江大学学报:工学版, 2011, 45(3):435-439. [DOI:10.3785/j.issn.1008-973X.2011.03.006]
Wang C W. Extension of cubic Ball curve[J]. Journal of Engineering Graphics, 2008, 29(1):77-81.
王成伟.三次Ball曲线的扩展[J].工程图学学报, 2008, 29(1):77-81. [DOI:10.3969/j.issn.1003-0158.2008.01.013]
Yan L L, Rao Z Y, Wen R S. Two new classes of quartic generalized Ball curves[J]. Journal of Hefei University of Technology, 2010, 33(2):316-320.
严兰兰, 饶智勇, 温荣生.两类新的四次广义Ball曲线[J].合肥工业大学学报:自然科学版, 2010, 33(2):316-320. [DOI:10.3969/j.issn.1003-5060.2010.02.038]
Yan L L, Zhang W, Wen R S. Two classes of quintic generalized Ball curves with adustable shape[J]. Journal of Engineering Graphics, 2011, 32(6):16-20.
严兰兰, 张文, 温荣生.两类形状可调五次广义Ball曲线[J].工程图学学报, 2011, 32(6):16-20. [DOI:10.3969/j.issn.1003-0158.2011.06.004]
Yan L L, Liang J F, Rao Z Y. Two new extensions of cubic Ball curve[J]. Journal of Engineering Graphics, 2011, 32(5):20-24.
严兰兰, 梁炯丰, 饶智勇.三次Ball曲线的两种新扩展[J].工程图学学报, 2011, 32(5):20-24. [DOI:10.3969/j.issn.1003-0158.2011.05.004]
Liu H Y, Li L, Zhang D M. Quadratic Ball curve with multiple shape parameters[J]. Journal of Shandong University:Engineering Science, 2011, 41(2):23-28.
刘华勇, 李璐, 张大明.带形状参数的四次Ball曲线[J].山东大学学报:工学版, 2011, 41(2):23-28.
Zhu X X. Technology of free curves and surfaces modeling[M]. Beijing:Science Press, 2000.
朱心雄.自由曲线曲面造型技术[M].北京:科学出版社, 2000
相关文章
相关作者
相关机构
京公网安备11010802024621