以语言为媒介的遥感图像跨时空领域自适应语义分割方法
Language-guided cross-spatiotemporal domain adaptation for remote sensing image semantic segmentation
- 2025年 页码:1-17
网络出版日期: 2025-02-17 ,
录用日期: 2025-02-13
DOI: 10.11834/jig.240640
移动端阅览
浏览全部资源
扫码关注微信
网络出版日期: 2025-02-17 ,
录用日期: 2025-02-13
移动端阅览
陶超,郭鑫,胡柯彦等.以语言为媒介的遥感图像跨时空领域自适应语义分割方法[J].中国图象图形学报,
Tao Chao,Guo Xin,Hu Keyan,et al.Language-guided cross-spatiotemporal domain adaptation for remote sensing image semantic segmentation[J].Journal of Image and Graphics,
目的
2
随着视觉大模型的发展,利用多源无标注遥感影像预训练学习全局视觉特征,并在局部目标任务上进行迁移微调,已成为遥感影像领域自适应的一种新范式。然而,现有的全局预训练策略主要聚焦于学习低级的通用视觉特征,难以捕捉复杂、高层次的语义关联。此外,微调过程中使用的少量标注样本往往只反映目标域的特定场景,无法充分激活全局模型中与目标域匹配的领域知识。因此,面对复杂多变的遥感影像跨时空领域偏移,现有方法得到的全局模型与目标任务之间仍然存在巨大的语义鸿沟。为应对这一挑战,本文提出了一种语言文本引导的“全局模型预训练-局部模型微调”的领域自适应框架。
方法
2
提出框架针对遥感数据的时空异质性特点,借助大型视觉语言助手LLaVA(large language and vision assistant)生成包含季节、地理区域及地物分布等时空信息的遥感影像文本描述。通过语言文本引导的学习帮助全局模型挖掘地物的时空分布规律,增强局部任务微调时相关领域知识的激活。
结果
2
在对比判别式、掩码生成式和扩散生成式三种不同全局预训练策略上设置了三组“全局-局部”跨时空领域自适应语义分割实验来验证提出框架的有效性。以全局→局部(长沙)为例,使用语言文本引导相比于无文本引导在三种不同预训练策略上分别提升了8.7%、4.4%和2.9%。同样,提出框架在全局→局部(湘潭)和全局→局部(武汉)上也都有性能提升。
结论
2
证明了语言文本对准确理解跨时空遥感影像中的语义内容具有积极影响。与无文本引导的学习方法相比,提出框架显著提升了模型的迁移性能。
Objective
2
With the development of large-scale visual models, pre-training on multi-source unlabeled remote sensing images to learn global visual features and fine-tuning for target tasks has become a new paradigm for domain adaptation of remote sensing image semantic segmentation. Across spatiotemporal domains, joint distribution shifts, comprising both feature and label distribution shifts, occur due to variations in lighting, weather, phenology, natural landscapes, and human-made environments. This spatiotemporal heterogeneity complicates the accurate assessment of domain relevance, challenging the applicability of most "local-local" domain adaptation methods. In contrast, "global-local" learning strategies, which extract general visual features from a broad spectrum of unlabeled data, enhance the relevance of knowledge across domains. However, current global pre-training approaches primarily focus on low-level feature learning, which limits the ability to capture complex, high-level semantic relationships. Furthermore, during the fine-tuning phase with limited annotated samples, these samples often reflect only specific scenarios within the target domain, making it insufficient to fully activate the relevant knowledge within the global model. Consequently, a significant semantic gap persists between the globally trained models and the actual task requirements. This challenge manifests in two aspects: 1) a mismatch between the global pre-training objectives and the requirements of the target semantic segmentation task, as pre-trained features focused on low-level information may not align well with the need for deep semantic associations, thus limiting the effectiveness of model transfer; 2) insufficient learning of target-specific semantic features during local fine-tuning due to the limited representativeness of the few annotated samples, which may fail to encompass the full range of variability within the target domain. To address these issues, this paper proposes a language-guided "global pre-training - local fine-tuning" framework for domain adaptation, aiming to overcome the challenges associated with cross-spatiotemporal domain shifts of remote sensing images.
Method
2
The proposed framework addresses the spatiotemporal heterogeneity of remote sensing data by leveraging a large-scale visual-language assistant, LLaVA(large language and vision assistant), to generate textual descriptions of remote sensing images that include information on season, geographical area, and distribution of ground objects. Rich in semantic and contextual information, these language texts, when combined with visual features, enable the model to better understand the deep semantic associations across different remote sensing images. For the generative pre-training strategy of the global model, the complex contextual information in long texts aids in the reconstruction and generation of detailed image content. For the discriminative pre-training strategy, clear and concise short texts are beneficial for contrastive learning optimization. Therefore, this paper proposes a method for generating both long and short textual descriptions of remote sensing images, tailored to the different pre-training strategies of the global model. Within the "global pre-training - local fine-tuning" domain adaptation paradigm, the language text not only guides the global model in capturing and understanding the spatiotemporal distribution patterns within remote sensing images but also facilitates the rapid activation of associated domain knowledge in the local model: 1) During the global pre-training phase, textual descriptions that include information about the season, geographic region, and distribution of ground objects guide the model in learning associations between visual features and semantic information, thereby capturing and understanding the spatiotemporal patterns within the imagery. 2) During the local fine-tuning phase, similar textual descriptions assist in rapidly activating relevant domain knowledge embedded within the global model.
Result
2
To validate the effectiveness of the proposed framework, three sets of "global-local" cross-spatiotemporal domain adaptation experiments for semantic segmentation were conducted, comparing discriminative, masked generative, and diffusion generative pre-training strategies. Using the example of global-local (CS), the employment of language text guidance, compared to no text guidance, has resulted in performance improvements of 8.7%, 4.4%, and 2.9% across three different pre-training strategies, with similar performance enhancements observed for global-local (XT) and global-local (WH). Compared to traditional "local-local" learning methods and "global-local" learning methods without text guidance, the proposed framework significantly enhances the model's transfer performance.
Conclusion
2
This paper pioneers the exploration and validation of the positive role of language text in mitigating spatiotemporal domain shifts in remote sensing imagery, which introduces a language-guided "global pre-training - local fine-tuning" framework for domain adaptation. This framework uses textual descriptions of remote sensing images to facilitate the global model's learning of spatiotemporal distribution patterns of ground objects during pre-training and enhances the activation of relevant domain knowledge during local fine-tuning. Three multi-source, cross-spatiotemporal semantic segmentation experiments demonstrate that the proposed framework significantly improves model transfer performance compared to traditional "local-local" domain adaptation methods and "global-local" methods without text guidance. Future research will focus on two main directions: 1) Investigating the impact of language text on model transfer performance over larger spatiotemporal scales. While this study conducted exploratory experiments using remote sensing data sampled across four seasons in the Hunan and Hubei regions, future work will aim to extend the spatial coverage and temporal span to assess the feasibility of applying the proposed framework at national and even global levels. 2) Developing more refined textual description methods for remote sensing images, potentially incorporating meteorological data (e.g., temperature and precipitation) and topographic information to enrich the content of the descriptions.
Broni-Bediako C , Xia J , and Yokoya N . 2024 . Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops . Baltimore, Maryland, USA : IEEE: 543 - 553 [ DOI: 10.1109/CVPRW63382.2024.00059 http://dx.doi.org/10.1109/CVPRW63382.2024.00059 ]
Chen T , Kornblith S , Norouzi M , and Hinton G . 2020 . A Simple Framework for Contrastive Learning of Visual Representations // Proceedings of the 37th International Conference on Machine Learning . III H D, Singh A, eds. PMLR , 119 : 1597 - 1607 [ DOI: 10.48550/arXiv.2002.05709 http://dx.doi.org/10.48550/arXiv.2002.05709 ]
Dong R S , Ma Y Q , Liu Y and Li F Y . 2022 . CRNet: class relation network for crop remote sensing image semantic segmentation . Journal of Image and Graphics , 27 ( 11 ) : 3382 - 3394
董荣胜 , 马雨琪 , 刘意 , 李凤英 . 2022 . 加强类别关系的农作物遥感图像语义分割 . 中国图象图形学报 , 27 ( 11 ): 3382 - 3394 [ DOI: 10.11834 / jig. 210760 http://dx.doi.org/10.11834/jig.210760 ]
Goodfellow I , Pouget-Abadie J , Mirza M , Xu B , Warde-Farley D , Ozair S , Courville A , and Bengio Y . 2014 . Generative Adversarial Nets . Advances in Neural Information Processing Systems , 27 [ DOI: 10.3156/JSOFT.29.5_177_2 http://dx.doi.org/10.3156/JSOFT.29.5_177_2 ]
Gou C H , Felemban A , Khan F F , Zhu D Y , Cai J F , Rezatofighi H , and Elhoseiny M . 2024 . How Well Can Vision Language Models See Image Details? [EB/OL]. [ 2024-08-08 ]. https://arxiv.org/abs/2408.03940 https://arxiv.org/abs/2408.03940
He K , Chen X L , Xie S N , Li Y H , Dollár P , and Girshick R . 2022 . Masked Autoencoders Are Scalable Vision Learners // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New Orleans, LA, USA : IEEE: 16000 - 16009 [ DOI: 10.1109/CVPR52688.2022.01553 http://dx.doi.org/10.1109/CVPR52688.2022.01553 ]
He K , Zhang X Y , Ren S Q , and Sun J . 2016 . Deep Residual Learning for Image Recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Las Vegas, NV, USA : IEEE: 770 - 778 [ DOI: 10.1109/CVPR.2016.90 http://dx.doi.org/10.1109/CVPR.2016.90 ]
Ho J , Jain A , and Abbeel P . 2020 . Denoising Diffusion Probabilistic Models // Advances in Neural Information Processing Systems 33 . Vancouver, Canada : Curran Associates, Inc.: 6840 - 6851 [ DOI: 10.48550/arXiv.2006.11239 http://dx.doi.org/10.48550/arXiv.2006.11239 ]
Li D R , Zhang L P , and Xia G S . 2014 . Automatic analysis and data mining of remote sensing big data . Journal of Surveying and Mapping , 43 ( 12 ): 1211 - 1216
李德仁 , 张良培 , 夏桂松 . 2014 . 遥感大数据自动分析与数据挖掘 . 测绘学报 , 43 ( 12 ): 1211 - 1216 [ DOI: 10.13485/j.cnki.11-2089.2014.0187 http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0187 ]
Li L J , He Y , Xie G , Zhang H X and Bai Y H . 2024 . Cross-layer detail perception and group attention-guided semantic segmentation network for remote sensing images . Journal of Image and Graphics , 29 ( 05 ): 1277 - 1290
李林娟 , 贺赟 , 谢刚 , 张浩雪 , 柏艳红 . 2024 . 跨层细节感知和分组注意力引导的遥感图像语义分割 . 中国图象图形学报 , 29 ( 05 ): 1277 - 1290 [ DOI: 10.11834/jig.230653 http://dx.doi.org/10.11834/jig.230653 ]
Li X H , Du Z S , Huang Y Y , and Tan Z Y . 2021 . A deep translation (GAN) based change detection network for optical and SAR remote sensing images . ISPRS Journal of Photogrammetry and Remote Sensing , 179 : 14 - 34 [ DOI: 10.1016/j.isprsjprs.2021.07.007 http://dx.doi.org/10.1016/j.isprsjprs.2021.07.007 ]
Liu H T , Li C Y , Wu Q Y , and Lee Y J . 2023 . Visual Instruction Tuning [EB/OL]. [ 2023-04-17 ]. https://arxiv.org/abs/2304.08485 https://arxiv.org/abs/2304.08485
Liu Y , Wang K , Li M , Huang Y , and Yang G . 2024 . Exploring the Cross-Temporal Interaction: Feature Exchange and Enhancement for Remote Sensing Change Detection . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 17 : 11761 - 11776 [ DOI: 10.1109/JSTARS.2024.3413715 http://dx.doi.org/10.1109/JSTARS.2024.3413715 ]
Long M , Cao Y , Wang J , and Jordan M . 2015 . Learning Transferable Features with Deep Adaptation Networks // Proceedings of the 32nd International Conference on Machine Learning . Lille, France : PMLR , 97 - 105 [ DOI: 10.48550/arXiv.1502.02791 http://dx.doi.org/10.48550/arXiv.1502.02791 ]
Long M , Zhu H , Wang J , and Jordan M I . 2017 . Deep Transfer Learning with Joint Adaptation Networks // Proceedings of the 34th International Conference on Machine Learning . PMLR 70 : 2208 - 2217 [ DOI: 10.48550/arXiv.1605.06636 http://dx.doi.org/10.48550/arXiv.1605.06636 ]
Ma A L , Zheng C Y , Wang J J , and Zhong Y F . 2023 . Domain adaptive land-cover classification via local consistency and global diversity . IEEE Transactions on Geoscience and Remote Sensing , 61 : 1 - 17 [ DOI: 10.1109/TGRS.2023.3265186 http://dx.doi.org/10.1109/TGRS.2023.3265186 ]
Ma L , Crawford M M , Zhu L , and Liu Y . 2019 . Centroid and covariance alignment-based domain adaptation for unsupervised classification of remote sensing images . IEEE Transactions on Geoscience and Remote Sensing , 57 ( 4 ): 2305 - 2323 [ DOI: 10.1109/TGRS.2018.2872850 http://dx.doi.org/10.1109/TGRS.2018.2872850 ]
Muhtar D , Zhang X L , Xiao P F , Li Z S , and Gu F . 2023 . CMID: A unified self-supervised learning framework for remote sensing image understanding . IEEE Transactions on Geoscience and Remote Sensing , 61 : 1 - 17 [ DOI: 10.1109/TGRS.2023.3268232 http://dx.doi.org/10.1109/TGRS.2023.3268232 ]
Pan S J , and Yang Q . 2018 . Deep visual domain adaptation: a survey . Neurocomputing , 312 : 135 – 153 [ DOI: 10.1016/j.neucom.2018.05.083 http://dx.doi.org/10.1016/j.neucom.2018.05.083 ]
Radford A , Kim J W , Hallacy C , Ramesh A , Goh G , Agarwal S , Sastry G , Askell A , Mishkin P , Clark J , Krueger G , and Sutskever I . 2021 . Learning Transferable Visual Models From Natural Language Supervision // Proceedings of the 38th International Conference on Machine Learning . Virtual : PMLR: 8748 - 8763 [ DOI: 10.48550/arXiv.2103.00020 http://dx.doi.org/10.48550/arXiv.2103.00020 ]
Rao Y M , Zhao W L , Chen G Y , Tang Y S , Zhu Z , Huang G , Zhou J , and Lu J W . 2022 . DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New Orleans, LA, USA : IEEE: 18061 - 18070 [ DOI: 10.1109/CVPR52688.2022.01755 http://dx.doi.org/10.1109/CVPR52688.2022.01755 ]
Rombach R , Blattmann A , Lorenz D , Esser P , and Ommer B . 2022 . High-Resolution Image Synthesis with Latent Diffusion Models // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New Orleans, LA, USA : IEEE: 10674 - 10685 [ DOI: 10.1109/CVPR52688.2022.01042 http://dx.doi.org/10.1109/CVPR52688.2022.01042 ]
Shen W F , Wang Q X , Jiang H X , Li S , and Yin J H . 2021 . Unsupervised Domain Adaptation for Semantic Segmentation via Self-Supervision // 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS . Brussels, Belgium : IEEE: 2747 - 2750 [ DOI: 10.1109/IGARSS47720.2021.9553451 http://dx.doi.org/10.1109/IGARSS47720.2021.9553451 ]
Song J M , Meng C L , and Ermon S . 2022 . Denoising Diffusion Implicit Models [EB/OL]. [ 2022-10-05 ]. https://arxiv.org/abs/2010.02502 https://arxiv.org/abs/2010.02502
Tahmoresnezhad J and Hashemi S . 2017 . Visual Domain Adaptation Via Transfer Feature Learning . Knowledge and Information Systems , 50 ( 3 ): 585 - 605 [ DOI: 10.1007/s10115-016-0944-x http://dx.doi.org/10.1007/s10115-016-0944-x ]
Tao C , Qi J , Guo M N , Zhu Q , and Li H F . 2023 . Self-supervised remote sensing feature learning: learning paradigms, challenges, and future works . IEEE Transactions on Geoscience and Remote Sensing , 61 : 1 - 26 [ DOI: 10.1109/TGRS.2023.3276853 http://dx.doi.org/10.1109/TGRS.2023.3276853 ]
Tao C , Qi J , Zhang G , Zhu Q , Lu W P , and Li H F . 2023 . TOV: The original vision model for optical remote sensing image understanding via self-supervised learning . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 16 : 4916 - 4930 [ DOI: 10.1109/JSTARS.2023.3271312 http://dx.doi.org/10.1109/JSTARS.2023.3271312 ]
Tao C , Yin Z W , Zhu Q , and Li H F . 2021 . Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning . Acta Geodaetica et Cartographica Sinica , 50 ( 8 ): 1122 - 1134
陶超 , 阴紫薇 , 朱庆 , 李海峰 . 2021 . 遥感影像智能解译: 从监督学习到自监督学习 . 测绘学报 , 50 ( 8 ): 1122 - 1134 [ DOI: 10.11947/j.AGCS.2021.20210089 http://dx.doi.org/10.11947/j.AGCS.2021.20210089 ]
Tasar O , Giros A , Tarabalka Y , Alliez P , and Clerc S . 2021 . DAugNet: Unsupervised, multisource, multitarget, and life-long domain adaptation for semantic segmentation of satellite images . IEEE Transactions on Geoscience and Remote Sensing , 59 ( 2 ): 1067 - 1081 [ DOI: 10.1109/TGRS.2020.3006161 http://dx.doi.org/10.1109/TGRS.2020.3006161 ]
Tuia D , Persello C , and Bruzzone L . 2016 . Domain adaptation for the classification of remote sensing data: an overview of recent advances . IEEE Geoscience and Remote Sensing Magazine , 4 ( 2 ): 41 - 57 [ DOI: 10.1109/MGRS.2016.2548504 http://dx.doi.org/10.1109/MGRS.2016.2548504 ]
Vu T-H , Jain H , Bucher M , Cord M , and Pérez P . 2019 . ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach, CA, USA : IEEE: 2512 - 2521 [ DOI: 10.1109/CVPR.2019.00262 http://dx.doi.org/10.1109/CVPR.2019.00262 ]
Wang H , Guo M N , Li S X , Li H F , and Tao C . 2024 . Global-local coupled style transfer for semantic segmentation of bitemporal remote sensing images . IEEE Transactions on Geoscience and Remote Sensing , 62 : 1 - 15 [ DOI: 10.1109/TGRS.2024.3425672 http://dx.doi.org/10.1109/TGRS.2024.3425672 ]
Wang H , Tao C , Qi J , Xiao R , and Li H . 2022 . Avoiding negative transfer for semantic segmentation of remote sensing images . IEEE Transactions on Geoscience and Remote Sensing , 60 : 1 – 15 [ DOI: 10.1109/TGRS.2022.3201688 http://dx.doi.org/10.1109/TGRS.2022.3201688 ]
Wang W H , Bao H B , Dong L , Bjorck J , Peng Z L , Liu Q , Aggarwal K , Mohammed O K , Singhal S , Som S , et al . 2022 . Image as a foreign language: Beit pretraining for all vision and vision-language tasks [EB/OL]. [ 2022-08-23 ]. https://arxiv.org/abs/2208.10442 https://arxiv.org/abs/2208.10442
Xiao N and Zhang L . 2021 . Dynamic Weighted Learning for Unsupervised Domain Adaptation // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . IEEE : 15237 - 15246 [ DOI: 10.1109/CVPR46437.2021.01499 http://dx.doi.org/10.1109/CVPR46437.2021.01499 ]
Yang J W , Li C Y , Zhang P C , Xiao B , Liu C , Yuan L , and Gao J F . 2022 . Unified Contrastive Learning in Image-Text-Label Space // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New Orleans, LA, USA : IEEE: 19163 - 19173 [ DOI: 10.1109/CVPR52688.2022.01857 http://dx.doi.org/10.1109/CVPR52688.2022.01857 ]
Yang L , Yu Z C , Meng C L , Xu M K , Ermon S , and Cui B . 2024 . Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs [EB/OL]. [ 2024-01-26 ]. https://arxiv.org/abs/2401.11708 https://arxiv.org/abs/2401.11708
Zhang H Y , Wang T B , Li M Z , Zhao Z , Pu S L , Wu F . 2022 . Comprehensive review of visual-language-oriented multimodal pre-training methods . Journal of Image and Graphics , 27 ( 9 ): 2652 - 2682
张浩宇 , 王天保 , 李孟择 , 赵洲 , 浦世亮 , 吴飞 . 2022 . 视觉语言多模态预训练综述 . 中国图象图形学报 , 27 ( 9 ): 2652 - 2682 [ DOI: 10.11834/jig.220173 http://dx.doi.org/10.11834/jig.220173 ]
Zhang T , Gao F , Dong J , and Du Q . 2022 . Remote Sensing Image Translation via Style-Based Recalibration Module and Improved Style Discriminator . IEEE Geoscience and Remote Sensing Letters , 19 : 1 - 5 , noArt. 8009805 [ DOI: 10.1109/LGRS.2021.3068558 http://dx.doi.org/10.1109/LGRS.2021.3068558 ]
Zhao D , Wang S , Zang Q , Quan D , Ye X T , Yang R , and Jiao L C . 2023 . Learning Pseudo-Relations for Cross-Domain Semantic Segmentation // Proceedings of the IEEE/CVF International Conference on Computer Vision . Paris, France : IEEE: 19191 - 19203 [ DOI: 10.1109/ICCV51070.2023.01758 http://dx.doi.org/10.1109/ICCV51070.2023.01758 ]
Zhao D , Wang S , Zang Q , Quan D , Ye X T , Yang R , and Jiao L C . 2023 . Learning Pseudo-Relations for Cross-Domain Semantic Segmentation // Proceedings of the IEEE/CVF International Conference on Computer Vision . Paris, France : IEEE: 19191 - 19203 [ DOI: 10.1109/ICCV51070.2023.01758 http://dx.doi.org/10.1109/ICCV51070.2023.01758 ]
Zhao W , Yamada W , Li T , Digman M , and Runge T . 2021 . Augmenting Crop Detection for Precision Agriculture with Deep Visual Transfer Learning—A Case Study of Bale Detection . Remote Sensing , 13 ( 1 ), numberArticle 23 [ DOI: 10.3390/rs13010023 http://dx.doi.org/10.3390/rs13010023 ]
Zheng X T , Xiao X L , Chen X M , Lu W X , Liu X Y , and Lu X Q . 2024 . Advancements in cross-domain remote sensing scene interpretation . Journal of Image and Graphics , 29 ( 06 ): 1730 - 1746
郑向涛 , 肖欣林 , 陈秀妹 , 卢宛萱 , 刘小煜 , 卢孝强 . 2024 . 跨域遥感场景解译研究进展 . 中国图象图形学报 , 29 ( 06 ): 1730 - 1746 [ DOI: 10.11834/jig.240009 http://dx.doi.org/10.11834/jig.240009 .]
Zheng X T , Xiao X L , Chen X M , Lu W X , Liu X Y , and Lu X Q . 2024 . Advancements in cross-domain remote sensing scene interpretation . Journal of Image and Graphics , 29 ( 06 ): 1730 - 1746
郑向涛 , 肖欣林 , 陈秀妹 , 卢宛萱 , 刘小煜 , 卢孝强 . 2024 . 跨域遥感场景解译研究进展 . 中国图象图形学报 , 29 ( 06 ): 1730 - 1746 [ DOI: 10.11834/jig.240009 http://dx.doi.org/10.11834/jig.240009 .]
Zheng Z S , Hu C Y and Jiang X Y . 2020 . Deep Transfer Adaptation Network Based on Improved Maximum Mean Discrepancy Algorithm . Journal of Computer Applications , 40 ( 11 ): 3107 - 3112
郑宗生 , 胡晨雨 , 姜晓轶 . 2020 . 基于改进的最大均值差异算法的深度迁移适配网络 . 计算机应用 , 40 ( 11 ): 3107 - 3112 [ DOI: 10.11772/j.issn.1001-9081.2020020263 http://dx.doi.org/10.11772/j.issn.1001-9081.2020020263 ]
Zhu J Y , Park T , Isola P , and Efros A A . 2017 . Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks // Proceedings of the IEEE International Conference on Computer Vision (ICCV) . Venice, Italy : IEEE , 2223 - 2232 [ DOI: 10.1109/ICCV.2017.244 http://dx.doi.org/10.1109/ICCV.2017.244 ]
Zou Y , Yu Z , Kumar B V K V , and Wang J . 2018 . Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training // Proceedings of the European Conference on Computer Vision (ECCV) . Munich, Germany : Springer: 289 - 305 [ DOI: 10.48550/arXiv.1810.07911 http://dx.doi.org/10.48550/arXiv.1810.07911 ]
Zou Y , Yu Z , Liu X , Kumar B V K V , and Wang J . 2019 . Confidence Regularized Self-Training // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV) . Seoul, Korea (South) : IEEE , 27 October - 02 November 2019: 5981- 5990 [ DOI: 10.1109/ICCV.2019.00608 http://dx.doi.org/10.1109/ICCV.2019.00608 ]
相关作者
相关机构