全栈全谱:医疗影像人工智能的探索与应用
Full Stack and full spectrum: Exploration and application of artificial intelligence in medical imaging
- 2024年 页码:1-17
网络出版日期: 2024-12-23
DOI: 10.11834/jig.240449
移动端阅览
浏览全部资源
扫码关注微信
网络出版日期: 2024-12-23 ,
移动端阅览
陈磊,孙开聪,吴交交等.全栈全谱:医疗影像人工智能的探索与应用[J].中国图象图形学报,
Chen Lei,Sun Kaicong,Wu Jiaojiao,et al.Full Stack and full spectrum: Exploration and application of artificial intelligence in medical imaging[J].Journal of Image and Graphics,
医疗影像人工智能(Artificial Intelligence, AI)作为医疗影像领域的重要技术,受到广泛关注与研究。医疗影像AI在疾病检测、诊断和治疗中发挥着关键作用,但目前在应用中仍面临众多挑战。本文对医疗影像AI的现状、主要方法和进展进行了系统性探讨,并对其在真实医疗场景中的表现进行了分析和总结。首先介绍了主要的医疗影像AI算法,包括AI映射模型、AI检测模型、AI分割模型和AI分类模型,并阐述了这些算法在医疗影像中的应用和进展。然后重点阐述了全栈全谱的理念,全面介绍了其在医疗影像中的应用,包括人工智能在MR(magnetic resonance)成像、CT(computed tomography)成像和PET(positron emission tomography)成像中的影像重建应用与进展。接着描述了脑卒中一站式流程中的AI应用场景,包括出血性脑卒中和缺血性脑卒中的AI解决方案、危险因子的识别与管理,以及智能诊疗流程。进一步介绍了肺癌防治流程中的AI应用,从早期筛查和靶重建、表征量化分析、恶性风险评估,到三维术前规划、随访评估及结构化报告自动生成,全面展示了AI在肺癌防治中的应用。最后介绍了心血管AI全流程,包括冠状动脉精准成像、钙化积分智能早筛、三维分析辅助诊疗及其他疾病中的探索。本文总结了当前医疗影像AI的研究现状与未来发展方向,并对相关文献进行了回顾与分析,为后续研究提供了参考。
Medical imaging artificial intelligence (AI) is a crucial technology in the field of medical imaging, garnering significant attention. Medical imaging modalities widely used in clinical practice include magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), X-ray, and ultrasound, providing complementary information. AI technologies excel in mining image information and characterizing advanced features, driving constant innovation in core algorithms for applications such as disease detection, diagnosis, and treatment. This study systematically examines the current status, primary methods, and advancements of medical imaging AI, providing a thorough analysis and summary of its performance in real medical settings. The review begins by analyzing the key AI algorithms used in medical imaging, encompassing mapping models, detection models, segmentation models, and classification models, detailing their applications and progress in the field. Despite much of the research being applied sporadically within specific areas of medical imaging without substantial overall clinical workflow enhancements, this review emphasizes the concepts of full-stack and full-spectrum to introduce disruptive innovations and improvements to clinical workflows.“Full-stack” is dedicated to the development of medical imaging AI covering the entire process of pre-imaging, imaging, post-imaging, and functional assessment to improve imaging quality and diagnostic accuracy. In the pre-imaging phase, AI can intelligently handle positioning procedures, localization adjustments, and dose modulation. During imaging, AI reconstruction technology aids in generating fast and low-dose medical images. Post-imaging, AI-based quality control prevents image quality degradation while in functional evaluation, AI-based detection and segmentation help identify abnormalities. Additionally, AI-based classification supports disease diagnosis and treatment decisions, while AI-based registration technologies facilitate follow-up and disease progression monitoring. This review focuses on recent advancements in AI-based reconstruction for fast MRI, low-dose CT, and fast PET scenarios with the goal of improving image quality, accelerating scanning processes, reducing noise and artifacts while preserving the detailed structure of the lesion, and amplifying lesion contrast. Notably, functional assessment is critical for the full course of disease management by aiding at-risk identification, diagnosis, molecular subtyping, treatment planning, and prognostic evaluation. We anticipate that AI technologies can be integrated into the existing clinical workflow to enable full-stack analysis of a specific disease, improving patient outcomes and alleviating radiologists' workloads. “Full-spectrum” offers a different perspective by encompassing multiple imaging modalities supported by various imaging devices to accurately diagnose diseases independently or in combination using complementary modalities. It also broadens the application of AI to diverse diseases or body parts with the aim of diagnosing multiple conditions in a single scan for assessing structural and functional abnormalities throughout the body. Full-spectrum aims to improve healthcare by providing comprehensive diagnostic capabilities using advanced AI technology, to enable doctors to better understand a wide range of diseases and provide personalized medical diagnoses for different patient profiles.Drawing inspiration from the concepts of full-stack and full-spectrum, this review outlines several AI applications in real-world healthcare settings, focusing on one-stop diagnostics and management strategies for stroke, lung cancer, and cardiovascular diseases. Stroke management initiatives encompass solutions for both hemorrhagic and ischemic strokes, risk factor identification and management, as well as intelligent diagnostic protocols. The paper further explores AI approaches to lung cancer prevention and treatment, spanning early screening, target reconstruction, quantitative characteristic analysis, risk assessment, three-dimensional preoperative planning, follow-up evaluations, and structured report generation. Additionally, the review elaborates on the comprehensive cardiovascular AI process involving precise coronary artery imaging techniques, intelligent early screening for calcification scoring, three-dimensional analysis to aid diagnosis, and exploration into other cardiac conditions. It should be noted that a series of AI-based software has been developed to broaden the scope of AI interventions in the existing clinical workflow. In the context of the growing development of precision medicine, AI shows great potential in integrating multiple data streams into a powerful diagnostic or predictive system spanning radiomics, pathomics, and genomics, which is expected to accelerate the achievement of management goals that are truly tailored to the patient. The emergence and rapid development of generative AI technologies and large language models will lead to a series of innovative applications of generative AI, including scenarios such as interactive report interpretation, medical and health consulting, and smart operating rooms. The paper concludes by summarizing the current research status and outlining future development directions for medical imaging AI while providing a thorough review and analysis of pertinent literature to serve as a valuable reference for future research endeavors. We prospect the multidisciplinary cross-collaboration to promote high-quality clinical research, technological innovation, and software development, and expand new application scenarios for medical AI. By leveraging full-stack full-spectrum thinking and customized assembly of AI technology, its reach progressively extends across the full spectrum of clinical applications, imaging modalities, and disease types.
医疗影像人工智能深度学习全栈全谱医疗场景
Medical ImagingArtificial IntelligenceDeep LearningFull Stack Full spectrumMedical Scenario
Adler J, Oktem O. Learned Primal-Dual Reconstruction [J]. IEEE Transactions on Medical Imaging, 2017:1322-1332 [doi: 10.1109/TMI.2018.2799231http://dx.doi.org/10.1109/TMI.2018.2799231]
Barthel F P, Johnson K C, Varn F S, et al. Longitudinal molecular trajectories of diffuse glioma in adults [J]. Nature, 2019, 576:112-120. [doi: 10.1038/s41586-019-1775-1http://dx.doi.org/10.1038/s41586-019-1775-1.]
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-263. [doi: 10.3322/caac.21834http://dx.doi.org/10.3322/caac.21834.]
Cao K, Xia Y, Yao J, Han X, Lambert L, Zhang T, Tang W, Jin G, Jiang H, Fang X, Nogues I, Li X, Guo W, Wang Y, Fang W, Qiu M, Hou Y, Kovarnik T, Vocka M, Lu Y, Chen Y, Chen X, Liu Z, Zhou J, Xie C, Zhang R, Lu H, Hager GD, Yuille AL, Lu L, Shao C, Shi Y, Zhang Q, Liang T, Zhang L, Lu J. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nat Med. 2023Dec;29(12):3033-3043. [doi: 10.1038/s41591-023-02640-whttp://dx.doi.org/10.1038/s41591-023-02640-w]
Cao Z, Xu J, Song B, Chen L, Sun T, He Y, Wei Y, Niu G, Zhang Y, Feng Q, Ding Z, Shi F, Shen D. Deep learning derived automated ASPECTS on non-contrast CT scans of acute ischemic stroke patients. Hum Brain Mapp. 2022Jul;43(10):3023-3036. [doi: 10.1002/hbm.25845http://dx.doi.org/10.1002/hbm.25845.]
Chen H, Zhang Y, Kalra M K, Lin F, Chen Y, Liao P, Zhou J L and Wang G, Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN) [J]. IEEE Transactions on Medical Imaging, 2017, 36(99):2524-2535 [doi: 10.1109/TMI.2017.2715284http://dx.doi.org/10.1109/TMI.2017.2715284.]
Chen J, Guang M T, Lu R L, Luo Q, Wei L F and Shen D G. 2024. Research progress on fetal brain magnetic resonance image segmentation. Journal of Image and Graphics, 29(03):0561-0585,
陈健, 广梦婷, 陆冉林, 罗琴, 魏丽芳, 沈定刚. 2024. 胎儿脑磁共振图像分割研究进展. 中国图象图形学, 29(03):0561-0585 [DOI:10.11834/jig.230321http://dx.doi.org/10.11834/jig.230321.]
Chen L Y, Cao X H, Chen L, Gao Y Z and Shen D G, Semantic hierarchy guided registration networks for intra-subject pulmonary CT image alignment[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23. Springer International Publishing, 2020: 181-189. [doi: 10.1007/978-3-030-59716-0_18http://dx.doi.org/10.1007/978-3-030-59716-0_18]
Chen L Y, Gu D D, Chen Y B, Shao Y, Cao X H, Liu G, Gao Y Z Wang Q, Shen D G, An artificial-intelligence lung imaging analysis system (ALIAS) for population-based nodule computing in CT scans. Comput Med Imaging Graph. 2021Apr;89:101899. [doi: 10.1016/j.compmedimag.2021.101899http://dx.doi.org/10.1016/j.compmedimag.2021.101899.]
Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks. In the Proceedings of the IEEE International Conference on Computer Vision. 2017: 764-773 [doi: 10.1109/ICCV.2017.89http://dx.doi.org/10.1109/ICCV.2017.89.]
Dai L, Sheng B, Chen T, Wu Q, Liu R, Cai C, Wu L, Yang D, Hamzah H, Liu Y, Wang X, Guan Z, Yu S, Li T, Tang Z, Ran A, Che H, Chen H, Zheng Y, Shu J, Huang S, Wu C, Lin S, Liu D, Li J, Wang Z, Meng Z, Shen J, Hou X, Deng C, Ruan L, Lu F, Chee M, Quek TC, Srinivasan R, Raman R, Sun X, Wang YX, Wu J, Jin H, Dai R, Shen D, Yang X, Guo M, Zhang C, Cheung CY, Tan GSW, Tham YC, Cheng CY, Li H, Wong TY, Jia W. A deep learning system for predicting time to progression of diabetic retinopathy. Nat Med. 2024Feb;30(2):584-594. [doi: 10.1038/s41591-023-02702-zhttp://dx.doi.org/10.1038/s41591-023-02702-z]
Dai, C, Mo, Y, Angelini, E, Guo, Y and Bai, W, Transfer Learning from Partial Annotations for Whole Brain Segmentation [J]. IEEE Image and Video Processing, 2019, 10851 [doi: 10.1007/978-3-030-33391-1_23http://dx.doi.org/10.1007/978-3-030-33391-1_23]
Ding Q Q, Nan Y S, Gao H and Ji H, Deep learning with adaptive hyper-parameters for low-dose CT image reconstruction. IEEE Transactions on Computational Imaging, 7: 648-660, 2021. [doi: 10.1109/TCI.2021.3093003http://dx.doi.org/10.1109/TCI.2021.3093003.]
Griswold M A, Jakob P M, Heidemann R M, Nittka M, Jellus V, Wang J, Kiefer B and Haase A, Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, no. 6, 1202-1210, 2002. [doi: 10.1002/mrm.10171http://dx.doi.org/10.1002/mrm.10171]
Han Y, Sunwoo L, Ye J C. k-Space Deep Learning for Accelerated MRI [J]. IEEE transactions on medical imaging, 2019, 39(2): 377-386 [DOI: 10.1109/TMI.2019.2927101http://dx.doi.org/10.1109/TMI.2019.2927101]
Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141 [doi: 10.1109/CVPR.2018.00745http://dx.doi.org/10.1109/CVPR.2018.00745.]
Jiang C W, Pan Y S, Cui Z M, Nie D and Shen D G, Semi-supervised standard-dose PET image generation via region-adaptive normalization and structural consistency constraint. IEEE transactions on medical imaging, 42(10), 2023. [doi: 10.1109/TMI.2023.3273029http://dx.doi.org/10.1109/TMI.2023.3273029.]
Jiang X, Yuan Y X, Wang Y P, Liu T M and Shen D G, A 20-year retrospect and prospect of medical imaging artificial intelligence in China[J]. Journal of Image and Graphics, 2022,27(3):655-671.
蒋希, 袁奕萱, 王雅萍, 刘天明,沈定刚. 中国医学影像人工智能20年回顾和展望[J]. 中国图象图形学报, 2022,27(3):655-671. [DOI: 10.11834/jig.211162http://dx.doi.org/10.11834/jig.211162.]
Jin L, Shi F, Chun Q, Chen H, Ma Y, Wu S, Hameed NUF, Mei C, Lu J, Zhang J, Aibaidula A, Shen D, Wu J. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro Oncol. 2021Jan30;23(1):44-52. [doi: 10.1093/neuonc/noaa163http://dx.doi.org/10.1093/neuonc/noaa163.]
Jue J, Jason H, Neelam T, et al. Integrating Cross-modality Hallucinated MRI with CT to Aid Mediastinal Lung Tumor Segmentation. Medical Image Computing and Computer Assisted Intervention (MICCAI), 2019, pp: 221-229 [doi: 10.1007/978-3-030-32226-7_25http://dx.doi.org/10.1007/978-3-030-32226-7_25.]
Kurtz DM, Esfahani MS, Scherer F, Soo J, Jin MC, Liu CL, Newman AM, Dührsen U, Hüttmann A, Casasnovas O, Westin JR, Ritgen M, Böttcher S, Langerak AW, Roschewski M, Wilson WH, Gaidano G, Rossi D, Bahlo J, Hallek M, Tibshirani R, Diehn M, Alizadeh AA. Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction. Cell. 2019Jul25;178(3):699-713.e19. [doi: 10.1016/j.cell.2019.06.011http://dx.doi.org/10.1016/j.cell.2019.06.011.]
Li C, Sun H, Wang M, et al. Learning Cross-Modal Deep Representations for Multi-Modal MR Image Segmentation. Medical Image Computing and Computer Assisted Intervention (MICCAI), 2019, pp: 57-65 [doi: 10.1007/978-3-030-32245-8_7http://dx.doi.org/10.1007/978-3-030-32245-8_7]
Li M, Ling R, Yu L, Yang W, Chen Z, Wu D, Zhang J. Deep Learning Segmentation and Reconstruction for CT of Chronic Total Coronary Occlusion. Radiology. 2023Mar;306(3):e221393. [doi: 10.1148/radiol.221393http://dx.doi.org/10.1148/radiol.221393.]
Li Y, Li K, Zhang C, et al. Learning to Reconstruct Computed Tomography (CT) Images Directly from Sinogram Data under A Variety of Data Acquisition Conditions [J]. IEEE Transactions on Medical Imaging, 2019: 2469-2481 [DOI: 10.1109/TMI.2019.2910760http://dx.doi.org/10.1109/TMI.2019.2910760]
Li Y, Zhang J, Huang K and Zhang J G, Mixed Supervised Object Detection with Robust Objectness Transfer [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 639-653 [doi: 10.1109/TPAMI.2018.2810288http://dx.doi.org/10.1109/TPAMI.2018.2810288.]
Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med. 2009Dec;62(6):1574-84. [doi: 10.1002/mrm.22161http://dx.doi.org/10.1002/mrm.22161.]
Liao S, Mo Z H, Zeng M S, Wu J J, Gu Y N, Li G B, Quan Q T, Lv Y, Liu L, Yang C, Wang X L, Huang X Q, Zhang Y, Cao W J, Dong Y, Wei Y, Zhou Q, Xiao Y Q, Zhan Y Q, Zhou X S, Shi F and Shen D G, Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction, Cell Reports Medicine, 4, no. 7, 2023. [doi: 10.1016/j.xcrm.2023.101119http://dx.doi.org/10.1016/j.xcrm.2023.101119.]
Liu Y, Li H, Luo T, Zhang C, Xiao Z, Wei Y, Gao Y, Shi F, Shan F, Shen D. Structural Attention Graph Neural Network for Diagnosis and Prediction of COVID-19 Severity. IEEE Trans Med Imaging. 2023Feb;42(2):557-567. [doi: 10.1109/TMI.2022.3226575http://dx.doi.org/10.1109/TMI.2022.3226575.]
Lv Y, Wei Y, Xu K, Zhang X, Hua R, Huang J, Li M, Tang C, Yang L, Liu B, Yuan Y, Li S, Gao Y, Zhang X, Wu Y, Han Y, Shang Z, Yu H, Zhan Y, Shi F, Ye B. 3D deep learning versus the current methods for predicting tumor invasiveness of lung adenocarcinoma based on high-resolution computed tomography images. Front Oncol. 2022Oct21;12:995870. [doi: 10.3389/fonc.2022.995870http://dx.doi.org/10.3389/fonc.2022.995870.]
Matej S, Daube-Witherspoon M E, Karp J S. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework [J]. Physics in Medicine & Biology, 2016, 61(9):3365-3386 [DOI: 10.1088/0031-9155/61/9/3365http://dx.doi.org/10.1088/0031-9155/61/9/3365]
Meng X H, Wu D J, Wang Z, et al. A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance [J]. Skeletal Radiology, 2021(1): 1-8 [DOI: 10.1007/s00256-021-03709-8http://dx.doi.org/10.1007/s00256-021-03709-8]
Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010Sep;64(3):767-76. doi: 10.1002/mrm.22463http://dx.doi.org/10.1002/mrm.22463.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999Nov;42(5):952-62. PMID: 10542355. [doi: 10.1002/(SICI)1522-2594(199911)42:5http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5]
Karanam S, Li R, Yang F, Hu W, Chen T and Wu Z Y, Towards Contactless Patient Positioning, in IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2701-2710, Aug. 2020 [doi: 10.1109/TMI.2020.2991954http://dx.doi.org/10.1109/TMI.2020.2991954.]
Shepp L A, Vardi Y. Maximum Likelihood Reconstruction for Emission Tomography [J]. IEEE Transactions on Medical Imaging, 1982, 1(2):113-22 [doi: 10.1109/TMI.1982.4307558http://dx.doi.org/10.1109/TMI.1982.4307558.]
Shi F, Chen B J, Cao Q Q, Wei Y, Zhou Q, Zhang R, Zhou Y J, Yang W J, Wang X, Fan R R, Yang F, Chen Y B, Li W M, Gao Y Z and Shen D G, Semi-supervised deep transfer learning for benign-malignant diagnosis of pulmonary nodules in chest CT images. IEEE transactions on medical imaging, 41(4): 771-781, 2022. [doi: 10.1109/TMI.2021.3123572http://dx.doi.org/10.1109/TMI.2021.3123572.]
Shi F, Hu W G, Wu J J, Han M F, Wang J Z, Zhang W, Zhou Q, Zhou J J, Wei Y, Shao Y, Chen Y B, Yu Y, Cao X H and Shen D G, Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy. Nature Communications, 13(1): 6566, 2022. [doi: 10.1038/s41467-022-34257-xhttp://dx.doi.org/10.1038/s41467-022-34257-x]
Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19. IEEE Rev Biomed Eng. 2021;14:4-15. [doi: 10.1109/RBME.2020.2987975http://dx.doi.org/10.1109/RBME.2020.2987975.]
Shi F, Xia L, Shan F, Song B, Wu D, Wei Y, Yuan H, Jiang H, He Y, Gao Y, Sui H, Shen D. Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification. Phys Med Biol. 2021Mar17;66(6):065031. [doi: 10.1088/1361-6560/abe838http://dx.doi.org/10.1088/1361-6560/abe838.]
Sun K C, Wang Q and Shen D G, Joint cross-attention network with deep modality prior for fast MRI reconstruction. IEEE Transactions on Medical Imaging, 43(1), 558-569, 2023. [doi: 10.1109/TMI.2023.3314008http://dx.doi.org/10.1109/TMI.2023.3314008.]
Tan M X and Le Q V, EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv:1905.11946, 2020.
Tang C, Liu C, Lu M, Schoepf U, Tesche C, Bayer R, Hudson H, Zhang X, Li J, Wang Y, Zhou C, Zhang J, Yu M, Hou Y, Zheng M, Zhang B, Zhang D, Yi Y, Ren Y, Li C, Zhao X, Lu G, Hu X, Xu L, Zhang L, CT FFR for Ischemia-Specific CAD with a new computational fluid dynamics algorithm: A Chinese multicenter study, JACC. Cardiovascular Imaging, 2022, 15(9):1682 [DOI: 10.1016/j.jcmg.2019.06.018http://dx.doi.org/10.1016/j.jcmg.2019.06.018]
Tang X, Wu J, Liang J, Yuan C, Shi F, Ding Z. The value of combined PET/MRI, CT and clinical metabolic parameters in differentiating lung adenocarcinoma from squamous cell carcinoma. Front Oncol. 2022Aug23;12:991102. [doi: 10.3389/fonc.2022.991102http://dx.doi.org/10.3389/fonc.2022.991102.]
Wan JCM, White JR and Diaz LAJr. "Hey CIRI, What's My Prognosis?". Cell. 2019Jul25;178(3):518-520. [doi: 10.1016/j.cell.2019.07.005http://dx.doi.org/10.1016/j.cell.2019.07.005.]
Wang G, Ye J C, Man B D. Deep learning for tomographic image reconstruction [J]. Nature Machine Intelligence, 2020, 2(12):737-748 [doi:10.1038/s42256-020-00273-zhttp://dx.doi.org/10.1038/s42256-020-00273-z]
Wang J, Li T F, Lu H B and Liang Z R, Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. IEEE transactions on medical imaging, 25(10), 1272-1283, 2006. [doi: 10.1109/TMI.2006.882141http://dx.doi.org/10.1109/TMI.2006.882141.]
Wang YJ, Yang K, Wen Y, Wang P, Hu Y, Lai Y, Wang Y, Zhao K, Tang S, Zhang A, Zhan H, Lu M, Chen X, Yang S, Dong Z, Wang Y, Liu H, Zhao L, Huang L, Li Y, Wu L, Chen Z, Luo Y, Liu D, Zhao P, Lin K, Wu JC, Zhao S. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nat Med. 2024May;30(5):1471-1480. [doi: 10.1038/s41591-024-02971-2http://dx.doi.org/10.1038/s41591-024-02971-2]
Wu J, Xia Y, Wang X, Wei Y, Liu A, Innanje A, Zheng M, Chen L, Shi J, Wang L, Zhan Y, Zhou XS, Xue Z, Shi F, Shen D. uRP: An integrated research platform for one-stop analysis of medical images. Front Radiol. 2023Apr18;3:1153784 [DOI: 10.3389/fradi.2023.1153784http://dx.doi.org/10.3389/fradi.2023.1153784]
Xiao Y, Wang X, Li Q, et al. A Cascade and Heterogeneous Neural Network for CT Pulmonary Nodule Detection and Its Evaluation on both Phantom and Patient Data [J]. Computerized Medical Imaging and Graphics, 2021, 90(3):101889 [DOI: 10.1016/j.compmedimag.2021.101889http://dx.doi.org/10.1016/j.compmedimag.2021.101889]
Yan C, Liu J, Yang X, Cai S, Lu X, Yang C, Zeng M, Zhou G, Ji M. Automatic vs manual coronary CT angiography reconstruction for whole-heart coverage CT scanner: a comparison study in general patient population. J Xray Sci Technol. 2022;30(2):389-398. [doi: 10.3233/XST-211048http://dx.doi.org/10.3233/XST-211048.]
Yang J, Li X, Cheng JZ, Xue Z, Shi F, Ji Y, Wang X, Yang F. Segment aorta and localize landmarks simultaneously on noncontrast CT using a multitask learning framework for patients without severe vascular disease. Comput Biol Med. 2023Jun;160:107002. [doi: 10.1016/j.compbiomed.2023.107002http://dx.doi.org/10.1016/j.compbiomed.2023.107002.]
Yang Y, Sun J, Li H B and Xu Z B, ADMM-CSNet: A deep learning approach for image compressive sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(3), 521-538, 2018. [doi: 10.1109/TPAMI.2018.2883941http://dx.doi.org/10.1109/TPAMI.2018.2883941.]
Yang Y, Sun J, Li H, et al. Deep ADMM-Net for compressive sensing MRI. In the Proceedings of the International Conference on Neural Information Processing Systems. 2016: 10-18 [doi:10.5555/3157096.3157098http://dx.doi.org/10.5555/3157096.3157098]
Yang Z, Li J C, Cheng B D, Niu N J, Wang L G, Gao G W, Shi J. 2024. Applications and challenges of deep learning in dental imaging. Journal of Image and Graphics, 29(03):0586-0607
赵阳, 李俊诚, 成博栋, 牛娜君, 王龙光, 高广谓, 施俊. 2024. 深度学习在口腔医学影像中的应用与挑战. 中国图象图形学报, 29(03):0586-0607 [DOI: 10.11834/jig.230062http://dx.doi.org/10.11834/jig.230062.]
Yao L L, Shi F F, Wang S, Zhang X, Xue Z, Cao X H, Zhan Y Q, Chen L Z, Chen Y T, Song B, Wang Q and Shen D G, TaG-Net: Topology-aware graph network for centerline-based vessel labeling. IEEE transactions on medical imaging, 42(11): 3155-3166, 2023. [doi: 10.1109/TMI.2023.3240825http://dx.doi.org/10.1109/TMI.2023.3240825.]
Yin W, Xu R M, Zhao B H, Liu S L and Wang M J. Influence of a new motion correction algorithm (CardioCapture) on the correlation between heart rate and optimal reconstruction phase. Heliyon. 2023Oct5;9(10):e20588. [doi: 10.1016/j.heliyon.2023.e20588http://dx.doi.org/10.1016/j.heliyon.2023.e20588.]
Zhang J D, Sun K C, Yang J W, Hu Y, Gu Y N, Cui Z M, Zong X P, Gao F and Shen D G, A generalized dual-domain generative framework with hierarchical consistency for medical image reconstruction and synthesis. Communications Engineering, 2(1): 72, 2023. [doi: 10.1038/s44172-023-00121-zhttp://dx.doi.org/10.1038/s44172-023-00121-z]
Zhang R, Wei Y, Shi F, Ren J, Zhou Q, Li W, Chen B. The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images. BMC Cancer. 2022Nov1;22(1):1118. [doi: 10.1186/s12885-022-10224-zhttp://dx.doi.org/10.1186/s12885-022-10224-z.]
Zhu B, Liu J Z, Cauley S F, Rosen B R and Rosen M S, Image reconstruction by domain-transform manifold learning [J]. Nature, 2018, 555(7697): 487-492 [doi:10.1038/nature25988http://dx.doi.org/10.1038/nature25988]
相关作者
相关机构