迁移学习在医学图像分类中的研究进展
Review of transfer learning in medical image classification
- 2022年27卷第3期 页码:672-686
收稿日期:2021-09-08,
修回日期:2021-11-18,
录用日期:2021-11-25,
纸质出版日期:2022-03-16
DOI: 10.11834/jig.210814
移动端阅览

浏览全部资源
扫码关注微信
收稿日期:2021-09-08,
修回日期:2021-11-18,
录用日期:2021-11-25,
纸质出版日期:2022-03-16
移动端阅览
医学影像作为医疗数据的主要载体,在疾病预防、诊断和治疗中发挥着重要作用。医学图像分类是医学影像分析的重要组成部分。如何提高医学图像分类效率是一个持续的研究问题。随着计算机技术进步,医学图像分类方法已经从传统方法转到深度学习,再到目前热门的迁移学习。虽然迁移学习在医学图像分类中得到较广泛应用,但存在不少问题,本文对该领域的迁移学习应用情况进行综述,从中总结经验和发现问题,为未来研究提供线索。1)对基于迁移学习的医学图像分类研究的重要文献进行梳理、分析和总结,概括出3种迁移学习策略,即迁移模型的结构调整策略、参数调整策略和从迁移模型中提取特征的策略;2)从各文献研究设计的迁移学习过程中提炼共性,总结为5种迁移学习模式,即深度卷积神经网络(deep convolution neural network,DCNN)模式、混合模式、特征组合分类模式、多分类器融合模式和二次迁移模式。阐述了迁移学习策略和迁移学习模式之间的关系。这些迁移学习策略和模式有助于从更高的抽象层次展现迁移学习应用于医学图像分类领域的情况;3)阐述这些迁移学习策略和模式在医学图像分类中的具体应用,分析这些策略及模式的优点、局限性及适用场景;4)给出迁移学习在医学图像分类应用中存在的问题并展望未来研究方向。
Medical image classification is a key element of medical image analysis. The method of medical image classification has been evolving in deep learning and transfer learning. A large number of important literatures of medical image classification are analyzed based on transfer learning. As a result
three transfer learning strategies and five modes of medical image classifying are summarized. The transfer learning modes are constructed based on general characteristics which extracted from designed transfer learning processes theoretically. The relevance of the transfer learning strategies and the modes is illustrated as well. These transfer strategies and modes illustrated the application of transfer learning in this field from a higher level of abstraction. The applications
advantages
limitations of these transfer learning strategies and modes are analyzed. The transfer learning in the context of medical image feature extraction and classification is the model-based transfer learning. Most of the migrated models are deep convolution neural network (DCNN). High classifying efficiency is obtained due to ImageNet (a large public image database) training results. To migrate model from the source domain to the target domain
the model needs to be adapted to the tasks of the targeted domain. From the important literature of medical image classification
three transfer model adaptive strategies were sorted out. They are structure fit
parameter option and migrated model based features extraction. The strategies of fitted structure are to modify the structure of the migrated model. Layers can be deleted or added as needed. These layers can be as convolution layer
full connection layer
feature smoothing layer
feature extracting layer
and batch normalizing layer
respectively. The optional strategies of parameter are to re-train the migrated model to adjust the model parameters via using the target domain data. Both the parameters of convolution layer and the parameters of full connection layer can be fitted. The migrated-model-based strategy of features extraction is only used for feature extraction. Image features can be extracted from the convolution layer and the full connection layer. Five transfer learning modes were sorted out based on the literature of medical image classification. They are the DCNN mode
the hybrid mode
the mode of fused feature and classification. The mode of multi-classifier fusing and the mode of transferring are conducted two times all. For instance
the fitting strategies of structure and parameters of convolution layer are used in the DCNN mode to get more accurate features. The transfer learning modes can basically cover all kinds of transfer learning processes in medical image classification researches. The DCNN mode is to use a DCNN to complete image feature extraction and classification. The hybrid model is composed of a DCNN and a traditional classifier. The former is used for feature extracting and the latter is used for classifying. It has the advantage of DCNN feature extraction and advantage of traditional classified classifier. The mode of integrated feature and classification is composed of feature extraction methods and a classifier. Feature extracting methods can be a DCNN or manual features. The mode of multi-classifier fusing is composed of multiple classifiers. The final classifying result is obtained based on multiple classified integrating results. The integrating result is more reliable than the result from single classifier mode (i.e.
the DCNN mode and the hybrid mode). In the twice mode of transferring
the initial model is trained in the source domain
then it is migrated to the temporary targeted domain to be trained for the second time
and finally it is migrated to the final targeted domain to be trained for the third time. Compared to first transfer
this mode priority is that the triple migrated model accumulates more knowledge of training. The transfer-learning based issues and of medical image classification potentials are illustrated as below: 1) It is difficult to pick an efficient transfer learning algorithm. Due to the diversity and complexity of medical images
the generalization capability of transfer learning algorithm is to be strengthened. Manual option for a specific image classifying task is often based on continuous high computational cost tests. A low cost automatic transfer learning algorithm is a challenging issue. 2) The modification of transfer model and the setting of mega parameters are lack of theoretical mechanism. The structure and parameters of the migrated model can only be modified through the existing experiences and continuous experiments
and the setting of mega parameters is not different
which lead to the low efficiency of transfer learning. 3) It is challenged to classify rare disease images due to pathological image data samples of rare diseases. The antagonistic transfer learning can generate and enhance target domain data. The heterogeneous transfer learning yield to transfer the knowledge of different modalities or the source domain to target domain. Therefore
the two methods of transfer learning can be further developed in image classification of rare diseases.
Abbasi A A, Hussain L, Awan I A, Abbasi I, Majid A, Nadeem M S A and Chaudhary Q A. 2020. Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cognitive Neurodynamics, 14(4): 523-533 [DOI: 10.1007/s11571-020-09587-5]
Akter T, Ali M H, Khan M I, Satu M S, Uddin M J, Alyami S A, Ali S, Azad A and Moni M A. 2021. Improved transfer-learning-based facial recognition framework to detect autistic children at an early stage. Brain Sciences, 11(6): #734 [DOI: 10.3390/brainsci11060734]
Altaf F, Islam S M S and Janjua N K. 2021. A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from X-rays. Neural Computing and Applications, 30(20): 14037-14048 [DOI: 10.1007/s00521-021-06044-0]
Apostolopoulos I D and Mpesiana T A. 2020. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine, 43(2): 635-640 [DOI: 10.1007/s13246-020-00865-4]
Bahgat W M, Balaha H M, AbdulAzeem Y and Badawy M M. 2021. An optimized transfer learning-based approach for automatic diagnosis of COVID-19 from chest x-ray images. Computer Science, 7: #555 [DOI: 10.7717/peerj-cs.555]
Burlina P, Pacheco K D, Joshi N, Freund D E and Bressler N M. 2017. Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Computers in Biology and Medicine, 82: 80-86 [DOI: 10.1016/j.compbiomed.2017.01.018]
Chen D Z and Jiang Q. 2021. Pulmonary nodule detection based on convolutional neural networks with transfer learning. Computer Engineering and Design, 42(1): 240-247
陈道争, 江倩. 2021. 基于卷积神经网络和迁移学习的肺结节检测. 计算机工程与设计, 42(1): 240-247[DOI: 10.16208/j.issn1000-7024.2021.01.035]
Chen H T, Guo S S, Hao Y B, Fang Y J, Fang Z X, Wu W H, Liu Z G and Li S L. 2021. Auxiliary diagnosis for COVID-19 with deep transfer learning. Journal of Digital Imaging, 34(2): 231-241 [DOI: 10.1007/s10278-021-00431-8]
Chen H Y, Gao J Y, Zhao D, Wang H Z, Song H and Su Q H. 2021. Review of the research progress in deep learning and biomedical image analysis till 2020. Journal ofImage and Graphics, 26(3): 475-486
陈弘扬, 高敬阳, 赵地, 汪红志, 宋红, 苏庆华. 2021. 深度学习与生物医学图像分析2020年综述. 中国图象图形学报, 26(3): 475-486[DOI: 10.11834/jig.200351]
Chen Q, Hu S L, Long P R, Lu F, Shi Y J and Li Y P. 2019. A transfer learning approach for malignant prostate lesion detection on multiparametric MRI. Technology in Cancer Research and Treatment, 18: #153303381985836 [DOI: 10.1177/1533033819858363]
Chen S H, Liu W X, Qin J, Chen L L, Bin G, Zhou Y X and Wang T F. 2017. Research progress of computer-aided diagnosis in cancer based on deep learning and medical imaging. Journal of Biomedical Engineering, 34(2): 314-319
陈诗慧, 刘维湘, 秦璟, 陈亮亮, 宾果, 周煜翔, 汪天富. 2017. 基于深度学习和医学图像的癌症计算机辅助诊断研究进展. 生物医学工程学杂志, 34(2): 314-319[DOI: 10.7507/1001-5515.201609047]
Cheng B, Zhu B L and Xiong J. 2016. Multimodal multi-label transfer learning for early diagnosis of Alzheimer's disease. Journal of Computer Applications, 36(8): 2282-2286, 2291
程波, 朱丙丽, 熊江. 2016. 基于多模态多标记迁移学习的早期阿尔茨海默病诊断. 计算机应用, 36(8): 2282-2286, 2291[DOI: 10.11772/j.issn.1001-9081.2016.08.2282]
Chu J H, Wu Z R, Lyu W and Li Z. 2018. Breast cancer diagnosis system based on transfer learning and deep convolutional neural networks. Laser and Optoelectronics Progress, 55(8): 201-207
褚晶辉, 吴泽蕤, 吕卫, 李喆. 2018. 基于迁移学习和深度卷积神经网络的乳腺肿瘤诊断系统. 激光与光电子学进展, 55(8): 201-207[DOI: 10.3788/LOP55.081001]
Dawud A M, Yurtkan K and Oztoprak H. 2019. Application of deep learning in neuroradiology: brain haemorrhage classification using transfer learning. Computational Intelligence and Neuroscience, 2019: #4629859 [DOI: 10.1155/2019/4629859]
Deniz E, Şengür A, Kadiroǧlu Z, Guo Y H, Bajaj V and Budak ü. 2018. Transfer learning based histopathologic image classification for breast cancer detection. Health Information Science and Systems, 6: #18 [DOI: 10.1007/s13755-018-0057-x]
Gómez-Valverde J J, Antón A, Fatti G, Liefers B, Herranz A, Santos A, Sánchez C I and Ledesma-Carbayo M J. 2019. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomedical Optics Express, 10(2): 892-913 [DOI: 10.1364/BOE.10.000892]
Han F F, Yan L K, Chen J X, Teng Y Y, Chen S, Qi S L, Qian W, Yang J, Moore W, Zhang S and Liang Z R. 2020. Predicting unnecessary nodule biopsies from a small, unbalanced, and pathologically proven dataset by transfer learning. Journal of Digital Imaging, 33(3): 685-696 [DOI: 10.1007/s10278-019-00306-z]
Hao R Q, Namdar K, Liu L and Khalvati F. 2021. a transfer learning-based active learning framework for brain tumor classification. Frontiers in Artificial Intelligence, 4: #635766 [DOI: 10.3389/frai.2021.635766]
Hashmi M F, Katiyar S, Keskar A G, Bokde N D and Geem Z W. 2020. Efficient pneumonia detection in chest Xray images using deep transfer learning. Diagnostics, 10(6): #417 [DOI: 10.3390/diagnostics10060417]
Huang C X, Lv W H, Zhou C S, Mao L, Xu Q M, Li X Y, Qi L, Xia F, Li X L, Zhang Q R, Zhang L J and Lu G M. 2020. Discrimination between transient and persistent subsolid pulmonary nodules on baseline CT using deep transfer learning. European Radiology, 30(12): 6913-6923 [DOI: 10.1007/s00330-020-07071-6]
Huang H, Peng C, Wu R Y, Tao J L and Zhang J Q. 2020. Self-supervised transfer learning of pulmonary nodule classification based on partially annotated CT images. Acta Optica Sinica, 40(18): #1810003
黄鸿, 彭超, 吴若愚, 陶俊利, 张久权. 2020. 基于部分注释CT图像的自监督迁移学习肺结节分类. 光学学报, 40(18): #1810003[DOI: 10.3788/AOS202040.1810003]
Huynh B Q, Li H and Giger M L. 2016. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 3(3): #034501 [DOI: 10.1117/1.JMI.3.3.034501]
Im S, Hyeon J, Rha E, Lee J, Choi H J, Jung Y and Kim T J. 2021. Classification of diffuse Glioma subtype from clinical-grade pathological images using deep transfer learning. Sensors, 21(10): #3500 [DOI: 10.3390/s21103500]
Irfan A, Adivishnu A L, Sze-To A, Dehkharghanian T, Rahnamayan S and Tizhoosh H R. 2020. Classifying pneumonia among chest X-rays using transfer learning//Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Montreal, Canada: IEEE: 2186-2189 [ DOI: 10.1109/EMBC44109.2020.9175594 http://dx.doi.org/10.1109/EMBC44109.2020.9175594 ]
Jin Z X, Qin F W and Fang M E. 2019. Deep transfer learning-assisted early diagnosis of Alzheimer's disease. Computer Applications and Software, 36(5): 171-177
金祝新, 秦飞巍, 方美娥. 2019. 深度迁移学习辅助的阿尔兹海默氏症早期诊断. 计算机应用与软件, 36(5): 171-177[DOI: 10.3969/j.issn.1000-386x.2019.05.029]
Karri S P K, Chakraborty D and Chatterjee J. 2017. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomedical Optics Express, 8(2): 579-592 [DOI: 10.1364/BOE.8.000579]
Kim J E, Nam N E, Shim J S, Jung Y H, Cho B H and Hwang J J. 2020. Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. Journal of Clinical Medicine, 9(4): #1117 [DOI: 10.3390/jcm9041117]
Le D, Alam M, Yao C K, Lim J I, Hsieh Y T, Chan R V P, Toslak D and Yao X C. 2020. Transfer learning for automated OCTA detection of diabetic retinopathy. Translational Vision Science and Technology, 9(2): #35 [DOI: 10.1167/tvst.9.2.35]
Lee K S, Jung S K, Ryu J J, Shin S W and Choi J. 2020. Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. Journal of Clinical Medicine, 9(2): #392 [DOI: 10.3390/jcm9020392]
Li H L, He L L, Dudley J A, Maloney T C, Somasundaram E, Brady S L, Parikh N A and Dillman J R. 2021a. DeepLiverNet: a deep transfer learning model for classifying liver stiffness using clinical and T2-weighted magnetic resonance imaging data in children and young adults. Pediatric Radiology, 51(3): 392-402 [DOI: 10.1007/s00247-020-04854-3]
Li H L, Parikh N A and He L L. 2018. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Frontiers in Neuroscience, 12: #491 [DOI: 10.3389/fnins.2018.00491]
Li J, Zhou Y, Wang P, Zhao H N, Wang X X, Tang N and Luan K. 2021b. Deep transfer learning based on magnetic resonance imaging can improve the diagnosis of lymph node metastasis in patients with rectal cancer. Quantitative Imaging in Medicine and Surgery, 11(6): 2477-2485 [DOI: 10.21037/qims-20-525]
Li Y Y, Wang Y M, Zhou Q, Li Y X, Wang Z, Wang J, Meng Y, Cai Q Q, Sui L and Hua K Q. 2021. Deep learning model exploration of colposcopy image based on cervical epithelial and vascular features. Fudan University Journal of Medical Sciences, 48(4): 435-442
李燕云, 王永明, 周奇, 李亦学, 王振, 王珏, 孟妍, 蔡青青, 隋龙, 华克勤. 2021. 基于宫颈上皮与血管特征的阴道镜图像深度学习模型探索. 复旦学报(医学版), 48(4): 435-442[DOI: 10.3969/j.issn.1672-8467.2021.04.002]
Li Z X, Song T, Ge M F, Liu J X, Wang H W and Wang J. 2021. Breast cancer classification from histopathological images based on improved Inception model. Laser and Optoelectronics Progress, 58(8): #0817001
李赵旭, 宋涛, 葛梦飞, 刘嘉欣, 王宏伟, 王佳. 2021. 基于改进Inception模型的乳腺癌病理学图像分类. 激光与光电子学进展, 58(8): #0817001[DOI: 10.3788/LOP202158.0817001]
Liang G B and Zheng L X. 2020. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Computer Methods and Programs in Biomedicine, 187: #104964 [DOI: 10.1016/j.cmpb.2019.06.023]
Liu T Y A, Ting D S W, Yi P H, Wei J C, Zhu H X, Subramanian P S, Li T B, Hui F K, Hager G D and Miller N R. 2020. Deep learning and transfer learning for optic disc laterality detection: implications for machine learning in neuro-ophthalmology. Journal of Neuro-Ophthalmology, 40(2): 178-184 [DOI: 10.1097/WNO.0000000000000827]
Liu W X, Cheng Y L, Liu Z Y, Liu C L, Cattell R, Xie X Y, Wang Y Y, Yang X J, Ye W T, Liang C S, Li J, Gao Y, Huang C and Liang C H. 2021. Preoperative prediction of Ki-67 status in breast cancer with multiparametric MRI using transfer learning. Academic Radiology, 28(2): e44-e53 [DOI: 10.1016/j.acra.2020.02.006]
Mahbod A, Schaefer G, Wang C L, Dorffner G, Ecker R and Ellinger I. 2020. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Computer Methods and Programs in Biomedicine, 193: #105475 [DOI: 10.1016/j.cmpb.2020.105475]
Maqsood M, Nazir F, Khan U, Aadil F, Jamal H, Mehmood I and Song O Y. 2019. Transfer learning assisted classification and detection of Alzheimer's disease stages using 3D MRI scans. Sensors, 19(11): #2645 [DOI: 10.3390/s19112645]
Minaee S, Kafieh R, Sonka M, Yazdani S and Soufi G J. 2020. Deep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learning. Medical Image Analysis, 65: #101794 [DOI: 10.1016/j.media.2020.101794]
Mohammadi R, Salehi M, Ghaffari H, Rohani A A and Reiazi R. 2020. Transfer learning-based automatic detection of coronavirus disease 2019 (COVID-19) from chest X-ray images. Journal of Biomedical Physics and Engineering, 10(5): 559-568 [DOI: 10.31661/jbpe.v0i0.2008-1153]
Munien C and Viriri S. 2021. Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with efficient nets. Computational Intelligence and Neuroscience, 2021: #5580914 [DOI: 10.1155/2021/5580914]
Oh K, Chung Y C, Kim K W, Kim W S and Oh I S. 2019. Classification and visualization of Alzheimer's disease using volumetric convolutional neural network and transfer learning. Scientific Reports, 9(1): #18150 [DOI: 10.1038/s41598-019-54548-6]
Paul R, Hawkins S H, Balagurunathan Y, Schabath M, Gillies R J, Hall L O and Goldgof D B. 2016. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography, 2(4): 388-395 [DOI: 10.18383/j.tom.2016.00211]
Pei Z A, Cao S L, Lu L J and Chen W F. 2019. Direct cellularity estimation on breast cancer histopathology images using transfer learning. Computational and Mathematical Methods in Medicine, 2019: #3041250 [DOI: 10.1155/2019/3041250]
Romero M, Interian Y, Solberg T and Valdes G. 2020. Targeted transfer learning to improve performance in small medical physics datasets. Medical Physics, 47(12): 6246-6256 [DOI: 10.1002/mp.14507]
Samala R K, Chan H P, Hadjiiski L M, Helvie M A, Cha K H and Richter C D. 2017. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. Physics in Medicine and Biology, 62(23): 8894-8908 [DOI: 10.1088/1361-6560/aa93 d4]
Samala R K, Chan H P, Hadjiiski L, Helvie M A, Richter C D and Cha K H. 2019. Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets. IEEE Transactions on Medical Imaging, 38(3): 686-696 [DOI: 10.1109/TMI.2018.2870343]
Si X P, Zhang X J, Zhou Y, Sun Y L, Jin W P, Yin S Y, Zhao X, Li Q and Ming D. 2020. Automated detection of juvenile myoclonic epilepsy using CNN based transfer learning in diffusion MRI//Proceddings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Montreal, Canada: IEEE: 1679-1682 [ DOI: 10.1109/EMBC44109.2020.9175467 http://dx.doi.org/10.1109/EMBC44109.2020.9175467 ]
Tan T, Li Z, Liu H X, Zanjani F G, Ouyang Q C, Tang Y L, Hu Z Y and Li Q. 2018. Optimize transfer learning for lung diseases in bronchoscopy using a new concept: sequential fine-tuning. IEEE Journal of Translational Engineering in Health and Medicine, 6: #1800808 [DOI: 10.1109/JTEHM.2018.2865787]
Taresh M M, Zhu N B, Ali T A A, Hameed A S and Mutar M L. 2021. Transfer learning to detect COVID-19 automatically from X-Ray images using convolutional neural networks. International Journal of Biomedical Imaging, 2021: #8828404 [DOI: 10.1155/2021/8828404]
Trivizakis E, Ioannidis G S, Melissianos V D, Papadakis G Z, Tsatsakis A, Spandidos D A and Marias K. 2019. A novel deep learning architecture outperforming 'off-the-shelf' transfer learning and feature-based methods in the automated assessment of mammographic breast density. Oncology Reports, 42(5): 2009-2015 [DOI: 10.3892/or.2019.7312]
Wang S D, Dong L Y, Wang X and Wang X G. 2020. Classification of pathological types of lung cancer from CT images by deep residual neural networks with transfer learning strategy. Open Medicine, 15(1): 190-197 [DOI: 10.1515/med-2020-0028]
Wang S H, Nayak D R, Guttery D S, Zhang X and Zhang Y D. 2021. COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Information Fusion, 68: 131-148 [DOI: 10.1016/j.inffus.2020.11.005]
Wang S H, Xie S P, Chen X Q, Guttery D S, Tang C S, Sun J D and Zhang Y D. 2019. Alcoholism identification based on an AlexNet transfer learning model. Frontiers in Psychiatry, 10: #205 [DOI: 10.3389/fpsyt.2019.00205]
Wee C Y, Liu C Q, Lee A, Poh J S, Ji H and Qiu A Q. 2019. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage: Clinical, 23: #101929 [DOI: 10.1016/j.nicl.2019.101929]
Wu Y, Luo L P, Xu B, Huang J and Zhao L Y. 2019. Classification and diagnosis of ultrasound images with breast tumors based on transfer learning. Chinese Journal of Medical Imaging Technology, 35(3): 357-360
吴英, 罗良平, 许波, 黄君, 赵璐瑜. 2019. 基于迁移学习的乳腺肿瘤超声图像智能分类诊断. 中国医学影像技术, 35(3): 357-360[DOI: 10.13929/j.1003-3289.201807052]
Xue L Y, Jiang Z Y, Fu T T, Wang Q M, Zhu Y L, Dai M, Wang W P, Yu J H and Ding H. 2020. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis. European Radiology, 30(5): 2973-2983 [DOI: 10.1007/s00330-019-06595-w]
Yang P W, Zhou Y H, Xing G, Tian Z Q and Xu X Y. 2021. Applications of convolutional neural network in biomedical image. Computer Engineering and Applications, 57(7): 44-58
杨培伟, 周余红, 邢岗, 田智强, 许夏瑜. 2021. 卷积神经网络在生物医学图像上的应用进展. 计算机工程与应用, 57(7): 44-58[DOI: 10.3778/j.issn.1002-8331.2009-0161]
Yang Q, Zhang Y, Dai W Y and Pan J L. 2020. Transfer Learning. Beijing: Machinery Industry Press
杨强, 张宇, 戴文渊, 潘嘉林. 2020. 迁移学习. 北京: 机械工业出版社
Yang Y, Yan L F, Zhang X, Han Y, Nan H Y, Hu Y C, Hu B, Yan S L, Zhang J, Cheng D L, Ge X W, Cui G B, Zhao D and Wang W. 2018. Glioma grading on conventional MR images: a deep learning study with transfer learning. Frontiers in Neuroscience, 12: #804 [DOI: 10.3389/fnins.2018.00804]
Yu J H, Deng Y H, Liu T T, Zhou J, Jia X H, Xiao T L, Zhou S C, Li J W, Guo Y, Wang Y Y, Zhou J Q and Chang C. 2020. Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nature Communications, 11(1): #4807 [DOI: 10.1038/s41467-020-18497-3]
Yu Y Z, Shi D J, Ma J C and Zhou Z. 2019. Advances in application of artificial intelligence in medical image analysis. Chinese Journal of Medical Imaging Technology, 35(12): 1808-1812
俞益洲, 石德君, 马杰超, 周振. 2019. 人工智能在医学影像分析中的应用进展. 中国医学影像技术, 35(12): 1808-1812[DOI: 10.13929/j.1003-3289.201909150]
Zhang C M, Wang Q F, Liu Z Q, Huang J, Zhou Y, Liu Q Y and Xu W Y. 2020. Pulmonary nodule auxiliary diagnosis method based on deep transfer learning. Computer Engineering, 46(1): 271-278
张驰名, 王庆凤, 刘志勤, 黄俊, 周莹, 刘启榆, 徐卫云. 2020. 基于深度迁移学习的肺结节辅助诊断方法. 计算机工程, 46(1): 271-278[DOI: 10.19678/j.issn.1000-3428.0053340]
Zhang J F, Cui W S, Guo X Y, Wang B and Wang Z. 2020a. Classification of digital pathological images of non-Hodgkin's lymphoma subtypes based on the fusion of transfer learning and principal component analysis. Medical Physics, 47(9): 4241-4253 [DOI: 10.1002/mp.14357]
Zhang R C, Guo Z H, Sun Y, Lu Q, Xu Z J, Yao Z M, Duan M Y, Liu S, Ren Y J, Huang L and Zhou F F. 2020b. COVID19XrayNet: a two-step transfer learning model for the COVID-19 detecting problem based on a limited number of chest X-Ray images. Interdisciplinary Sciences: Computational Life Sciences, 12(4): 555-565 [DOI: 10.1007/s12539-020-00393-5]
Zhao C, Shuai R J, Ma L, Liu W J and Wu M L. 2021. The generation and classification of skin cancer images based on Self-Attention-StyleGAN. Computer Engineering and Applications [J/OL]. [2021-04-19] . https://kns.cnki.net/kcms/detail/11.2127.tp.20210419.1440.067.html https://kns.cnki.net/kcms/detail/11.2127.tp.20210419.1440.067.html
赵宸, 帅仁俊, 马力, 刘文佳, 吴梦麟. 2021. 基于Self-Attention-StyleGAN的皮肤癌图像生成与分类. 计算机工程与应用[J/OL]. [2021-04-19] . https://kns.cnki.net/kcms/detail/11.2127.tp.20210419.1440.067.html https://kns.cnki.net/kcms/detail/11.2127.tp.20210419.1440.067.html [ DOI:10.3778/j.issn.1002-8331.2102-0092 http://dx.doi.org/10.3778/j.issn.1002-8331.2102-0092 ].
Zheng G Y, Liu X B and Han G H. 2018. Survey on medical image computer aided detection and diagnosis systems. Journal of Software, 29(5): 1471-1514
郑光远, 刘峡壁, 韩光辉. 2018. 医学影像计算机辅助检测与诊断系统综述. 软件学报, 29(5): 1471-1514[DOI: 10.13328/j.cnki.jos.005519]
Zheng Q, Furth S L, Tasian G E and Fan Y. 2019. Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features. Journal of Pediatric Urology, 15(1): 75. e1-75. e7 [DOI: 10.1016/j.jpurol.2018.10.020]
Zhuang Z M, Kang Y Q, Raj A N J, Yuan Y, Ding W L and Qiu S M. 2020. Breast ultrasound lesion classification based on image decomposition and transfer learning. Medical Physics, 47(12): 6257-6269 [DOI: 10.1002/mp.14510]
相关作者
相关机构
京公网安备11010802024621