自动驾驶地图的数据标准比较研究
Comparative study on data standards of autonomous driving map
- 2021年26卷第1期 页码:36-48
收稿日期:2020-07-25,
修回日期:2020-10-23,
录用日期:2020-10-30,
纸质出版日期:2021-01-16
DOI: 10.11834/jig.200414
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2020-07-25,
修回日期:2020-10-23,
录用日期:2020-10-30,
纸质出版日期:2021-01-16
移动端阅览
作为实现汽车自动驾驶的关键基础设施,自动驾驶地图能够提供大量准确且语义丰富的数据来帮助用户以更精细的尺度了解周边环境状况,辅助感知、定位、驾驶规划与决策控制,满足智能时代多种高层次的应用需求,进而切实推动我国自动驾驶相关领域的发展与商业化应用。自动驾驶地图的数据标准作为自动驾驶地图生产应用的指导性规范之一,是自动驾驶地图数据标准化的基准。当前我国自动驾驶相关领域对自动驾驶地图标准化的需求迫切,地图数据标准化已成为业界共同关注的热点问题。为解决自动驾驶地图数据标准化问题,切实推动自动驾驶地图的高效发展,本文对自动驾驶地图的数据标准进行比较研究。首先介绍国内外主流的自动驾驶地图数据标准,然后针对其中4种:导航数据标准(navigation data standard,NDS)、OpenDrive、智能运输系统智能驾驶电子地图数据模型与交换格式和道路高精度电子导航地图数据规范进行分析比较研究,主要从数据结构、数据模型、地图渲染和协同应用4个维度展开,并在各个维度上给出数据标准编制时建议遵循的原则。基于分析比较研究的结果,总结出自动驾驶地图数据标准编制时建议遵循的原则。通过对自动驾驶地图的数据标准进行分析比较研究,归纳总结出数据标准编制时建议遵循的原则,这些建议遵循的编制原则对我国相应规格标准的制定具有借鉴意义。
As a key infrastructure to realize autonomous driving
an autonomous driving map can provide a large amount of accurate and semantically rich data to help users understand the surrounding environment in a more detailed scale; assist perception
positioning
driving planning
and decision control; and meet various high-level application requirements in the era of intelligence and then effectively promote the development and commercial application of China's autonomous driving related fields. An autonomous driving map data standard guides the production and application of autonomous driving maps
thus serving as the benchmark for the standardization of autonomous driving map data. At present
there is an urgent need for autonomous driving map standardization is urgently needed in the fields related to autonomous driving in China
and map data standardization has become a hot issue of common concern in the industry. To solve the problem of autonomous driving map data standardization and promote the efficient development of autonomous driving maps
this paper conducts a comparative study on data standards of autonomous driving maps. First
this paper briefly introduces the mainstream autonomous driving map data standards at home and abroad. Popular international autonomous driving map data standards mainly include NDS(navigation data standard)
OpenDrive
and Kiwi. The development of autonomous driving map data standards in China started relatively late compared with that in foreign countries. Most of the relevant standards are in the state of formulation or project approval and have not been commercialized on a large scale. At present
domestic mainstream autonomous driving map data standards mainly include intelligent transportation system-intelligent map data model and exchange format specification
road high-precision electronic navigation map data specification
and Apollo OpenDrive. Second
this paper analyzes and compares four of them
namely
NDS
OpenDrive
intelligent transportation system-intelligent map data model and exchange format specification
and road high-precision electronic navigation map data specification. The comparative research is mainly carried out from four dimensions of data structure
data model
map rendering and collaborative application
and the proposed principles for data standard compilation are given in each dimension: 1) In terms of data structures
the data structure of autonomous driving map can be divided into logical structure and physical structure
which are closely related and often serve as the basic content of each data standard to determine the definition of data standard in map data file storage format and data logic organization model
thus directly affecting the compilation of data standard. By comparing and analyzing the data structures defined by the four autonomous driving map data standards
this paper clearly suggests that the database technology should be used to store map data in the form of tables
and the hierarchical data organization method should be adopted to support flexible and efficient data storage
interaction
and update. 2) In terms of data models
the data model is used to specify the elements (objects)
attributes
and relationships contained in the autonomous driving map data
and explains how to carry out data classification
coding
geometry
and topology representation
thus often serving as the core content of each data standard. By comparing and analyzing the data models defined by the four autonomous driving map data standards
this paper clearly suggests that
on the basis of further expanding the data content of autonomous driving map to include more relevant elements and attributes
a method similar to map layerization should be adopted to modularize the data organization (including geometric topology network data)
to improve the flexibility and applicability of autonomous driving maps. 3) In terms of map rendering
autonomous driving map will be oriented to the human-computer shared environment in the future
which needs to meet the needs of both human map recognition and machine understanding. Therefore
the map data standard should include map rendering and support hierarchical map display to improve the efficiency of map display and path calculation. 4) In terms of collaborative applications
after years of development
a standard navigation map has become rich in road traffic information
such as point-of-interest information
which focuses on describing the real world in a macro sense. By contrast
an autonomous driving map focuses on describing the environmental conditions of roads and surrounding areas
as well as the topological connection relationship between lanes. Although an autonomous driving map has more accurate road and lane geometry data
it lacks the rich data content of standard navigation maps and especially lacks point-of-interest information
which makes the navigation function difficult to realize. To address this problem
the cooperative application relationship between autonomous driving map and standard navigation map needs to be established
which can ensure complementary information between an autonomous driving map and a standard navigation map
and then effectively deal with different requirements. On the basis of the results of comparative analysis
this paper summarizes the principles that should be followed when compiling the data standard of autonomous driving maps. By analyzing and comparing the data standards of autonomous driving map
this paper summarizes the proposed principles in compiling data standards
which are of reference significance to the formulation of relevant specifications and standards in China.
Apollo. 2018. Apollo's high precision map analysis[EB/OL ] .[2020-07-24 ] . https://www.csdn.net/article/a/2018-04-12/15945514 https://www.csdn.net/article/a/2018-04-12/15945514 .
(Apollo开发者社区. 2018. Apollo高精地图解析[EB/OL ] .[2020-07-24 ] ). https://www.csdn.net/article/a/2018-04-12/15945514 https://www.csdn.net/article/a/2018-04-12/15945514
Bauer S, Alkhorshid Y and Wanielik G. 2016. Using high-definition maps for precise urban vehicle localization//Proceedi ngs of 2016 IEEE International Conference on Intelligent Transportation Systems. Rio de Janeiro, Brazil: IEEE: 492-497[ DOI: 10.1109/ITSC.2016.7795600 http://dx.doi.org/10.1109/ITSC.2016.7795600 ]
Bender P, Ziegler J and Stiller C. 2014. Lanelets: efficient map representation for autonomous driving//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, USA: IEEE: 420-425[ DOI: 10.1109/IVS.2014.6856487 http://dx.doi.org/10.1109/IVS.2014.6856487 ]
Chen J J, Xiao G, Sheng S E and Gao F. 2007. XML-driven image semantic retrieval system. Journal of Image and Graphics, 12(10):1770-1773
陈久军, 肖刚, 盛颂恩, 高飞. 2007. XML驱动的图像语义检索研究.中国图象图形学报, 12(10):1770-1773)[DOI:10.3969/j.issn.1006-8961.2007.10.018]
Chen L, Si Y W, Tian B, Tan Z B and Wang Y T. 2020. Boundary detection of mine drivable area based on 3D LiDAR. Journal of China Coal Society, 45(6):2140-2146
陈龙, 司译文, 田滨, 檀祖冰, 王永涛. 2020.基于3D LiDAR的矿山无人驾驶车行驶边界检测.煤炭学报, 45(6):2140-2146)[DOI:10.13225/j.cnki.jccs.ZN20.0093]
Chen L, Yu W X, Cao D P, Li L and Wang F Y. 2018. Parallel unmanned system. Unmanned Systems Technology, 1(1):23-37
陈龙, 宇文旋, 曹东璞, 李力, 王飞跃. 2018.平行无人系统.无人系统技术, 1(1):23-37
Chen L, Zhan W J, Tian W, He Y H and Zou Q. 2019. Deep integration:a multi-label architecture for road scene recognition. IEEE Transactions on Image Processing, 28(10):4883-4898[DOI:10.1109/TIP.2019.2913079]
Chen L, Wang Q, Lu X K, Cao D P and Wang F Y. 2020. Learning driving models from parallel end-to-end driving dataset. Proceedings of the IEEE, 108(2):262-273[DOI:10.1109/JPROC.2019.2952735]
Dupuis M, Strobl M and Grezlikowski H. 2010. OpenDRIVE 2010 and beyond-status and future of the de facto standard for the description of road networks//Proceedings of the Driving Simulation-Conference Europe 2010. Paris, France: [s.n.]: 231-242
Guo C, Guo W F, Cao G Y and Dong H B. 2015. A lane-level LBS system for vehicle network with high-precision BDS/GPS positioning. Computational Intelligence and Neuroscience, 2015:#531321[DOI:10.1155/2015/531321]
Haklay M and Weber P. 2008. OpenStreetMap:user-generated street maps. IEEE Pervasive Computing, 7(4):12-18[DOI:10.1109/MPRV.2008.80]
Li K Q, Dai Y F, Li S B and Bian M Y. 2017. State-of-the-art and technical trends of intelligent and connected vehicles. Journal of Automotive Safety and Energy, 8(1):1-14
李克强, 戴一凡, 李升波, 边明远. 2017.智能网联汽车(ICV)技术的发展现状及趋势.汽车安全与节能学报, 8(1):1-14)[DOI:10.3969/j.issn.1674-8484.2017.01.001]
Li L Y, Li Q Q, Zhao W F and Xu X L. 2009. Research on incremental updating method of navigable electronic maps. Journal of Image and Graphics, 14(7):1238-1244
李连营, 李清泉, 赵卫锋, 许小兰. 2009.导航电子地图增量更新方法研究.中国图象图形学报, 14(7):1238-1244)[DOI:10.11834/jig.20090703]
Liu J N, Dong Y, Zhan J and Gao K F. 2019a. Thoughts and suggestions on autonomous driving map policy. Strategic Study of CAE, 21(3):92-97
刘经南, 董杨, 詹骄, 高柯夫. 2019a.自动驾驶地图有关政策的思考和建议.中国工程科学, 21(3):92-97)[DOI:10.15302/J-SSCAE-2019.03.004]
Liu J N, Guo W F, Guo C, Gao K F and Cui J S. 2020. Rethinking ubiquitous mapping in the intelligent age. Acta Geodaetica et Cartographica Sinica, 49(4):403-414
刘经南, 郭文飞, 郭迟, 高柯夫, 崔竞松. 2020.智能时代泛在测绘的再思考.测绘学报, 49(4):403-414)[DOI:10.11947/j.AGCS.2020.20190539]
Liu J N, Wu H B, Guo C, Zhang H M, Zuo W W and Yang C. 2018. Progress and consideration of high precision road navigation map. Strategic Study of CAE, 20(2):99-105
刘经南, 吴杭彬, 郭迟, 张宏敏, 左文炜, 羊铖. 2018.高精度道路导航地图的进展与思考.中国工程科学, 20(2):99-105)[DOI:10.15302/J-SSCAE-2018.02.015]
Liu J N, Zhan J, Guo C, Li Y, Wu H B and Huang H. 2019b. Data logic structure and key technologies on intelligent high-precision map. Acta Geodaetica et Cartographica Sinica, 48(8):939-953
刘经南, 詹骄, 郭迟, 李莹, 吴杭彬, 黄鹤. 2019b.智能高精地图数据逻辑结构与关键技术.测绘学报, 48(8):939-953)[DOI:10.11947/j.AGCS.2019.20190125]
Ma W. 2010. Introduction to KIWI standard and analysis of differences. China Computer and Communication, (14):#28
马威. 2010. GDF、KIWI标准简介及差异分析.信息与电脑(理论版), (14):#28
Navigation Data Standard. 2016. Publishing high-accuracy map standard for companies: industrial consortium pushes autonomous driving[EB/OL ] .[2020-07-24 ] . https://www.prnewswire.com/news-releases/publishing-high-accuracy-map-standard-for-companies-indu-strial-consortium-pushes-autonomous-driving-593363311.html https://www.prnewswire.com/news-releases/publishing-high-accuracy-map-standard-for-companies-indu-strial-consortium-pushes-autonomous-driving-593363311.html
Queiroz R, Berger T and Czarnecki K. 2019. GeoScenario: an open DSL for autonomous driving scenario representation//2019 IEEE Intelligent Vehicles Symposium. Paris, France: IEEE: 287-294[ DOI: 10.1109/IVS.2019.8814107 http://dx.doi.org/10.1109/IVS.2019.8814107 ]
Ren Y H, Liu Y L, Peng L, Xu Q, Wang M and Chi T H. 2015. Research on data standard of indoor maps. Bulletin of Surveying and Mapping, (7):50-53
任玉环, 刘亚岚, 彭玲, 许清, 王铭, 池天河. 2015.室内地图数据标准体系探讨.测绘通报, (7):50-53)[DOI:10.13474/j.cnki.11-2246.2015.0209]
Seif G H and Hu X L. 2016. Autonomous driving in the iCity-HD maps as akey challenge of the automotive industry. Engineering, 2(2):159-162[DOI:10.1016/J.ENG.2016.02.010]
Sun C, Vianney J M U, Li Y, Chen L, Li L, Wang F Y, Khajepour A and Cao D P. 2020. Proximity based automatic data annotation for autonomous driving. IEEE/CAA Journal of Automatica Sinica, 7(2):395-404[DOI:10.1109/JAS.2020.1003033]
Tao L. 2017. A Study on Road Networks Matching for Highly Automated Driving Map and Traditional Navigation Map. Wuhan: Wuhan University
陶璐. 2017.高精度自动驾驶地图与传统导航地图路网匹配方法研究.武汉: 武汉大学
Wu M G, Yu F X, Chen T S, Luo Q, Tan S S and Zhang H T. 2011. Sharing method of map symbols based on XML Web services. Journal of Image and Graphics, 16(12):2211-2216
吴明光, 余粉香, 陈泰生, 骆骐, 檀姗姗, 张弘弢. 2011.地图符号的XML Web Services共享方法.中国图象图形学报, 16(12):2211-2216)[DOI:10.11834/jig.20111217]
Xiao Z Y, Yang D G, Wen T P, Jiang K and Yan R D. 2020. Monocular localization with vector HD map (MLVHM):a low-cost method for commercial IVs. Sensors, 20(7):#1870[DOI:10.3390/S20071870]
Xu L and Liang F H. 2011. Conception of modular design of thematic map. China CIO News, (4):137-139
徐琳, 梁发宏. 2011.专题地图模块化设计构想.信息系统工程, (4):137-139)[DOI:10.3969/j.issn.1001-2362.2011.04.054]
Zhao Z Q, Zheng P, Xu S T and Wu X D. 2019. Object detection with deep learning:a review. IEEE Transactions on Neural Networks and Learning Systems, 30(11):3212-3232[DOI:10.1109/TNNLS.2018.2876865]
Zhou P, Liu X and Tan H. 2018. A method of web 3D GIS spatial data storage and dynamic topology. Science of Surveying and Mapping, 43(10):137-143
周鹏, 刘星, 谭浩. 2018.网络三维GIS空间数据存储及动态拓扑方法.测绘科学, 43(10):137-143)[DOI:10.16251/j.cnki.1009-2307.2018.10.022]
Zhu D Q and Yan M Z. 2010. Survey on technology of mobile robot path planning. Control and Decision, 25(7):961-967
朱大奇, 颜明重. 2010.移动机器人路径规划技术综述.控制与决策, 25(7):961-967)[DOI:10.13195/j.cd.2010.07.4.zhudq.014]
相关作者
相关机构