摘要:目的二值化方法的主要依据是像素的颜色和对比度等低级语义特征,辨别出与文字具有相似低级特征的复杂背景是二值化亟待解决的问题。针对文档图像二值化复杂背景分离问题,提出一种分离文档图像复杂背景的二阶段二值化方法。方法该方法分为易误判像素筛选和二值化分割两个处理阶段,根据两个阶段的分工构建不同结构的两个网络,前者强化对复杂背景中易误判像素识别和分离能力,后者着重文字像素准确预测,以此提升整个二值化方法在复杂背景图像上的处理效果;两个网络各司其职,可在压缩参数量的前提下出色完成各自任务,进一步提高网络效率。同时,为了增强文字目标细节处理能力,提出一种非对称编码—解码结构,给出两种组合方式。结果实验在文本图像二值化比赛(competition on document image binarization,DIBCO)的DIBCO2016、DIBCO2017以及DIBCO2018数据集上与其他方法进行比较,本文方法在DIBCO2018中FM(F-measure)为92.35%,仅比经过特殊预处理的方法差0.17%,综合效果均优于其他方法;在DIBCO2017和DIBCO2016中FM分别为93.46%和92.13%,综合效果在所有方法中最好。实验结果表明,非对称编码—解码结构二值化分割的各项指标均有不同程度的提升。结论提出的二阶段方法能够有效区分复杂背景,进一步提升二值化效果,并在DIBCO数据集上取得了优异成绩。开源代码网址为https://github.com/wjlbnw/Mask_Detail_Net。
摘要:目的由于夜间图像具有弱曝光、光照条件分布不均以及低对比度等特点,给基于夜间车辆图像的车型识别带来困难。此外,夜间车辆图像上的车型难以肉眼识别,增加了直接基于夜间车辆图像的标定难度。因此,本文从增强夜间车辆图像特征考虑,提出一种基于反射和照度分量增强的夜间车辆图像增强网络(night-time vehicle image enhancement network based on reflectance and illumination components,RIC-NVNet),以增强具有区分性的特性,提高车型识别正确率。方法RIC-NVNet网络结构由3个模块组成,分别为信息提取模块、反射增强模块和照度增强模块。在信息提取模块中,提出将原始车辆图像与其灰度处理图相结合作为网络输入,同时改进了照度分量的约束损失,提升了信息提取网络的分量提取效果;在反射分量增强网络中,提出将颜色恢复损失和结构一致性损失相结合,以增强反射增强网络的颜色复原能力和降噪能力,有效提升反射分量的增强效果;在照度分量增强网络中,提出使用自适应性权重系数矩阵,对夜间车辆图像的不同照度区域进行有区别性的增强。结果在模拟夜间车辆图像数据集和真实夜间车辆图像数据集上开展实验,从主观评价来看,该网络能够提升图像整体的对比度,同时完成强曝光区域和弱曝光区域的差异性增强。从客观评价分析,经过本文方法增强后,夜间车型的识别率提升了2%,峰值信噪比(peak signal to noise ratio, PSNR)和结构相似性(structural similarity, SSIM)指标均有相应提升。结论通过主观和客观评价,表明了本文方法在增强夜间车辆图像上的有效性,经过本文方法的增强,能够有效提升夜间车型的识别率,满足智能交通系统的需求。
摘要:目的点云是一种重要的三维数据表示形式,已在无人驾驶、虚拟现实、三维测量等领域得到了应用。由于点云具有分辨率高的特性,数据传输需要消耗大量的网络带宽和存储资源,严重阻碍了进一步推广。为此,在深度学习的点云自编码器压缩框架基础上,提出一种结合密集残差结构和多尺度剪枝的点云压缩网络,实现了对点云几何信息和颜色信息的高效压缩。方法针对点云的稀疏化特点以及传统体素网格表示点云时分辨率不足的问题,采用稀疏张量作为点云的表示方法,并使用稀疏卷积和子流形卷积取代常规卷积提取点云特征;为了捕获压缩过程中高维信息的依赖性,将密集残差结构和通道注意力机制引入到点云特征提取模块;为了补偿采样过程的特征损失以及减少模型训练的动态内存占用,自编码器采用多尺度渐进式结构,并在其解码器不同尺度的上采样层之后加入剪枝层。为了扩展本文网络的适用范围,设计了基于几何信息的点云颜色压缩方法,以保留点云全局颜色特征。结果针对几何信息压缩,本文网络在MVUB(Microsoft voxelized upper bodies)、8iVFB(8i voxelized full bodies)和Owlii(Owlii dynamic human mesh sequence dataset)3个数据集上与其他5种方法进行比较。相对MPEG(moving picture experts group)提出的点云压缩标准V-PCC(video-based point cloud compression),BD-Rate(bjontegaard delta rate)分别增加了41%、54%和33%。本文网络的编码运行时间与G-PCC(geometry-based point cloud compression)相当,仅为V-PCC的2.8%。针对颜色信息压缩,本文网络在低比特率下的YUV-PSNR(YUV peak signal to noise ratio)性能优于G-PCC中基于八叉树的颜色压缩方法。结论本文网络在几何压缩和颜色压缩上优于主流的点云压缩方法,能在速率较小的情况下保留更多原始点云信息。
摘要:目的随着虚拟现实技术的发展,在虚拟场景中,基于多智能体的逃生路径规划已成为关键技术之一。与传统的火灾演习相比,采用基于虚拟现实的方法完成火灾逃生演练具有诸多优势,如成本低、代价小、可靠性高等,但仍有一定的局限性,为此,提出一种改进的双层深度Q网络(deep Q network,DQN)架构的路径规划算法。方法基于两个结构相同的双Q网络,优化了经验池的生成方法和探索策略,并在奖励中增加火灾这样的环境因素对智能体的影响。同时,为了提高疏散的安全性和效率,提出了一种基于改进的K-medoids算法的多智能体分组策略方法。结果相关实验表明提出的改进的双层深度Q网络架构收敛速度更快,学习更加稳定,模型性能得到有效提升。综合考虑火灾场景下智能体的疏散效率和疏散安全性,使用指标平均健康疏散值(average health evacuation value, AHEP)评估疏散效果,相较于传统的路径规划方法A-STAR(a star search algorithm)和DIJKSTRA(Dijkstra’s algorithm)分别提高了84%和104%;与基于火灾场景改进的扩展A-STAR和Dijkstra-ACO(Dijkstra and ant colony optimization)混合算法比较,分别提高了30%和21%;与考虑火灾影响的DQN算法相比,提高了20%,疏散效率和安全性都得到提高,规划的路径疏散效果更好。通过比较不同分组模式下的疏散效果,验证了对多智能体合适分组可以提高智能体疏散效率。结论提出的算法优于目前大多数常用的方法,显著提高了疏散的效率和安全性。