摘要:目的当前大多数的混沌图像加密算法采用与明文相关的对称加密方式,存在密钥冗余以及一次一密模式难以实现的问题,为此,提出一种新的椭圆曲线与自适应DNA(deoxyribonucleic acid)编码结合的混沌图像加密算法。方法算法利用椭圆曲线的公钥密码体制达成密钥共识,结合4维Lorenz超混沌系统产生共识密钥序列用于自适应DNA编码加密,在DNA编解码的扩散过程中内嵌中间密文状态反馈的动态扩散—自适应置换结构以抵抗分割攻击与选择明文攻击,加密过程的密文状态在解密端能够自适应同步,无需额外传输。结果算法的密钥空间为2256,足以抵抗穷举攻击。通过对多幅不同尺寸的测试图像进行仿真,比特变化率(number of bit change rate,NBCR)均接近50%,密文各方向上的相邻像素相关性均接近于0,信息熵接近理想值8,并且全部通过NIST SP800-22随机性测试以及抗差分攻击分析。其他混沌图像加密算法进行对比分析,结果表明,本文算法具有极高的实用性和安全性。结论本文算法完善了密钥冗余的问题,提高了算法的可行性,同时通过实验验证了算法的安全性,适合用于对各种尺寸的图像进行加密及相关的信息安全保障。
摘要:目的无监督行人重识别可缓解有监督方法中数据集标注成本高的问题,其中无监督跨域自适应是最常见的行人重识别方案。现有UDA(unsupervised domain adaptive)行人重识别方法在聚类过程中容易引入伪标签噪声,存在对相似人群区分能力差等问题。方法针对上述问题,基于特征具有类内收敛性、类内连续性与类间外散性的特点,提出了一种基于近邻优化的跨域无监督行人重识别方法,首先采用有监督方法得到源域预训练模型,然后在目标域进行无监督训练。为增强模型对高相似度行人的辨识能力,设计了邻域对抗损失函数,任意样本与其他样本构成样本对,使类别确定性最强的一组样本对与不确定性最强的一组样本对之间进行对抗。为使类内样本特征朝着同一方向收敛,设计了特征连续性损失函数,将特征距离曲线进行中心归一化处理,在维持特征曲线固有差异的同时,拉近样本k邻近特征距离。结果消融实验结果表明损失函数各部分的有效性,对比实验结果表明,提出方法性能较已有方法更具优势,在Market-1501(1501 identities dataset from market)和DukeMTMC-reID(multi-target multi-camera person re-identification dataset from Duke University)数据集上的Rank-1和平均精度均值(mean average precision,mAP)指标分别达到了92.8%、84.1%和83.9%、71.1%。结论提出方法设计了邻域对抗损失与邻域连续性损失函数,增强了模型对相似人群的辨识能力,从而有效提升了行人重识别的性能。
摘要:目的螺栓是输电线路中数量最多的紧固件,一旦出现缺陷就会影响电力系统的稳定运行。针对螺栓缺陷自动检测中存在的类内多样性和类间相似性挑战,提出了一种融合先验信息和特征约束的Faster R-CNN(faster regions with convolutional neural network)模型训练方法。方法在航拍巡检图像预处理阶段,设计了基于先验信息的感兴趣区域提取算法,能够提取被识别目标的上下文区域,从而减少模型训练阶段的数据量,帮助模型在训练阶段关注重点区域,提高其特征提取能力。在模型训练阶段,首先通过费舍尔损失约束Faster R-CNN模型的输出特征生成,使样本特征具有较小的类内距离和较大的类间间隔;然后采用K近邻算法处理样本特征得到K近邻概率,将其作为难易样本的指示以引导模型后续更加关注难样本。结果在真实航拍巡检图像构建的螺栓数据集上进行测试,与基线模型相比,本文模型使螺栓识别的平均精度均值(mean average precision,mAP)提高了6.4%,其中正常螺栓识别的平均精度(average precision,AP)提高了0.9%,缺陷螺栓识别的平均精度提高了12%。结论提出的融合先验信息和特征约束的输电杆塔螺栓缺陷检测方法在缺陷螺栓识别上获得了良好的效果,为实现输电线路螺栓缺陷的自动检测奠定了良好的基础。
摘要:目的针对激光雷达点云稀疏性导致小目标检测精度下降的问题,提出一种伪激光点云增强技术,利用图像与点云融合,对稀疏的小目标几何信息进行补充,提升道路场景下三维目标检测性能。方法首先,使用深度估计网络获取双目图像的深度图,利用激光点云对深度图进行深度校正,减少深度估计误差;其次,采用语义分割的方法获取图像的前景区域,仅将前景区域对应的深度图映射到三维空间中生成伪激光点云,提升伪激光点云中前景点的数量占比;最后,根据不同的观测距离对伪激光点云进行不同线数的下采样,并与原始激光点云进行融合作为最终的输入点云数据。结果在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)数据集上的实验结果表明,该方法能够提升多个最新网络框架的小目标检测精度,以典型网络SECOND(sparsely embedded convolutional detection)、MVX-Net(multimodal voxelnet for 3D object detection)、Voxel-RCNN为例,在困难等级下,三维目标检测精度分别获得8.65%、7.32%和6.29%的大幅提升。结论该方法适用于所有以点云为输入的目标检测网络,并显著提升了多个目标检测网络在道路场景下的小目标检测性能。该方法具备有效性与通用性。
摘要:目的基于图像的驾驶员分心行为识别可认为是一种二级图像子分类问题,与传统的图像分类不同,驾驶员分心识别任务中的各类区别比较微小,如区分一幅图像是在弄头发还是打电话完全取决于驾驶员手上是否有手机这个物体,即图像中的较小区域就决定了该图像的类别。对于那些图像差异较小的类别,通常的图像分类方法无法高精度地区分。因此,为了能够学习到不同驾驶行为之间微小的表征区别,提出了一种姿态引导的实例感知学习网络用于驾驶员行为识别。方法首先利用人体检测器检测到人体框,利用人体姿态估计获取具有辨识性的手部相关区域,将人体和手部区域的特征作为实例级别的特征,以此设计一种实例感知学习模块充分获取不同层级的上下文语义信息。其次利用手部相关特征构建双通道交互模块来对关键空间信息进行表征的同时,对视觉特征进行优化,组建成一个多分支的深度神经网络。最后将不同分支的结果进行融合。结果实验结果表明,本文方法在AUC(American University in Cairo)数据集和自建三客一危数据集上的测试准确率分别达到96.17%和96.97%,相较于未使用实例感知模块和通道交互的模型,准确率显著改善,在复杂数据集下识别效果提升明显。结论本文提出的姿态引导的实例感知学习网络,在一定程度上降低了环境的干扰,准确度高,能辅助驾驶员安全行车,减少交通事故的发生。