摘要:目的红外与可见光图像融合的目标是获得具有完整场景表达能力的高质量融合图像。由于深度特征具有良好的泛化性、鲁棒性和发展潜力,很多基于深度学习的融合方法被提出,在深度特征空间进行图像融合,并取得了良好的效果。此外,受传统基于多尺度分解的融合方法的启发,不同尺度的特征有利于保留源图像的更多信息。基于此,提出了一种新颖的渐进式红外与可见光图像融合框架(progressive fusion, ProFuse)。方法该框架以U-Net为骨干提取多尺度特征,然后逐渐融合多尺度特征,既对包含全局信息的高层特征和包含更多细节的低层特征进行融合,也在原始尺寸特征(保持更多细节)和其他更小尺寸特征(保持语义信息)上进行融合,最终逐层重建融合图像。结果实验在TNO(Toegepast Natuurwetenschappelijk Onderzoek)和INO(Institut National D’optique)数据集上与其他6种方法进行比较,在选择的6项客观指标上,本文方法在互信息(mutual Information,MI)上相比FusionGAN(generative adversarial network for infrared and visible image fusion)方法提升了115.64%,在标准差(standard deviation,STD)上相比于GANMcC(generative adversarial network with multiclassification constraints for infrared and visible image fusion)方法提升了19.93%,在边缘保存度Qabf上相比DWT(discrete wavelet transform)方法提升了1.91%,在信息熵(entopy,EN)上相比GANMcC方法提升了1.30%。主观结果方面,本文方法得到的融合结果具有更高的对比度、更多的细节和更清晰的目标。结论大量实验表明了本文方法的有效性和泛化性。与其他先进的方法相比,本文方法在主观和客观评估上都显示出更好的结果。
摘要:目的红外图像在工业中发挥着重要的作用。但是由于技术原因,红外图像的分辨率一般较低,限制了其普遍适用性。许多低分辨率红外传感器都和高分辨率可见光传感器搭配使用,一种可行的思路是利用可见光传感器捕获的高分辨率图像,辅助红外图像进行超分辨率重建。方法本文提出了一种使用高分辨率可见光图像引导红外图像进行超分辨率的神经网络模型,包含两个模块:引导Transformer模块和超分辨率重建模块。考虑到红外和可见光图像对一般存在一定的视差,两者之间是不完全对齐的,本文使用基于引导Transformer的信息引导与融合方法,从高分辨率可见光图像中搜索相关纹理信息,并将这些相关纹理信息与低分辨率红外图像的信息融合得到合成特征。然后这个合成特征经过后面的超分辨率重建子网络,得到最终的超分辨率红外图像。在超分辨率重建模块,本文使用通道拆分策略来消除深度模型中的冗余特征,减少计算量,提高模型性能。结果本文方法在FLIR-aligned数据集上与其他代表性图像超分辨率方法进行对比。实验结果表明,本文方法可以取得优于对比方法的超分辨率性能。客观结果上,本文方法比其他红外图像引导超分辨率方法在峰值信噪比(peak signal to noise ratio, PSNR)上高0.75 dB; 主观结果上,本文方法能够生成视觉效果更加逼真、纹理更加清晰的超分辨率图像。消融实验证明了所提算法各个模块的有效性。结论本文提出的引导超分辨率算法能够充分利用红外图像和可见光图像之间的关联信息,同时获得红外图像的高质量超分辨率重建结果。
摘要:目的针对肝脏肿瘤检测方法对小尺寸肿瘤的检测能力较差和检测网络参数量过大的问题,在改进EfficientDet的基础上,提出用于肝脏肿瘤检测的多尺度自适应融合网络MAEfficientDet-D0(multiscale adaptive fusion network-D0)和MAEfficientDet-D1。方法首先,利用高效倒置瓶颈块替换EfficientDet骨干网络的移动倒置瓶颈块,在保证计算效率的同时,有效解决移动倒置瓶颈块的挤压激励网络维度和参数量较大的问题;其次,在特征融合网络前添加多尺度块,以扩大网络有效感受野,提高体积偏小病灶的检测能力;最后,提出多通路自适应加权特征融合块,以解决低层病灶特征图的语义偏弱和高层病灶特征图的细节感知能力较差的问题,提高了特征的利用率和增强模型对小尺寸肝脏肿瘤的检测能力。结果实验表明,高效倒置瓶颈层在少量增加网络复杂性的同时,可以有效提高网络对模糊图像的检测精度;多通路自适应加权特征融合模块可以有效融合含有上下文信息的深层特征和含有细节信息的浅层特征,进一步提高了模型对病灶特征的表达能力;多尺度自适应融合网络对肝脏肿瘤检测的效果明显优于对比模型。在LiTS(liver tumor segmentation)数据集上,MAEfficientDet-D0和MAEfficientDet-D1的mAP(mean average precision)分别为86.30%和87.39%;在3D-IRCADb(3D image reconstruction for comparison of algorithm database)数据集上,MAEfficientDet-D0和MAEfficientDet-D1的mAP分别为85.62%和86.46%。结论本文提出的MAEfficientDet系列网络提高了特征的利用率和小病灶的检测能力。相比主流检测网络,本文算法具有较好的检测精度和更少的参数量、计算量和运行时间,对肝脏肿瘤检测模型部署于嵌入式设备和移动终端设备具有重要参考价值。
摘要:目的多光谱图像融合是遥感领域中的重要研究问题,变分模型方法和深度学习方法是目前的研究热点,但变分模型方法通常采用线性先验构建融合模型,难以描述自然场景复杂非线性关系,导致成像模型准确性较低,同时存在手动调参的难题;而主流深度学习方法将融合过程当做一个黑盒,忽视了真实物理成像机理,因此,现有融合方法的性能依然有待提升。为了解决上述问题,提出了一种基于可解译深度网络的多光谱图像融合方法。方法首先构建深度学习先验描述融合图像与全色图像之间的关系,基于多光谱图像是融合图像下采样结果这一认知构建数据保真项,结合深度学习先验和数据保真项建立一种新的多光谱图像融合模型,提升融合模型准确性。采用近端梯度下降法对融合模型进行求解,进一步将求解步骤映射为具有明确物理成像机理的可解译深度网络架构。结果分别在Gaofen-2和GeoEye-1遥感卫星仿真数据集,以及QuickBird遥感卫星真实数据集上进行了主客观对比实验。相对于经典方法,本文方法的主观视觉效果有了显著提升。在Gaofen-2和GeoEye-1遥感卫星仿真数据集,相对于性能第2的方法,本文方法的客观评价指标全局相对无量纲误差(relative dimensionless global error in synthesis,ERGAS)有效减小了7.58%和4.61%。结论本文提出的可解译深度网络,综合了变分模型方法和深度学习方法的优点,在有效保持光谱信息的同时较好地增强融合图像空间细节信息。