摘要:目的模型功能窃取攻击是人工智能安全领域的核心问题之一,目的是利用有限的与目标模型有关的信息训练出性能接近的克隆模型,从而实现模型的功能窃取。针对此类问题,一类经典的工作是基于生成模型的方法,这类方法利用生成器生成的图像作为查询数据,在同一查询数据下对两个模型预测结果的一致性进行约束,从而进行模型学习。然而此类方法生成器生成的数据常常是人眼不可辨识的图像,不含有任何语义信息,导致目标模型的输出缺乏有效指导性。针对上述问题,提出一种新的模型窃取攻击方法,实现对图像分类器的有效功能窃取。方法借助真实的图像数据,利用生成对抗网络(generative adversarial net,GAN)使生成器生成的数据接近真实图像,加强目标模型输出的物理意义。同时,为了提高克隆模型的性能,基于对比学习的思想,提出一种新的损失函数进行网络优化学习。结果在两个公开数据集CIFAR-10(Canadian Institute for Advanced Research-10)和SVHN(street view house numbers)的实验结果表明,本文方法能够取得良好的功能窃取效果。在CIFAR-10数据集上,相比目前较先进的方法,本文方法的窃取精度提高了5%。同时,在相同的查询代价下,本文方法能够取得更好的窃取效果,有效降低了查询目标模型的成本。结论本文提出的模型窃取攻击方法,从数据真实性的角度出发,有效提高了针对图像分类器的模型功能窃取攻击效果,在一定程度上降低了查询目标模型代价。
摘要:目的人脸正面化重建是当前视觉领域的热点问题。现有方法对于模型的训练数据具有较高的需求,如精确的输入输出图像配准、完备的人脸先验信息等。但该类数据采集成本较高,可应用的数据集规模较小,直接将现有方法应用于真实的非受控场景中往往难以取得理想表现。针对上述问题,提出了一种无图像配准和先验信息依赖的任意视角人脸图像正面化重建方法。方法首先提出了一种具有双输入路径的人脸编码网络,分别用于学习输入人脸的视觉表征信息以及人脸的语义表征信息,两者联合构造出更加完备的人脸表征模型。随后建立了一种多类别表征融合的解码网络,通过以视觉表征为基础、以语义表征为引导的方式对两种表征信息进行融合,融合后的信息经过图像解码即可得到最终的正面化人脸图像重建结果。结果首先在Multi-PIE(multi-pose, illumination and expression)数据集上与8种较先进方法进行了性能评估。定量和定性的实验结果表明,所提方法在客观指标以及视觉质量方面均优于对比方法。此外,相较于当前性能先进的基于光流的特征翘曲模型(flow-based feature warping model,FFWM)方法,本文方法能够节省79%的参数量和42%的计算操作数。进一步基于CASIA-WebFace(Institute of Automation, Chinese Academy of Sciences—WebFace)数据集对所提出方法在真实非受控场景中的表现进行了评估,识别精度超过现有方法10%以上。结论本文提出的双层级表征集成推理网络,能够挖掘并联合人脸图像的底层视觉特征以及高层语义特征,充分利用图像自身信息,不仅以更低的计算复杂度取得了更优的视觉质量和身份识别精度,而且在非受控的场景下同样展现出了出色的泛化性能。