摘要:图像/视频的获取及传输过程中,由于物理环境及算法性能的限制,其质量难免会出现无法预估的衰减,导致其在实际场景中的应用受到限制,并对人的视觉体验造成显著影响。因此,作为计算机视觉领域的一项重要任务,图像/视频质量评价应运而生。其目的在于通过构建计算机数学模型来衡量图像/视频中的失真信息以判断其质量的好坏,达到自动预测质量的效果。在城市生活、交通监控以及多媒体直播等多个场景中具有广泛的应用前景。图像/视频质量评价研究取得了长足的发展,为计算机视觉领域中其他任务提供了一定的便利。本文在广泛调研前人研究的基础上,回顾了整个图像/视频质量评价领域的发展历程,分别列举了传统方法和深度学习方法中一些具有里程碑意义的算法和影响力较大的算法,然后从全参考、半参考和无参考3个方面分别对图像/视频质量评价领域的一些文献进行了综述,具体涉及的方法包含基于结构信息、基于人类视觉系统和基于自然图像统计的方法等;在LIVE(laboratory for image & video engineering)、CSIQ(categorical subjective image quality database)、TID2013等公开数据集的基础上,基于SROCC(Spearman rank order correlation coefficient)、PLCC(Pearson linear correlation coefficient)等评价指标,对一些具有代表性算法的性能进行了分析;最后总结当前质量评价领域仍存在的一些挑战与问题,并对其进行了展望。本文旨在为质量评价领域的研究人员提供一个较全面的参考。
摘要:目的在沙尘天气条件下,由于大气中悬浮微粒对入射光线的吸收和散射,户外计算机视觉系统所采集图像通常存在颜色偏黄失真和低对比度等问题,严重影响户外计算机视觉系统的性能。为此,提出一种带色彩恢复的沙尘图像卷积神经网络增强方法,由一个色彩恢复子网和一个去尘增强子网组成。方法采用提出的色彩恢复子网(sand dust color correction, SDCC)校正沙尘图像的偏色,将颜色校正后的图像作为条件,输入到由自适应实例归一化残差块组成的去尘增强子网中,对沙尘图像进行增强处理。本文还提出一种基于物理光学模型的沙尘图像合成方法,并采用该方法构建了大规模的配对沙尘图像数据集。结果对大量沙尘图像的实验结果表明,所提出的沙尘图像增强方法能很好地去除图像中的偏色和沙尘,获得正常的视觉颜色和细节清晰的图像。进一步的对比实验表明,该方法能取得优于对比方法的增强图像。结论本文所提出的沙尘图像增强方法能很好地消除整体的黄色色调和尘霾现象,获得正常的视觉色彩和细节清晰的图像。
摘要:目的因为有雨图像中雨线存在方向、密度和大小等各方面的差异,单幅图像去雨依旧是一个充满挑战的研究问题。现有算法在某些复杂图像上仍存在过度去雨或去雨不足等问题,部分复杂图像的边缘高频信息在去雨过程中被抹除,或图像中残留雨成分。针对上述问题,本文提出三维注意力和Transformer去雨网络(three-dimension attention and Transformer deraining network,TDATDN)。方法将三维注意力机制与残差密集块结构相结合,以解决残差密集块通道高维度特征融合问题;使用Transformer计算特征全局关联性;针对去雨过程中图像高频信息被破坏和结构信息被抹除的问题,将多尺度结构相似性损失与常用图像去雨损失函数结合参与去雨网络训练。结果本文将提出的TDATDN网络在Rain12000雨线数据集上进行实验。其中,峰值信噪比(peak signal to noise ratio,PSNR)达到33.01 dB,结构相似性(structural similarity,SSIM)达到0.927 8。实验结果表明,本文算法对比以往基于深度学习的神经网络去雨算法,显著改善了单幅图像去雨效果。结论本文提出的TDATDN图像去雨网络结合了3D注意力机制、Transformer和编码器—解码器架构的优点,可较好地完成单幅图像去雨工作。
摘要:目的虹膜识别是一种稳定可靠的生物识别技术,但虹膜图像的采集过程会受到多种干扰造成图像中虹膜被遮挡,比如光斑遮挡、上下眼皮遮挡等。这些遮挡的存在,一方面会导致虹膜信息缺失,直接影响虹膜识别的准确性,另一方面会影响预处理(如定位、分割)的准确性,间接影响虹膜识别的准确性。为解决上述问题,本文提出区域注意力机制引导的双路虹膜补全网络,通过遮挡区域的像素补齐,可以显著减少被遮挡区域对虹膜图像预处理和识别的影响,进而提升识别性能。方法使用基于Transformer的编码器和基于卷积神经网络(convolutional neural network, CNN)的编码器提取虹膜特征,通过融合模块将两种不同编码器提取的特征进行交互结合,并利用区域注意力机制分别处理低层和高层特征,最后利用解码器对处理后的特征进行上采样,恢复遮挡区域,生成完整图像。结果在CASIA(Institute of Automation,Chinese Academy of Sciences)虹膜数据集上对本文方法进行测试。在虹膜识别性能方面,本文方法在固定遮挡大小为64×64像素的情况下,遮挡补全结果的TAR(true accept rate)(0.1%FAR(false accept rate))为63%,而带有遮挡的图像仅为19.2%,提高了43.8%。结论本文所提出的区域注意力机制引导的双路虹膜补全网络,有效结合Transformer的全局建模能力和CNN的局部建模能力,并使用针对遮挡的区域注意力机制,实现了虹膜遮挡区域补全,进一步提高了虹膜识别的性能。