摘要:目的肝纤维化是众多慢性肝脏疾病的常见表现,如不及时治疗可发展为肝硬化甚至引发肝癌。肝纤维化的准确评估对临床治疗和预后评估等至关重要。目前,肝纤维化的诊断通过肝穿活检判断,有创且有并发症危险。为此,基于影像学的无创诊断方法越来越受到关注。本文提出一种基于通道注意力与空间注意力机制改进的用于肝纤维化区域的自动化分割U-Net(liver fibrosis region segmentation network based on spatial and channel attention mechanisms,LFSCA-UNet)。方法依据Attention U-Net的改进方式,围绕U-Net的跳跃连接结构进行基于注意力的改进,在AG(attention gate)的基础上,加入以ECA(efficient channel attention)模块为实现方式的通道注意力机制,依据加入ECA的位置,LFSCA-UNet分为A、B、C共3个子型。结果在肝数据集上与其他实验网络进行评估对比,本文提出的LFSCA-UNet网络结构平均Dice系数达到了93.33%,相比原始U-Net的Dice系数提高了0.539 6%。结论本文方法将空间注意力机制与通道注意力机制进行结合,有效提高了肝纤维化区域的分割精度,对空间注意力模块使用通道注意力模块优化输入和输出,增加了网络的稳定性,提升了网络的整体效果。
摘要:目的针对Faster R-CNN(faster region convolutional neural network)模型在肺部计算机断层扫描(computed tomography,CT)图磨玻璃密度影目标检测中小尺寸目标无法有效检测与模型检测速度慢等问题,对Faster R-CNN模型特征提取网络与区域候选网络(region proposal network,RPN)提出了改进方法。方法使用特征金字塔网络替换Faster R-CNN的特征提取网络,生成特征金字塔;使用基于位置映射的RPN产生锚框,并计算每个锚框的中心到真实物体中心的远近程度(用参数“中心度”表示),对RPN判定为前景的锚框进一步修正位置作为候选区域(region proposal),并将RPN预测的前景/背景分类置信度与中心度结合作为候选区域的排序依据,候选区域经过非极大抑制筛选出感兴趣区域(region of interest,RoI)。将RoI对应的特征区域送入分类回归网络得到检测结果。结果实验结果表明,在新冠肺炎患者肺部CT图数据集上,本文改进的模型相比于Faster R-CNN模型,召回率(recall)增加了7%,平均精度均值(mean average precision,mAP)增加了3.9%,传输率(frames per second,FPS)由5帧/s提升至9帧/s。特征金字塔网络的引入明显提升了模型的召回率与mAP指标,基于位置映射的RPN显著提升了模型的检测速度。与其他最新改进的目标检测模型相比,本文改进的模型保持了双阶段目标检测模型的高精度,并拉近了与单阶段目标检测模型在检测速度指标上的距离。结论本文改进的模型能够有效检测到患者肺部CT图的磨玻璃密度影目标区域,对小尺寸目标同样适用,可以快速有效地为医生提供辅助诊断。
摘要:目的大肠息肉和溃疡性结肠炎(ulcerative colitis,UC)是常见的大肠疾病,发病率高,检测需求大,且容易在临床中被漏诊和误诊。因此研究用于内窥镜大肠病变图像分类的计算机辅助诊断(computer-aided diagnosis,CAD)系统十分重要。局域约束线性编码(locality constrained linear coding,LLC)在图像分类领域展现了优异的性能,能够完成对内窥镜中病变图像的分类。但是由于肠胃内窥镜图像中存在的一些微小息肉等病理征状与肠壁十分相似,LLC在这一场景下的性能有待提高。方法由于码本的设计对细微差别检测能力影响大,本文通过改进LLC中的码本来实现更精确的大肠病变分类,其中原始码本被改进为带有先验权重影响的共享码本。主要思想是尝试尽可能多地使用代表私有部分的码本。本文方法重新排列了码本的列,将较少使用的原子排列在码本的后面,成为共享码本。并利用原子使用的频率计算权重,通过在线字典学习的方法,获得具有先验权重的共享码本。利用这一新码本对特征进行编码能实现更为高效精确的图像分类。结果为避免过拟合,将部分Kvasir数据集与部分医院合作数据集合并使用。实验在2 600幅内窥镜图像上进行正常、息肉和UC图像的三分类实验,与压缩感知空间金字塔池化(compressed sensing spatial pyramid pooling,CSSPP)方法、私有共享字典学习算法(category-specific dictionary and shared dictionary learning,CSDL)、环形空间金字塔模型方法(circular inner ring partitioning,CIRP)、显著性和自适应局部约束线性编码(saliency and adaptive locality constrained linear coding,SALLC)和AlexNet迁移学习的网络比较,本文方法的总体分类准确率为93.82%,较对比方法分别高了2.33%、2.21%、1.91%、0.8%、0.07%。结论本文所提出的先验权重共享码本,综合了词汇袋模型和共享字典的思想,使得对内窥镜图像中相似图片的分类更加精确。
摘要:目的病理组织切片检查是诊断胃癌的金标准,准确发现切片中的病变区域有助于及时确诊并开展后续治疗。然而,由于病理切片图像的复杂性、病变细胞与正常细胞形态差异过小等问题,传统的语义分割模型并不能达到理想的分割效果。基于此,本文提出了一种针对病理切片的语义分割方法ADEU-Net(attention-dilated-efficient U-Net++),提高胃癌区域分割的精度,实现端到端分割。方法ADEU-Net使用经过迁移学习的EfficientNet作为编码器部分,增强图像特征提取能力。解码器采用了简化的U-Net++短连接方式,促进深浅层特征融合的同时减少网络参数量,并重新设计了其中的卷积模块提高梯度传递能力。中心模块使用空洞卷积对编码器输出结果进行多尺度的特征提取,增强模型对不同尺寸切片的鲁棒性。编码器与解码器的跳跃连接使用了注意力模块,以抑制背景信息的特征响应。结果在2020年“华录杯”江苏大数据开发与应用大赛(简称“SEED”大赛)数据集中与其他经典方法比较,验证了一些经典模型在该分割任务中难以拟合的问题,同时实验得出修改特征提取方式对结果有较大提升,本文方法在分割准确度上比原始U-Net提高了18.96%。在SEED数据集与2017年中国大数据人工智能创新创业大赛(brain of things,BOT)数据集中进行了消融实验,验证了本文方法中各个模块均有助于提高病理切片的分割效果。在SEED数据集中,本文方法ADEU-Net比基准模型在Dice系数、准确度、敏感度和精确度上分别提升了5.17%、2.7%、3.69%、4.08%;在BOT数据集中,本文方法的4项指标分别提升了0.47%、0.06%、4.30%、6.08%。结论提出的ADEU-Net提升了胃癌病理切片病灶点分割的精度,同时具有良好的泛化性能。