摘要:目的基于哈希的跨模态检索方法因其检索速度快、消耗存储空间小等优势受到了广泛关注。但是由于这类算法大都将不同模态数据直接映射至共同的汉明空间,因此难以克服不同模态数据的特征表示及特征维度的较大差异性,也很难在汉明空间中同时保持原有数据的结构信息。针对上述问题,本文提出了耦合保持投影哈希跨模态检索算法。方法为了解决跨模态数据间的异构性,先将不同模态的数据投影至各自子空间来减少模态“鸿沟”,并在子空间学习中引入图模型来保持数据间的结构一致性;为了构建不同模态之间的语义关联,再将子空间特征映射至汉明空间以得到一致的哈希码;最后引入类标约束来提升哈希码的判别性。结果实验在3个数据集上与主流的方法进行了比较,在Wikipedia数据集中,相比于性能第2的算法,在任务图像检索文本(I to T)和任务文本检索图像(T to I)上的平均检索精度(mean average precision,mAP)值分别提升了6%和3%左右;在MIRFlickr数据集中,相比于性能第2的算法,优势分别为2%和5%左右;在Pascal Sentence数据集中,优势分别为10%和7%左右。结论本文方法可适用于两个模态数据之间的相互检索任务,由于引入了耦合投影和图模型模块,有效提升了跨模态检索的精度。
摘要:目的现有的深度学习模型往往需要大规模的训练数据,而小样本分类旨在识别只有少量带标签样本的目标类别。作为目前小样本学习的主流方法,基于度量的元学习方法在训练阶段大多没有使用小样本目标类的样本,导致这些模型的特征表示不能很好地泛化到目标类。为了提高基于元学习的小样本图像识别方法的泛化能力,本文提出了基于类别语义相似性监督的小样本图像识别方法。方法采用经典的词嵌入模型GloVe(global vectors for word representation)学习得到图像数据集每个类别英文名称的词嵌入向量,利用类别词嵌入向量之间的余弦距离表示类别语义相似度。通过把类别之间的语义相关性作为先验知识进行整合,在模型训练阶段引入类别之间的语义相似性度量作为额外的监督信息,训练一个更具类别样本特征约束能力和泛化能力的特征表示。结果在miniImageNet和tieredImageNet两个小样本学习基准数据集上进行了大量实验,验证提出方法的有效性。结果显示在miniImageNet数据集5-way 1-shot和5-way 5-shot设置上,提出的方法相比原型网络(prototypical networks)分类准确率分别提高1.9%和0.32%;在tieredImageNet数据集5-way 1-shot设置上,分类准确率相比原型网络提高0.33%。结论提出基于类别语义相似性监督的小样本图像识别模型,提高小样本学习方法的泛化能力,提高小样本图像识别的准确率。
摘要:目的双目视觉是目标距离估计问题的一个很好的解决方案。现有的双目目标距离估计方法存在估计精度较低或数据准备较繁琐的问题,为此需要一个可以兼顾精度和数据准备便利性的双目目标距离估计算法。方法提出一个基于R-CNN(region convolutional neural network)结构的网络,该网络可以实现同时进行目标检测与目标距离估计。双目图像输入网络后,通过主干网络提取特征,通过双目候选框提取网络以同时得到左右图像中相同目标的包围框,将成对的目标框内的局部特征输入目标视差估计分支以估计目标的距离。为了同时得到左右图像中相同目标的包围框,使用双目候选框提取网络代替原有的候选框提取网络,并提出了双目包围框分支以同时进行双目包围框的回归;为了提升视差估计的精度,借鉴双目视差图估计网络的结构,提出了一个基于组相关和3维卷积的视差估计分支。结果在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上进行验证实验,与同类算法比较,本文算法平均相对误差值约为3.2%,远小于基于双目视差图估计算法(11.3%),与基于3维目标检测的算法接近(约为3.9%)。另外,提出的视差估计分支改进对精度有明显的提升效果,平均相对误差值从5.1%下降到3.2%。通过在另外采集并标注的行人监控数据集上进行类似实验,实验结果平均相对误差值约为4.6%,表明本文方法可以有效应用于监控场景。结论提出的双目目标距离估计网络结合了目标检测与双目视差估计的优势,具有较高的精度。该网络可以有效运用于车载相机及监控场景,并有希望运用于其他安装有双目相机的场景。
摘要:目的获取场景图像中的文本信息对理解场景内容具有重要意义,而文本检测是文本识别、理解的基础。为了解决场景文本识别中文字定位不准确的问题,本文提出了一种高效的任意形状文本检测器:非局部像素聚合网络。方法该方法使用特征金字塔增强模块和特征融合模块进行轻量级特征提取,保证了速度优势;同时引入非局部操作以增强骨干网络的特征提取能力,使其检测准确性得以提高。非局部操作是一种注意力机制,能捕捉到文本像素之间的内在关系。此外,本文设计了一种特征向量融合模块,用于融合不同尺度的特征图,使尺度多变的场景文本实例的特征表达得到增强。结果本文方法在3个场景文本数据集上与其他方法进行了比较,在速度和准确度上均表现突出。在ICDAR(International Conference on Document Analysis and Recognition)2015数据集上,本文方法比最优方法的F值提高了0.9%,检测速度达到了23.1帧/s;在CTW(Curve Text in the Wild)1500数据集上,本文方法比最优方法的F值提高了1.2%,检测速度达到了71.8帧/s;在Total-Text数据集上,本文方法比最优方法的F值提高了1.3%,检测速度达到了34.3帧/s,远远超出其他方法。结论本文方法兼顾了准确性和实时性,在准确度和速度上均达到较高水平。
摘要:目的全景图像的质量评价和传输、处理过程并不是在同一个空间进行的,传统的评价算法无法准确地反映用户在观察球面场景时产生的真实感受,针对观察空间与处理空间不一致的问题,本文提出一种基于相位一致性的全参考全景图像质量评价模型。方法将平面图像进行全景加权,使得平面上的特征能准确反映球面空间质量畸变。采用相位一致性互信息的相似度获取参考图像和失真图像的结构相似度。接着,利用相位一致性局部熵的相似度反映参考图像和失真图像的纹理相似度。将两部分相似度融合可得全景图像的客观质量分数。结果实验在全景质量评价数据集OIQA(omnidirectional image quality assessment)上进行,在原始图像中引入4种不同类型的失真,将提出的算法与6种主流算法进行性能对比,比较了基于相位信息的一致性互信息和一致性局部熵,以及评价标准依据4项指标。实验结果表明,相比于现有的6种全景图像质量评估算法,该算法在PLCC(Pearson linear correlation coefficient)和SRCC(Spearman rank order correlation coefficient)指标上比WS-SSIM(weighted-to-spherically-uniform structural similarity)算法高出0.4左右,并且在RMSE(root of mean square error)上低0.9左右,4项指标最优,能够获得更好的拟合效果。结论本文算法解决了观察空间和映射空间不一致的问题,并且融合了基于人眼感知的多尺度互信息相似度和局部熵相似度,获得与人眼感知更为一致的客观分数,评价效果更为准确,更加符合人眼视觉特征。
摘要:目的在人体行为识别算法的研究领域,通过视频特征实现零样本识别的研究越来越多。但是,目前大部分研究是基于单模态数据展开的,关于多模态融合的研究还较少。为了研究多种模态数据对零样本人体动作识别的影响,本文提出了一种基于多模态融合的零样本人体动作识别(zero-shot human action recognition framework based on multimodel fusion,ZSAR-MF)框架。方法本文框架主要由传感器特征提取模块、分类模块和视频特征提取模块组成。具体来说,传感器特征提取模块使用卷积神经网络(convolutional neural network,CNN)提取心率和加速度特征;分类模块利用所有概念(传感器特征、动作和对象名称)的词向量生成动作类别分类器;视频特征提取模块将每个动作的属性、对象分数和传感器特征映射到属性—特征空间中,最后使用分类模块生成的分类器对每个动作的属性和传感器特征进行评估。结果本文实验在Stanford-ECM数据集上展开,对比结果表明本文ZSAR-MF模型比基于单模态数据的零样本识别模型在识别准确率上提高了4 %左右。结论本文所提出的基于多模态融合的零样本人体动作识别框架,有效地融合了传感器特征和视频特征,并显著提高了零样本人体动作识别的准确率。
摘要:目的糖尿病性视网膜病变(diabetic retinopathy,DR)是一种常见的致盲性视网膜疾病,需要患者在早期就能够被诊断并接受治疗,否则将会造成永久性的视力丧失。能否检测到视网膜图像中的微小病变如微血管瘤,是糖尿病性视网膜病变分级的关键。然而这些病变过于细小导致使用一般方法难以正确地辨别。为了解决这一问题,本文提出了一种基于多通道注意力选择机制的细粒度分级方法(fine-grained grading method based on multi-channel attention selection,FGMAS)用于糖尿病性视网膜病变的分级。方法该方法结合了细粒度分类方法和多通道注意力选择机制,通过获取局部特征提升分级的准确度。此外考虑到每一层通道特征信息量与分类置信度的关系,本文引入了排序损失以优化每一层通道的信息量,用于获取更加具有信息量的局部区域。结果使用两个公开的视网膜数据集(Kaggle和Messidor)来评估提出的细粒度分级方法和多通道注意力选择机制的有效性。实验结果表明:FGMAS在Kaggle数据集上进行的五级分类任务中相较于现有方法,在平均准确度(average of classification accuracy,ACA)上取得了3.4%10.4%的提升。尤其是对于病变点最小的1级病变,准确率提升了11%18.9%。此外,本文使用FGMAS在Messidor数据集上进行二分类任务。在推荐转诊/不推荐转诊分类上FGMAS得到的准确度(accuracy,Acc)为0.912,比现有方法提升了0.1%1.9%,同时AUC(area under the curve)为0.962,比现有方法提升了0.5%9.9%;在正常/不正常分类上FGMAS得到的准确度为0.909,比现有方法提升了2.9%8.8%,AUC为0.950,比现有方法提升了0.4%8.9%。实验结果表明,本文方法在五分类和二分类上均优于现有方法。结论本文所提细粒度分级模型,综合了细粒度提取局部区域的思路以及多通道注意力选择机制,可以获得较为准确的分级结果。