摘要:图像标题生成与描述的任务是通过计算机将图像自动翻译成自然语言的形式重新表达出来,该研究在人类视觉辅助、智能人机环境开发等领域具有广阔的应用前景,同时也为图像检索、高层视觉语义推理和个性化描述等任务的研究提供支撑。图像数据具有高度非线性和繁杂性,而人类自然语言较为抽象且逻辑严谨,因此让计算机自动地对图像内容进行抽象和总结,具有很大的挑战性。本文对图像简单标题生成与描述任务进行了阐述,分析了基于手工特征的图像简单描述生成方法,并对包括基于全局视觉特征、视觉特征选择与优化以及面向优化策略等基于深度特征的图像简单描述生成方法进行了梳理与总结。针对图像的精细化描述任务,分析了当前主要的图像“密集描述”与结构化描述模型与方法。此外,本文还分析了融合情感信息与个性化表达的图像描述方法。在分析与总结的过程中,指出了当前各类图像标题生成与描述方法存在的不足,提出了下一步可能的研究趋势与解决思路。对该领域常用的MS COCO 2014(Microsoft common objects in context)、Flickr30K等数据集进行了详细介绍,对图像简单描述、图像密集描述与段落描述和图像情感描述等代表性模型在数据集上的性能进行了对比分析。由于视觉数据的复杂性与自然语言的抽象性,尤其是融合情感与个性化表达的图像描述任务,在相关特征提取与表征、语义词汇的选择与嵌入、数据集构建及描述评价等方面尚存在大量问题亟待解决。
摘要:目的人脸姿态偏转是影响人脸识别准确率的一个重要因素,本文利用3维人脸重建中常用的3维形变模型以及深度卷积神经网络,提出一种用于多姿态人脸识别的人脸姿态矫正算法,在一定程度上提高了大姿态下人脸识别的准确率。方法对传统的3维形变模型拟合方法进行改进,利用人脸形状参数和表情参数对3维形变模型进行建模,针对面部不同区域的关键点赋予不同的权值,加权拟合3维形变模型,使得具有不同姿态和面部表情的人脸图像拟合效果更好。然后,对3维人脸模型进行姿态矫正并利用深度学习对人脸图像进行修复,修复不规则的人脸空洞区域,并使用最新的局部卷积技术同时在新的数据集上重新训练卷积神经网络,使得网络参数达到最优。结果在LFW(labeled faces in the wild)人脸数据库和StirlingESRC(Economic Social Research Council)3维人脸数据库上,将本文算法与其他方法进行比较,实验结果表明,本文算法的人脸识别精度有一定程度的提高。在LFW数据库上,通过对具有任意姿态的人脸图像进行姿态矫正和修复后,本文方法达到了96.57%的人脸识别精确度。在StirlingESRC数据库上,本文方法在人脸姿态为±22°的情况下,人脸识别准确率分别提高5.195%和2.265%;在人脸姿态为±45°情况下,人脸识别准确率分别提高5.875%和11.095%;平均人脸识别率分别提高5.53%和7.13%。对比实验结果表明,本文提出的人脸姿态矫正算法有效提高了人脸识别的准确率。结论本文提出的人脸姿态矫正算法,综合了3维形变模型和深度学习模型的优点,在各个人脸姿态角度下,均能使人脸识别准确率在一定程度上有所提高。
摘要:目的为了解决复杂环境中多人姿态估计存在的定位和识别等问题,提高多人姿态估计的准确率,减少算法存在的大量冗余参数,提高姿态估计的运行速率,提出了基于批量归一化层(batch normalization,BN)通道剪枝的多人姿态估计算法(YOLOv3 prune pose estimator,YLPPE)。方法以目标检测算法YOLOv3(you only look once v3)和堆叠沙漏网络(stacked hourglass network,SHN)算法为基础,通过重叠度K-means算法修改YOLOv3网络锚框以更适应行人目标检测,并训练得到Trimming-YOLOv3网络;利用批量归一化层的缩放因子对Trimming-YOLOv3网络进行循环迭代式通道剪枝,设置剪枝阈值与缩放因子,实现较为有效的模型剪枝效果,训练得到Trim-Prune-YOLOv3网络;为了结合单人姿态估计网络,重定义图像尺寸为256×256像素(非正方形图像通过补零实现);再级联4个Hourglass子网络得到堆叠沙漏网络,从而提升整体姿态估计精度。结果利用斯坦福大学的MPⅡ数据集(MPⅡ human pose dataset)进行实验验证,本文算法对姿态估计的准确率达到了83.9%;同时,时间复杂度为O(n2),模型参数量与未剪枝原始YOLOv3相比下降42.9%。结论结合YOLOv3剪枝算法的多人姿态估计方法可以有效减少复杂环境对人体姿态估计的负面影响,实现复杂环境下的多人姿态估计并提高估计精度,有效减少模型冗余参数,提高算法的整体运行速率,能够实现较为准确的多人姿态估计,并具有较好的鲁棒性和泛化能力。
摘要:目的3D点云与以规则的密集网格表示的图像不同,不仅不规则且无序,而且由于输入输出大小和顺序差异,具有密度不均匀以及形状和缩放比例存在差异的特性。为此,提出一种对3D点云进行卷积的方法,将关系形状卷积神经网络(relation-shape convolution neural network,RSCNN)与逆密度函数相结合,并在卷积网络中增添反卷积层,实现了点云更精确的分类分割效果。方法在关系形状卷积神经网络中,将卷积核视为由权重函数和逆密度函数组成的3D点局部坐标的非线性函数。对给定的点,权重函数通过多层感知器网络学习,逆密度函数通过核密度估计(kernel density estimation,KDE)学习,逆密度函数的引入对点云采样率不均匀的情况进行弥补。在点云分割任务中,引入由插值和关系形状卷积层两部分组成的反卷积层,将特征从子采样点云传播回原始分辨率。结果在ModelNet40、ShapeNet、ScanNet数据集上进行分类、部分分割和语义场景分割实验,验证模型的分类分割性能。在分类实验中,与PointNet++相比,整体精度提升3.1%,在PointNet++将法线也作为输入的情况下,精度依然提升了1.9%;在部分分割实验中,类平均交并比(mean intersection over union,mIoU)比PointNet++在法线作为输入情况下高6.0%,实例mIoU比PointNet++高1.4%;在语义场景分割实验中,mIoU比PointNet++高13.7%。在ScanNet数据集上进行不同步长有无逆密度函数的对比实验,实验证明逆密度函数将分割精度提升0.8%左右,有效提升了模型性能。结论融合逆密度函数的关系形状卷积神经网络可以有效获取点云数据中的局部和全局特征,并对点云采样不均匀的情况实现一定程度的补偿,实现更优的分类和分割效果。