摘要:目的 深度卷积网络在图像超分辨率重建领域具有优异性能,越来越多的方法趋向于更深、更宽的网络设计。然而,复杂的网络结构对计算资源的要求也越来越高。随着智能边缘设备(如智能手机)的流行,高效能的超分重建算法有着巨大的实际应用场景。因此,本文提出一种极轻量的高效超分网络,通过循环特征选择单元和参数共享机制,不仅大幅降低了参数量和浮点运算次数(floating point operations,FLOPs),而且具有优异的重建性能。 方法本文网络由浅层特征提取、深层特征提取和上采样重建3部分构成。浅层特征提取模块包含一个卷积层,产生的特征循环经过一个带有高效通道注意力模块的特征选择单元进行非线性映射提取出深层特征。该特征选择单元含有多个卷积层的特征增强模块,通过保留每个卷积层的部分特征并在模块末端融合增强层次信息。通过高效通道注意力模块重新调整各通道的特征。借助循环机制(循环6次)可以有效提升性能且大幅减少参数量。上采样重建通过参数共享的上采样模块同时将浅层与深层特征进放大、融合得到高分辨率图像。 结果与先进的轻量级网络进行对比,本文网络极大减少了参数量和FLOPs,在Set5、Set14、B100、Urban100和Manga109等基准测试数据集上进行定量评估,在图像质量指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上也获得了更好的结果。 结论本文通过循环的特征选择单元有效挖掘出图像的高频信息,并通过参数共享机制极大减少了参数量,实现了轻量的高质量超分重建。
摘要:目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。 方法设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。 结果在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。 结论区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。
摘要:目的在点云场景中,语义分割对场景理解来说是至关重要的视觉任务。由于图像是结构化的,而点云是非结构化的,点云上的卷积通常比图像上的卷积更加困难,会消耗更多的计算和内存资源。在这种情况下,大尺度场景的分割往往需要分块进行,导致效率不足并且无法捕捉足够的场景信息。为了解决这个问题,本文设计了一种计算高效且内存高效的网络结构,可以用于端到端的大尺度场景语义分割。方法结合空间深度卷积和残差结构设计空间深度残差(spatial depthwise residual,SDR)块,其具有高效的计算效率和内存效率,并且可以有效地从点云中学习到几何特征。另外,设计一种扩张特征整合(dilated feature aggregation,DFA)模块,可以有效地增加感受野而仅增加少量的计算量。结合SDR块和DFA模块,本文构建SDRNet(spatial depthwise residual network),这是一种encoder-decoder深度网络结构,可以用于大尺度点云场景语义分割。同时,针对空间卷积核输入数据的分布不利于训练问题,提出层级标准化来减小参数学习的难度。特别地,针对稀疏雷达点云的旋转不变性,提出一种特殊的SDR块,可以消除雷达数据绕Z轴旋转的影响,显著提高网络处理激光雷达点云时的性能。结果在S3DIS(stanford large-scale 3D indoor space)和SemanticKITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上对提出的方法进行测试,并分析点数与帧率的关系。本文方法在S3DIS数据集上的平均交并比(mean intersection over union,mIoU)为71.7%,在SemanticKITTI上的mIoU在线单次扫描评估中达到59.1%。结论实验结果表明,本文提出的SDRNet能够直接在大尺度场景下进行语义分割。在S3DIS和SemanticKITTI数据集上的实验结果证明本文方法在精度上有较好表现。通过分析点数量与帧率之间的关系,得到的数据表明本文提出的SDRNet能保持较高精度和较快的推理速率。
摘要:目的高光谱人脸数据具有丰富的鉴别信息。最优谱带选择和谱内间特征表示是高光谱人脸识别的关键。基于高光谱波段范围为4001 090 nm和采样间隔为10 nm的高光谱成像人脸数据,本文提出一种分块谱带选择和VGG(Visual Geometry Group)网络的高光谱人脸识别方法。方法为了优化适合人脸识别的谱带组合,基于人脸关键点,提出分块局部二值模式(local binary pattern,LBP)特征的AdaBoost支持向量机(support vector machine,SVM)谱带选择方法。基于卷积神经网络结构建立一个面向高光谱人脸特点的深度网络(VGG12),提取谱带内特征。融合不同谱带的深度特征,利用三层堆栈自编码器(stack auto-encoder,SAE)抽取谱间特征。对提取的谱间和谱内特征,采用最近邻分类器完成最后的识别。结果为了验证提出方法的有效性,在公开的高光谱人脸数据集UWA-HSFD(University of Western Australia hyperspectral face database)和PolyU-HSFD(Hong Kong Polytechnic University hyperspectral face database)上进行对比试验。结果显示,基于分块LBP特征的谱带选择算法优于传统基于整幅图像像素的方法,提出的VGG12网络相比已有深度学习网络,仅保留少量(68个)谱带,在两个数据集上都取得了最高的识别率(96.8%和97.2%),表明传统可见光人脸深度网络并不适合高光谱人脸识别。结论实验结果表明,高光谱数据用于人脸识别中,谱带选择与深度学习结合是有效的,本文方法联合有监督深度网络(VGG12)和无监督学习网络(SAE)挖掘谱内和谱间鉴别特征,在降低深度网络训练复杂度的同时取得了较其他深度网络更好的识别性能。
摘要:目的现有显著性检测方法大多只关注显著目标的中心信息,使得算法只能得到中心清晰、边缘模糊的显著目标,丢失了一些重要的边界信息,而使用核范数约束进行低秩矩阵恢复,运算过程冗余。为解决以上问题,本文提出一种无监督迭代重加权最小二乘低秩恢复算法,用于图像视觉显著性检测。方法将图像分为细中粗3种尺度的分割,从细粒度和粗粒度先验的融合中得到分割先验信息;将融合后的分割先验信息通过迭代重加权最小二乘法求解平滑低秩矩阵恢复,生成粗略显著图;使用中粒度分割先验对粗略显著图进行平滑,生成最终的视觉显著图。结果实验在MSRA10K(Microsoft Research Asia 10K)、SOD(salient object detection dataset)和ECSSD(extended complex scene saliency dataset)数据集上进行测试,并与现有的11种算法进行对比。结果表明,本文算法可生成边界清晰的显著图。在MSRA10K数据集上,本文算法实现了最高的AUC(area under ROC(receiver operating characteristic)curve)和F-measure值,MAE(mean absolute error)值仅次于SMD(structured matrix decomposition)算法和RBD(robust back ground detection)算法,AUC和F-measure值比次优算法RPCA(robust principal component analysis)分别提高了3.9%和12.3%;在SOD数据集上,综合AUC、F-measure和MAE值来看,本文算法优于除SMD算法以外的其他算法,AUC值仅次于SMD算法、SC(smoothness constraint)算法和GBVS(graph-based visual salieney)算法,F-measure值低于最优算法SMD 2.6%;在ECSSD数据集上,本文算法实现了最高的F-measure值75.5%,AUC值略低于最优算法SC 1%,MAE值略低于最优算法HCNs(hierarchical co-salient object detection via color names)2%。结论实验结果表明,本文算法能从前景复杂或背景复杂的显著图像中更准确地检测出边界清晰的显著目标。
摘要:目的在施工现场,安全帽是最为常见和实用的个人防护用具,能够有效防止和减轻意外带来的头部伤害。但在施工现场的安全帽佩戴检测任务中,经常出现难以检测到小目标,或因为复杂多变的环境因素导致检测准确率降低等情况。针对这些问题,提出一种融合环境特征与改进YOLOv4(you only look once version 4)的安全帽佩戴检测方法。方法为补充卷积池化等过程中丢失的特征,在保证YOLOv4得到的3种不同大小的输出特征图与原图经过特征提取得到的特征图感受野一致的情况下,将两者相加,融合高低层特征,捕捉更多细节信息;对融合后的特征图采用3×3卷积操作,以减小特征图融合后的混叠效应,保证特征稳定性;为适应施工现场的各种环境,利用多种数据增强方式进行环境模拟,并采用对抗训练方法增强模型的泛化能力和鲁棒性。结果提出的改进YOLOv4方法在开源安全帽佩戴检测数据集(safety helmet wearing dataset,SHWD)上进行测试,平均精度均值(mean average precision,mAP)达到91.55%,较当前流行的几种目标检测算法性能有所提升,其中相比于YOLOv4,mAP提高了5.2%。此外,改进YOLOv4方法在融合环境特征进行数据增强后,mAP提高了4.27%,在各种真实环境条件下进行测试时都有较稳定的表现。结论提出的融合环境特征与改进YOLOv4的安全帽佩戴检测方法,以改进模型和数据增强的方式提升模型准确率、泛化能力和鲁棒性,为安全帽佩戴检测提供了有效保障。
摘要:目的3维人体重建的目标在于建立真实可靠的3维人体模型。但目前基于SMPL(skinned multi-person linear model)模型重建3维人体的实验和一些公开数据集中,常常会出现预测的姿势角度值不符合真实人体关节角度规则的现象。针对这一问题,本文提出设置关节旋转角值域,使得重建的结果真实性更强、更符合人体关节机械结构。方法根据人体关节的联接结构将各个关节的运动进行划分。根据划分结果计算关节运动自由度,并结合实际情况提出基于SMPL模型的关节旋转值域。提出一个简单的重建方法来验证值域分析的正确性。结果使用3维人体数据集UP-3D进行相关实验,并对比以往直接根据学习结果生成重建模型的数据。在使用轴角作为损失参数的情况下,重建精度提高显著,平均误差降低15.1%。在使用所有损失函数后,平均误差比直接根据预测值生成重建模型的两段式重建方法降低7.0%。重建结果与UP-3D数据集进行真实性对比有显著的关节联动性效果。结论本文提出的关节旋转角值域设置对基于SMPL模型进行3维人体重建的方法在进行关节点旋转角回归的过程中起到了很大作用,重建的模型也更符合人体关节运动联动性。
摘要:目的基于深度神经网络的遥感图像处理方法在训练过程中往往需要大量准确标注的数据,一旦标注数据中存在标签噪声,将导致深度神经网络性能显著降低。为了解决噪声造成的性能下降问题,提出了一种噪声鲁棒的轻量级深度遥感场景图像分类检索方法,能够同时完成分类和哈希检索任务,有效提高深度神经网络在有标签噪声遥感数据上的分类和哈希检索性能。方法选取轻量级神经网络作为骨干网,而后设计能够同时完成分类和哈希检索任务的双分支结构,最后通过设置损失基准的正则化方法,有效减轻模型对噪声的过拟合,得到噪声鲁棒的分类检索模型。结果本文在两个公开遥感场景数据集上进行分类测试,并与8种方法进行比较。本文方法在AID(aerial image datasets)数据集上,所有噪声比例下的分类精度比次优方法平均高出7.8%,在NWPU-RESISC45(benchmark created by Northwestern Polytechnical University for remote sensing image scene classification covering 45 scene classes)数据集上,分类精度比次优方法平均高出8.1%。在效率方面,本文方法的推理速度比CLEOT(classification loss with entropic optimal transport)方法提升了2.8倍,而计算量和参数量均不超过CLEOT方法的5%。在遥感图像哈希检索任务中,在AID数据集上,本文方法的平均精度均值(mean average precision,mAP)在3种不同哈希比特下比MiLaN(metric-learning based deep hashing network)方法平均提高了5.9%。结论本文方法可以同时完成遥感图像分类和哈希检索任务,在保持模型轻量高效的情况下,有效提升了深度神经网络在有标签噪声遥感数据上的鲁棒性。