摘要:目的基于深度学习的图像哈希检索是图像检索领域的热点研究问题。现有的深度哈希方法忽略了深度图像特征在深度哈希函数训练中的指导作用,并且由于采用松弛优化,不能有效处理二进制量化误差较大导致的生成次优哈希码的问题。对此,提出一种自监督的深度离散哈希方法(self-supervised deep discrete hashing,SSDDH)。方法利用卷积神经网络提取的深度特征矩阵和图像标签矩阵,计算得到二进制哈希码并作为自监督信息指导深度哈希函数的训练。构造成对损失函数,同时保持连续哈希码之间相似性以及连续哈希码与二进制哈希码之间的相似性,并利用离散优化算法求解得到哈希码,有效降低二进制量化误差。结果将本文方法在3个公共数据集上进行测试,并与其他哈希算法进行实验对比。在CIFAR-10、NUS-WIDE(web image dataset from National University of Singapore)和Flickr数据集上,本文方法的检索精度均为最高,本文方法的准确率比次优算法DPSH(deep pairwise-supervised hashing)分别高3%、3%和1%。结论本文提出的基于自监督的深度离散哈希的图像检索方法能有效利用深度特征信息和图像标签信息,并指导深度哈希函数的训练,且能有效减少二进制量化误差。实验结果表明,SSDDH在平均准确率上优于其他同类算法,可以有效完成图像检索任务。
摘要:目的道路提取是常见的遥感应用之一。现有的基于深度卷积网络的道路提取方法往往未考虑云遮挡给道路提取带来的影响,且提取网络模型较大,不利于在移动端部署,同时缺乏用于云遮挡场景下的道路提取数据集。对此,本文提出一种轻量化的UNet网络(lightweight UNet,L-UNet),高效地实现云遮挡下的道路提取。方法通过柏林噪声模拟云层以扩展现有道路提取数据集,进而训练L-UNet。使用移动翻转瓶颈卷积模块作为特征提取的主要结构,在深度可分离卷积的基础上加入扩展卷积和压缩激励模块,在减少参数量的同时大幅提升了分割效果。结果在DeepGlobe道路提取扩展数据集的测试中,与D-LinkNet相比,L-UNet的交并比(intersection over union,IoU)提升了1.97%,而参数量仅为D-LinkNet的1/5。在真实云遮挡遥感图像道路提取测试中,L-UNet的性能仍然最优,与D-LinkNet和UNet相比,IoU值分别提高19.47%和31.87%。结论L-UNet网络具有一定的云遮挡区域下道路标签生成能力,虽然在模拟云遮挡数据集下训练得到,但对于真实云遮挡仍具有较强的鲁棒性。L-UNet模型参数量很小,易于嵌入移动端。
摘要:目的植物叶片形态复杂,在虚拟场景中很难真实表现。为了从信息量有限的单幅图像中恢复植物叶片的3维形状,本文基于从明暗恢复形状(shape from shading,SFS)的方法,利用亮度统计规律和植物形态特征恢复叶片的3维形状。方法在SFS的基础上,设计基于图像骨架的距离场偏置加强表面细节;针对SFS对恢复宏观几何形状的不足,提出根据图像亮度统计分布选取控制点控制表面宏观形状变化,并利用叶片中轴的距离场约束恢复宏观几何形状,每种方法对于表面宏观几何形状恢复的权重基于恢复的反射图和输入图像间的相似度设定;将表面细节添加到宏观几何形状上得到目标对象的3维形状。结果选取植物叶片图像进行实验,并与其他方法进行比较,实验结果表明本文方法增强了表面细节显示,并有明显的宏观几何形状变化。同时为了验证本文方法对其他物体表面细节恢复的适用性,分别对硬币和恐龙恢复表面细节,实验结果表明提出的增强表面细节的方法同样适用于其他物体。结论针对单幅植物叶片图像的3维重建,在SFS的基础上提出了根据骨架特征加强表面细节,根据图像亮度统计分布和叶片中轴距离场约束共同恢复表面宏观几何形状的算法,实验结果验证了本文方法的可行性。
摘要:目的卫星视频作为新兴遥感数据,可以提供观测区域高分辨率的空间细节信息与丰富的时序变化信息,为交通监测与特定车辆目标跟踪等应用提供了不同于传统视频视角的信息。相较于传统视频数据,卫星视频中的车辆目标分辨率低、尺度小、包含的信息有限。因此,当目标边界不明、存在部分遮挡或者周边环境表观模糊时,现有的目标跟踪器往往存在严重的目标丢失问题。对此,本文提出一种基于特征融合的卫星视频车辆核相关跟踪方法。方法对车辆目标使用原始像素和方向梯度直方图(histogram of oriented gradient,HOG)方法提取包含互补判别能力的特征,利用核相关目标跟踪器分别得到具备不变性和判别性的响应图;通过响应图融合的方式结合两种特征的互补信息,得到目标位置;使用响应分布指标(response distribution criterion,RDC)判断当前目标特征的稳定性,决定是否更新跟踪器的表征模型。本文使用的相关滤波方法具有计算量小且运算速度快的特点,具备跟踪多个车辆目标的拓展能力。结果在8个卫星视频序列上与主流的6种相关滤波跟踪器进行比较,实验数据涵盖光照变化、快速转弯、部分遮挡、阴影干扰、道路颜色变化和相似目标临近等情况,使用准确率曲线和成功率曲线的曲线下面积(area under curve,AUC)对车辆跟踪的精度进行评价。结果表明,本文方法较好地均衡了使用不同特征的基础跟踪器(性能排名第2)的判别能力,准确率曲线AUC提高了2.9%,成功率曲线AUC下降了4.1%,成功跟踪车辆目标,不发生丢失,证明了本文方法的先进性和有效性。结论本文提出的特征融合的卫星视频车辆核相关跟踪方法,均衡了不同特征提取器的互补信息,较好解决了卫星视频中车辆目标信息不足导致的目标丢失问题,提升了精度。