摘要:目的视频重压缩是视频取证技术的重要辅助性手段。目前,不同编码参数进行压缩的高效视频编码(high efficiency video coding,HEVC)视频重压缩检测已经取得较高的准确度,而在前后采用相同编码参数压缩过程中,HEVC视频重压缩操作的痕迹非常小,检测难度大。为此,提出了在相同编码参数下基于视频质量下降机制的视频重压缩检测算法。方法在经过多次相同编码参数压缩后,可以观察到视频的质量趋于不变,利用视频质量下降程度可以区分单压缩视频和重压缩视频。本文提出I帧预测单元模式(intra-coded picture prediction unit mode,IPUM)和P帧预测单元模式(predicted picture prediction unit mode,PPUM)两类视频特征,即分别从I帧和P帧中的亮度分量(Y)提取预测单元(prediction unit,PU)的模式。从待测视频中提取IPUM和PPUM特征,将HEVC视频以相同的编码参数压缩3次,每次提取上述特征。由于I帧、P帧中不同尺寸的PU数量相差较大,应选取数量较多的PU作为统计特征。统计平均每一I帧、P帧在相同位置第n次压缩和第n+1次压缩不同的PU模式,构成6维特征集送入支持向量机(support vector machine,SVM)进行分类。结果本文方法在CIF(common intermediate format)数据集、720p数据集、1 080p数据集的平均检测准确度分别为95.45%,94.8%,95.53%。在不同的图像组(group of pictures,GOP)和帧删除的情况下均具有较好的表现。结论本文方法利用在相同位置连续两次压缩不同的PU模式数来揭示视频质量下降的规律,具有较高的准确度,且在不同情况下均有较好表现。
摘要:目的多相图像分割是图像处理与分析的重要问题,变分图像分割的Vese-Chan模型是多相图像分割的基本模型,由于该模型使用较少的标签函数构造区域划分的特征函数,具有求解规模小的优点。图割(graph cut,GC)算法可将上述能量泛函的极值问题转化为最小割/最大流问题求解,大大提高了计算效率。连续最大流(continuous max-flow,CMF)方法是经典GC算法的连续化表达,不仅具备GC算法的高效性,且克服了经典GC算法由于离散导致的精度下降问题。本文提出基于凸松弛的多相图像分割Vese-Chan模型的连续最大流方法。方法根据划分区域编号的二进制表示构造两类特征函数,将多相图像分割转化为多个交替优化的两相图像分割问题。引入对偶变量将Vese-Chan模型转化为与最小割问题相对应的连续最大流问题,并引入Lagrange乘子设计交替方向乘子方法(alternating direction method of multipliers,ADMM),将能量泛函的优化问题转化为一系列简单的子优化问题。结果对灰度图像和彩色图像进行数值实验,从分割效果看,本文方法对于医学图像、遥感图像等复杂图像的分割效果更加精确,对分割对象和背景更好地分离;从分割效率看,本文方法减少了迭代次数和运算时间。在使用2个标签函数的分割实验中,本文方法运算时间加速比分别为6.35%、10.75%、12.39%和7.83%;在使用3个标签函数的分割实验中,运算时间加速比分别为12.32%、15.45%和14.04%;在使用4个标签函数的分割实验中,运算时间加速比分别为16.69%和20.07%。结论本文提出的多相图像分割Vese-Chan模型的连续最大流方法优化了分割效果,减少了迭代次数,从而提高了计算效率。
摘要:目的行人再识别是实现跨摄像头识别同一行人的关键技术,面临外观、光照、姿态、背景等问题,其中区别行人个体差异的核心是行人整体和局部特征的表征。为了高效地表征行人,提出一种多分辨率特征注意力融合的行人再识别方法。方法借助注意力机制,基于主干网络HRNet(high-resolution network),通过交错卷积构建4个不同的分支来抽取多分辨率行人图像特征,既对行人不同粒度特征进行抽取,也对不同分支特征进行交互,对行人进行高效的特征表示。结果在Market1501、CUHK03以及DukeMTMC-ReID这3个数据集上验证了所提方法的有效性,rank1分别达到95.3%、72.8%、90.5%,mAP(mean average precision)分别达到89.2%、70.4%、81.5%。在Market1501与DukeMTMC-ReID两个数据集上实验结果超越了当前最好表现。结论本文方法着重提升网络提取特征的能力,得到强有力的特征表示,可用于行人再识别、图像分类和目标检测等与特征提取相关的计算机视觉任务,显著提升行人再识别的准确性。
摘要:目的高分辨率遥感图像通常包含复杂的语义信息与易混淆的目标,对其语义分割是一项重要且具有挑战性的任务。基于DeepLab V3+网络结构,结合树形神经网络结构模块,设计出一种针对高分辨率遥感图像的语义分割网络。方法提出的网络结构不仅对DeepLab V3+做出了修改,使其适用于多尺度、多模态的数据,而且在其后添加连接树形神经网络结构模块。树形结构通过建立混淆矩阵、提取混淆图、构建图分割,能够对易混淆的像素更好地区分,得到更准确的分割结果。结果在国际摄影测量及遥感探测学会(International Society for Photogrammetry and Remote Sensing,ISPRS)提供的两个不同城市的遥感影像集上分别进行了实验,模型在整体准确率(overall accuracy,OA)这一项表现最好,在Vaihingen和Potsdam数据集上分别达到了90.4%和90.7%,其整体分割准确率较其基准结果有10.3%和17.4%的提升,对比ISPRS官方网站上的3种先进方法也有显著提升。结论提出结合DeepLab V3+和树形结构的卷积神经网络,有效提升了高分辨率遥感图像语义分割整体精度,其中易混淆类别数据的分割准确率显著提高。在包含复杂语义信息的高分辨率遥感图像中,由于易混淆类别之间的像素分割错误减少,使用了树形结构的网络模型的整体分割准确率也有较大提升。
摘要:目的高光谱图像具有高维度的光谱结构,而且邻近波段之间往往存在大量冗余信息,导致在随机样本选择策略和图像分类过程中出现选择波段算法复杂度较高和不适合小样本的现象。针对该问题,在集成学习算法的基础上,考虑不同波段在高光谱图像分类过程中的作用不同,提出一种融合累积变异比和超限学习机的高光谱图像分类算法。方法定义波段的累积变异比函数来确定各波段在分类算法的贡献程度。基于累积变异比函数剔除低效波段,并结合空谱特征进行平均分组加权随机选择策略进行数据降维。为了进一步提高算法的泛化能力,对降维后提取的空谱特征进行多次样本重采样,训练得到多个超限学习机弱分类器,再将多个弱分类器的结果通过投票表决法得到最后的分类结果。结果实验使用Indian Pines、Pavia University scene和Salinas这3种典型的高光谱图像作为实验标准数据集,采用支持向量机(support vector machine,SVM),超限学习机(extreme learning machine,ELM),基于二进制多层Gabor超限学习机(ELM with Gabor,GELM),核函数超限学习机(ELM with kernel,KELM),GELM-CK(GELM with composite kernel),KELM-CK(KELM with composite kernel)和SS-EELM(spatial-spectral and ensemble ELM)为标准检测算法验证本文算法的有效性,在样本比例较小的实验中,本文算法的总体分类精度在3种数据集中分别为98.0%、98.9%和97.9%,比其他算法平均分别高出9.6%和4.7%和4.1%。本文算法耗时在3种数据集中分别为15.2 s、60.4 s和169.4 s。在同类目标空谱特性差异较大的情况下,相比于分类精度较高的KELM-CK和SS-EELM算法减少了算法耗时,提高了总体分类精度;在同类目标空谱特性相近的情况下,相比于其他算法,样本数量的增加对本文算法的耗时影响较小。结论本文算法通过波段的累积变异比函数优化了平均分组波段选择策略,针对各类地物目标分布较广泛并且同类目标空谱特性差异较大的高光谱数据集,能够有效提取特征光谱维度的差异性,确定参数较少,总体分类效果较好。