摘要:目的视频中的人体行为识别技术对智能安防、人机协作和助老助残等领域的智能化起着积极的促进作用,具有广泛的应用前景。但是,现有的识别方法在人体行为时空特征的有效利用方面仍存在问题,识别准确率仍有待提高。为此,本文提出一种在空间域使用深度学习网络提取人体行为关键语义信息并在时间域串联分析从而准确识别视频中人体行为的方法。方法根据视频图像内容,剔除人体行为重复及冗余信息,提取最能表达人体行为变化的关键帧。设计并构造深度学习网络,对图像语义信息进行分析,提取表达重要语义信息的图像关键语义区域,有效描述人体行为的空间信息。使用孪生神经网络计算视频帧间关键语义区域的相关性,将语义信息相似的区域串联为关键语义区域链,将关键语义区域链的深度学习特征计算并融合为表达视频中人体行为的特征,训练分类器实现人体行为识别。结果使用具有挑战性的人体行为识别数据集UCF(University of Central Florida)50对本文方法进行验证,得到的人体行为识别准确率为94.3%,与现有方法相比有显著提高。有效性验证实验表明,本文提出的视频中关键语义区域计算和帧间关键语义区域相关性计算方法能够有效提高人体行为识别的准确率。结论实验结果表明,本文提出的人体行为识别方法能够有效利用视频中人体行为的时空信息,显著提高人体行为识别准确率。
摘要:目的姿态变化和遮挡导致行人表现出明显差异,给行人再识别带来了巨大挑战。针对以上问题,本文提出一种融合形变与遮挡机制的行人再识别算法。方法为了模拟行人姿态的变化,在基础网络输出的特征图上采用卷积的形式为特征图的每个位置学习两个偏移量,偏移量包括水平和垂直两个方向,后续的卷积操作通过考虑每个位置的偏移量提取形变的特征,从而提高网络应对行人姿态改变时的能力;为了解决遮挡问题,本文通过擦除空间注意力高响应对应的特征区域而仅保留低响应特征区域,模拟行人遮挡样本,进一步改善网络应对遮挡样本的能力。在测试阶段,将两种方法提取的特征与基础网络特征级联,保证特征描述子的鲁棒性。结果本文方法在行人再识别领域3个公开大尺度数据集Market-1501、DukeMTMC-reID和CUHK03(包括detected和labeled)上进行评估,首位命中率Rank-1分别达到89.52%、81.96%、48.79%和50.29%,平均精度均值(mean average precision,mAP)分别达到73.98%、64.45%、43.77%和45.58%。结论本文提出的融合形变与遮挡机制的行人再识别算法可以学习到鉴别能力更强的行人再识别模型,从而提取更加具有区分性的行人特征,尤其是针对复杂场景,在发生行人姿态改变及遮挡时仍能保持较高的识别准确率。
摘要:目的针对传统非刚性3维模型的对应关系计算方法需要模型间真实对应关系监督的缺点,提出一种自监督深度残差函数映射网络(self-supervised deep residual functional maps network,SSDRFMN)。方法首先将局部坐标系与直方图结合以计算3维模型的特征描述符,即方向直方图签名(signature of histograms of orientations,SHOT)描述符;其次将源模型与目标模型的SHOT描述符输入SSDRFMN,利用深度函数映射(deep functional maps,DFM)层计算两个模型间的函数映射矩阵,并通过模糊对应层将函数映射关系转换为点到点的对应关系;最后利用自监督损失函数计算模型间的测地距离误差,对计算出的对应关系进行评估。结果实验结果表明,在MPI-FAUST数据集上,本文算法相比于有监督的深度函数映射(supervised deep functional maps,SDFM)算法,人体模型对应关系的测地误差减小了1.45;相比于频谱上采样(spectral upsampling,SU)算法减小了1.67。在TOSCA数据集上,本文算法相比于SDFM算法,狗、猫和狼等模型的对应关系的测地误差分别减小了3.13、0.98和1.89;相比于SU算法分别减小了2.81、2.22和1.11,并有效克服了已有深度函数映射方法需要模型间的真实对应关系来监督的缺点,使得该方法可以适用于不同的数据集,可扩展性大幅增强。结论本文通过自监督深度残差函数映射网络训练模型的方向直方图签名描述符,提升了模型对应关系的准确率。本文方法可以适应于不同的数据集,相比传统方法,普适性较好。
摘要:目的数字浅浮雕是在平面载体上塑造高低起伏形象的一种造型艺术,具有独特的结构及视觉效果,应用场景极为广泛。为了增加数字浮雕设计的多样性,实现浮雕的风格化应用,提出一种基于高度图的浅浮雕模型生成方法。方法引入掩模理论,利用掩模操作对待处理的图像进行处理,融合图像处理技术,控制所要生成浮雕不同部位的高度,得到控制浮雕生成效果的高度图,借鉴已有的浅浮雕模型生成方法,利用基于高斯混合模型的滚动引导法向滤波(Gaussian mixture model based rolling guidance normal filtering,GRNF)进行法向分解,基于SfG(surface from gradients)的局部调整和全局重建的方法进行曲面重建,采用拉普拉斯算子及双边滤波器进行去噪平滑处理,最终生成不同高度风格的浅浮雕模型。结果实验结果表明,本文方法能够生成带有不同视觉效果的浅浮雕模型,通过对细节特征及结构特征相关参数的调整,均能够生成轮廓清晰、细节丰富的浅浮雕模型。结论本文提出的基于高度图的浅浮雕模型生成方法能够为浅浮雕的多样化设计提供新的思路和方法,在家居装饰行业中有重要的应用价值。
摘要:目的遥感图像语义分割是根据土地覆盖类型对图像中每个像素进行分类,是遥感图像处理领域的一个重要研究方向。由于遥感图像包含的地物尺度差别大、地物边界复杂等原因,准确提取遥感图像特征具有一定难度,使得精确分割遥感图像比较困难。卷积神经网络因其自主分层提取图像特征的特点逐步成为图像处理领域的主流算法,本文将基于残差密集空间金字塔的卷积神经网络应用于城市地区遥感图像分割,以提升高分辨率城市地区遥感影像语义分割的精度。方法模型将带孔卷积引入残差网络,代替网络中的下采样操作,在扩大特征图感受野的同时能够保持特征图尺寸不变;模型基于密集连接机制级联空间金字塔结构各分支,每个分支的输出都有更加密集的感受野信息;模型利用跳线连接跨层融合网络特征,结合网络中的高层语义特征和低层纹理特征恢复空间信息。结果基于ISPRS(International Society for Photogrammetry and Remote Sensing)Vaihingen地区遥感数据集展开充分的实验研究,实验结果表明,本文模型在6种不同的地物分类上的平均交并比和平均F1值分别达到69.88%和81.39%,性能在数学指标和视觉效果上均优于SegNet、pix2pix、Res-shuffling-Net以及SDFCN(symmetrical dense-shortcut fully convolutional network)算法。结论将密集连接改进空间金字塔池化网络应用于高分辨率遥感图像语义分割,该模型利用了遥感图像不同尺度下的特征、高层语义信息和低层纹理信息,有效提升了城市地区遥感图像分割精度。