摘要:城市视频实景地图兼具地图立体空间、视频时间4维度层面信息统一表达能力,对于我国城市立体监控系统构建、互联网地图产品发展,以及未来实景3维中国建设战略实施具有重要意义和应用价值。为引起更多研究者进行探索,对城市视频实景地图构建方法、技术及其应用前景进行讨论。从增强虚拟环境技术(AVE)角度出发,对融合全景视频与地理3维模型构建城市视频实景地图涉及的全景摄像机标定、全景视频空间配准及视频纹理映射、实时渲染系列技术、方法进行了梳理。经过分析得出:1)适合传统“针孔”模型的摄像机标定、影像空间配准理论和方法,需根据全景摄像机球面投影模型进行拓展;2)适合静态纹理的大规模3D场景渲染LOD(levels of detail)技术和策略,需结合视频传输带宽限制、高帧率特点进行技术创新。城市视频实景地图构建是一项值得重视的崭新课题,将有力促进互联网、人工智能前沿技术发展,有望给相关行业带来万亿级市场机遇。
摘要:目的车标是车辆的显著性特征,通过车标的分类与识别可以极大缩小车辆型号识别的范围,是车辆品牌和型号识别中的重要环节。基于特征描述子的车标识别算法存在如下缺点:一方面,算法提取的特征数量有限,不能全面描述车标的特征;另一方面,提取的特征过于冗杂,维度高,需要大量的计算时间。为了提取更加丰富的车标特征,提高识别效率,提出一种增强边缘梯度特征局部量化策略驱动下的车标识别方法。方法首先提取车标图像的增强边缘特征,即根据不同的梯度方向提取梯度信息,生成梯度大小矩阵,并采用LTP(local ternary patterns)算子在梯度大小矩阵上进一步进行特征提取,然后采用特征码本对提取的特征进行量化操作,在确保车标特征描述能力的同时,精简了特征数目,缩短了局部向量的长度,最后采用WPCA(whitened principal component analysis)进行特征降维操作,并基于CRC(collaborative representation based classification)分类器进行车标的识别。结果基于本文算法提取的车标特征向量,能够很好地描述车标图像的特征,在HFUT-VL1车标数据集上取得了97.85%的识别率(平均每类训练样本为10张),且在识别难度较大的XMU车标数据集上也能取得90%以上的识别率(平均每类训练样本为100张),与其他识别算法相比,识别率有明显提高,且具有更强的鲁棒性。结论增强边缘梯度特征局部量化策略驱动下的车标识别算法提取的特征信息能够有效地描述车标,具有很高的识别率和很强的鲁棒性,大大降低了特征向量的维度,提高了识别效率。
摘要:目的为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势。结论实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。