摘要:目的针对反恐、安防领域利用监控视频进行步态识别时由光照、拍摄角度、遮挡等多协变量引起的轮廓缺失、人体阴影和运算时间等问题,提出了一种基于RPGNet(Regin of Interest+Parts of Body Semantics+GaitNet)网络的步态人体语义分割方法。方法该方法按照功能划分为R(region of interest)模块、P(parts of body semantics)模块和GNet(GaitNet)模块。R模块提取人体步态感兴趣区域,起到提升算法效率和图像去噪的作用。P模块借助LabelMe开源图像注释工具进行步态人体部位语义标注。GNet模块进行步态人体部位语义训练与分割。借鉴ResNet和RefineNet网络模型,设计了一种细节性步态语义分割网络模型。结果对步态数据库1 380张图片进行了测试,RPGNet方法与6种人体轮廓分割方法进行了对比实验,实验结果表明RPGNet方法对细节和全局信息处理得都很精确,在0°、45°和90°视角都表现出较高的分割正确率。在多人、戴帽和遮挡条件下,实验结果表明RPGNet方法人体分割效果良好,能够满足步态识别过程中的实时性要求。结论实验结果表明,RPGNet步态人体语义分割方法在多协变量情况下能够有效进行步态人体语义分割,同时也有效提高了步态识别的识别率。
摘要:目的针对因采集的人脸图像样本受到污染而严重干扰人脸识别及训练样本较少(小样本)时会由于错误的稀疏系数导致性能急剧下降从而影响人脸识别的问题,提出了一种基于判别性非凸低秩矩阵分解的叠加线性稀疏表示算法。方法首先由$γ$范数取代传统核范数,克服了传统低秩矩阵分解方法求解核范数时因矩阵奇异值倍数缩放导致的识别误差问题;然后引入结构不相干判别项,以增加不同类低秩字典间的非相干性,达到抑制类内变化和去除类间相关性的目的;最后利用叠加线性稀疏表示方法完成分类。结果所提算法在AR人脸库中的识别率达到了98.67±0.57%,高于SRC(sparse representation-based classification)、ESRC(extended SRC)、RPCA(robust principal component analysis)+SRC、LRSI(low rank matrix decomposition with structural incoherence)、SLRC(superposed linear representation based classification)-$l_{1}$等算法;同时,遮挡实验表明,算法对遮挡图像具有更好的鲁棒性,在不同遮挡比例下,相比其他算法均有更高的识别率。在CMU PIE人脸库中,对无遮挡图像添加0、10%、20%、30%、40%的椒盐噪声,算法识别率分别达到90.1%、85.5%、77.8%、65.3%和46.1%,均高于其他算法。结论不同人脸库、不同比例遮挡和噪声的实验结果表明,所提算法针对人脸遮挡、表情和光照等噪声因素依然保持较高的识别率,鲁棒性更好。